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Abstract
The article discusses the problem of detecting routing attacks in wireless sensor networks, which are an 
important component of the Internet of Things (IoT) infrastructure. In particular, the vulnerabilities of the 
RPL protocol, which is widely used in low-power networks, are investigated. A method for detecting 
anomalies is proposed, based on the use of an LSTM autoencoder capable of modeling the time sequence 
of routing parameters such as delay, etx, charge level, hop count, and parent ID. The model is trained on  
“normal”  samples  and  allows  identifying  deviations  in  node  behavior  characteristic  of  blackhole,  
wormhole,  and  other  types  of  attacks.  Experimental  modeling  using  the  CICIoT2023  dataset  was 
performed,  which  demonstrated the  high accuracy of  the  model  (98.4%)  and its  ability  to  effectively 
classify  anomalous  situations.  The  results  indicate  the  promise  of  using  recurrent  deep  learning 
architectures to ensure cybersecurity in resource-constrained IoT environments.
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1. Introduction

The  Internet  of  Things  (IoT)  is  a  complex  network  of  interconnected  devices  that  provides 
continuous  exchange  of  information  between  various  “smart”  objects,  such  as  mobile  phones, 
household appliances, security systems, medical sensors, etc. [1–3]. With the development of IoT, 
the number of  connected devices is  growing significantly,  transforming traditional  methods of 
collecting, transmitting, and using data in various fields of activity [4]. However, along with the 
growing popularity of IoT, cyber threats are also increasing, creating a need for in-depth study of  
potential  vulnerabilities and the development of appropriate protective measures [5–8].  This is  
especially true for low-power wireless networks, where limited device resources create additional  
challenges for implementing effective security measures.

The modern development of IoT is impossible to imagine without the use of protocols optimized 
for operation in conditions of limited resources and energy efficiency. One such protocol is IPv6 
over Low Power Wireless Personal Area Networks (6LoWPAN), which enables devices with limited 
computing power  to  be  integrated  into  the  Internet  using IP  addressing.  Although 6LoWPAN 
contributes to  the expansion of  the functionality of  IoT systems [9],  it  is  also vulnerable to a 
number of attacks, including routing attacks, which can compromise data integrity and availability, 
disrupt  communication  between  devices,  and  threaten  the  confidentiality  of  transmitted 
information. The difficulty of detecting such attacks is compounded by the dynamic and frequently 
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changing network topology, as well as the limited computing resources and energy capabilities of  
most IoT devices [9]. 

An important element of the infrastructure of wireless sensor networks, which are an integral 
part of the IoT, are routing protocols that ensure the proper functioning of the communication 
process.  The  Routing  Protocol  for  Low-Power  and  Lossy  Networks  (RPL)  is  one  of  the  most 
common solutions for routing in low-power networks [10]. RPL is adapted to the conditions of 
limited device resources and the characteristics of wireless networks with high loss rates, which 
makes it attractive for widespread use in IoT environments [11]. However, this protocol is not 
without its drawbacks, as it is vulnerable to numerous types of attacks that can target various 
network  components,  causing  resource  depletion,  routing  integrity  violations,  and  data 
transmission interference. As a result, the service life of individual devices and the network as a 
whole can be significantly reduced, and the stability of the system can be threatened.

Wireless sensor networks, which are often used in the IoT, are important in many application 
areas, such as environmental monitoring, agricultural management, healthcare, military control, 
industrial  surveillance,  traffic  management,  etc.  [12].  The  nodes  of  such  networks  consist  of 
sensors,  power  sources,  controllers,  and  communication  devices,  which  enable  the  collection, 
processing,  and  transmission  of  information.  However,  due  to  limited  energy  and  computing 
resources, as well as the peculiarities of the distributed structure, these systems are vulnerable to 
numerous  technical  and  organizational  problems,  including  energy  efficiency,  communication 
reliability, security, synchronization, and node localization. Extending the network's service life is 
achieved,  in particular,  by selecting optimal nodes as cluster heads that  support  routing while 
ensuring security, which is an important aspect in the design of large IoT networks. There are  
various  methods  for  solving  secure  routing  problems,  which,  depending  on  the  network 
architecture, are divided into protocols based on node location, linear and hierarchical algorithms 
[13].  Location-based  protocols  use  the  geographical  coordinates  of  nodes  to  determine  routes, 
linear algorithms assign equal functional roles to each node, and hierarchical algorithms distribute 
different  roles  among  nodes  to  improve  efficiency  and  security.  However,  traditional  routing 
methods often do not take into account the risks associated with network congestion, which arises 
due  to  insufficient  bandwidth,  long  data  processing  delays,  packet  loss,  and  energy  depletion. 
Congestion negatively affects the overall  quality of service, reducing network performance and 
reliability. Traditional overload control mechanisms in wireless sensor networks do not sufficiently 
account  for  the impact  of  attacks by malicious actors  who can initiate and maintain overload 
conditions, making it difficult to detect and counter threats. Malicious nodes, which often operate 
covertly, can carry out Sybil attacks and node replication. They can also generate excessive traffic 
through repeated messages.  This leads to increased computational load and accelerated battery 
depletion of nodes. As a result, the overall service life of the network is significantly reduced, with 
a simultaneous decrease in stability and reliability. The ability of IoT devices to collect and analyze 
data in real time enables more efficient resource management, process automation, and improved 
security and control systems. The rapid development of IoT is accompanied by growing challenges 
in  the  field  of  cybersecurity.  With  the  widespread  adoption  of  IoT  devices,  the  number  of 
cyberattacks is also growing. The vulnerability of the RPL protocol to various types of attacks 
remains one of the security issues. Such attacks can cause large-scale network failures, service  
disruptions,  and  significant  financial  losses  [14].  Ensuring  comprehensive  protection  of  IoT 
networks requires not only the development of new protocols and routing methods, but also the 
integration of attack detection mechanisms.

2. Similar works

Routing attacks are a separate class of cyberattacks aimed at disrupting or manipulating the data  
transmission  process  in  computer  networks,  particularly  in  the  context  of  IoT,  corporate 
infrastructures, mobile ad hoc networks, and the global Internet. The main goal of such attacks is  
to  redirect,  replace,  or  destroy network  traffic,  which can lead  to  a  breach of  communication 



integrity,  leakage  of  confidential  information,  disruption  of  service  availability,  or  increased 
vulnerability to secondary attacks [15].

Classic examples of routing attacks include Man-in-the-Middle attacks, in which an attacker 
integrates into the communication channel between two nodes to intercept or modify data; routing 
table poisoning, in which false routing announcements are sent to the network in order to distort 
the network map; black hole attacks, in which a malicious node announces the presence of an  
optimal  route  to  any node and destroys  the received traffic;  wormhole  attack,  which involves 
creating a tunnel between two nodes to deceive routing mechanisms; and BGP hijacking, which is 
particularly significant at the global level because it allows traffic to be redirected through third-
party, potentially dangerous autonomous systems.

Approaches  to  protecting  against  such  attacks  include  routing  information  authentication 
mechanisms, route filtering, monitoring for anomalous activity, cryptographic protection of traffic, 
and the implementation of trust models in wireless and mobile networks. For example, protocols  
such as IPsec ensure the integrity and authenticity of routing messages, while BGPsec extends the  
functionality of the basic BGP protocol with digital signing of routes. Prefix-based route filtering or 
the use of access control lists (ACLs) can reduce the risk of accepting malicious routes, although 
these  methods  often  require  manual  configuration  and  do  not  scale  well  in  large  networks.  
Monitoring systems such as BGPMon or RIPE RIS are used to observe changes in routes on a global  
scale, but they usually only kick in after an attack has already taken place. Data encryption using 
VPN  or  TLS/SSL  protocols  prevents  unauthorized  reading  of  packet  contents,  but  does  not 
guarantee protection against route manipulation. In the context of mobile networks, trust-based 
routing  models  are  used,  which are  based on the  evaluation of  node behavior  (trust-based or 
reputation-based routing), but such systems have low accuracy in the face of Sybil attacks and 
depend on the availability of centralized validation mechanisms, which contradicts the principle of 
decentralization. The limitations of modern protection methods include the high computational 
complexity  of  cryptographic  protocols,  the  need  for  manual  configuration  of  route  filters,  the 
limited effectiveness of threat detection systems, and dependence on the correct configuration of 
secure connections. 

The study [16] proposes the HTCCR (Hybrid Trust-based Congestion-aware Cluster Routing) 
protocol as a solution for improving security and routing efficiency in wireless sensor networks. 
The solution is based on a hybrid clustering mechanism using trust metrics, residual energy, queue 
status, and distance to the base station, which allows for adaptive route formation and detection of 
malicious  nodes.  The  implementation  of  priority  routing  for  different  types  of  traffic  reduces 
delays, congestion, and packet loss. The simulation results demonstrate the superiority of HTCCR 
over  other  protocols  in  terms  of  energy  efficiency,  delivery  reliability,  and  attack  detection 
accuracy. In article [17],  the authors propose an Optimized Reporting Module (ORM) based on 
delta-oriented trust computation to detect and isolate nodes involved in black hole attacks in Green 
IoT networks. The solution is based on a combined approach using direct and indirect trust, which 
is  calculated  using  indicators  such  as  energy,  similarity,  and  behavior  dynamics,  taking  into 
account the forgetting curve to prioritize recent node actions. The main advantage of the proposed 
model is the reduction in the number of false positives and the reduction in the load on the root 
node of the network by transmitting reports only when there is a critical decrease in trust, which 
ensures  stability  and  scalability  in  networks  with  limited  resources.  However,  among  the 
disadvantages, it should be noted that integration into real systems may be difficult due to the need 
for precise configuration of trust parameters, as well as the dependence of effectiveness on the 
accuracy  and  objectivity  of  the  collected  feedback.  In  article  [18],  the  authors  proposed  a 
distributed  intrusion  detection  mechanism  that  combines  the  accumulation  phase  of  activity 
variables  with multidimensional  evaluation using fuzzy logic  and two-stage  verification before 
blocking suspicious nodes. The system shows high adaptability for both static and mobile RPL 
networks, providing extremely accurate attack detection with a high F₁ measure, while reducing 
power consumption and latency and increasing packet delivery rates compared to current IDS 
solutions. The advantages of the solution include the ability to process multiple metrics with a  



single  fuzzy  mechanism,  which  minimizes  false  positives,  and  the  presence  of  a  confirmation 
mechanism before blocking, which reduces the risk of excluding legitimate nodes. At the same 
time, the presented model has limitations, including increased computational complexity of the 
activity analysis phase and fuzzy logic, which does not take into account the resources of very  
limited nodes. The effectiveness of the system depends on the accuracy of the selected fuzzy rules 
and  threshold  values,  which  requires  careful  calibration  taking  into  account  the  specific 
characteristics of the network. Thanks to their ability to reveal hidden patterns in large data sets,  
machine learning methods are actively used in various fields, including materials science [19–23], 
cybersecurity  [24–27],  medicine  [28–31],  computer  vision  [32–35],  and  finance  [36–39].  The 
complexity  of  the  topology,  limited  computing  resources,  and  the  dynamic  nature  of  attacks 
complicate the application of traditional protection methods in IoT networks. This makes machine 
learning a promising tool in the context of IoT network security. In [40], the authors propose a 
mechanism for detecting routing attacks for wireless sensor networks based on a multilayer neural 
network with a direct layer that analyzes the dynamic behavior of the network and recognizes 
threats such as black hole,  gray hole,  and wormhole attacks using learning and general model 
generalization. The proposed solution is capable of adapting to unknown attack patterns, which 
makes it promising for real-world application in resource-constrained environments. However, the 
architecture  of  the  solution  requires  computations  in  an  NS2-supported  environment  and 
significant computing power, which can be difficult to implement on embedded WSN nodes. In 
addition, the effectiveness of the mechanism largely depends on the quality of the CICIDS2017 
training set, which may reduce overall reliability when transferred to other types of networks. In  
[41,42], the authors also propose methods for detecting network attacks using neural networks, but 
these  require  computational  resources  and  retraining  when the  network  topology changes.  In 
article  [43],  the  authors  propose  a  method  for  detecting  attacks  in  IoT  networks  based  on  a  
combination of routing metric analysis (in particular,  ETX, hop count,  delay) and classification 
using a multilayer neural network configured for the specifics of the 6LoWPAN environment. The 
main advantage of this approach is the ability to process complex anomaly patterns without using 
rule sets, thanks to an adaptive self-learning neural network. However, the integration of such a 
system can be complicated by the need to determine the optimal network architecture and select 
hyperparameters,  which  requires  significant  computing  resources.  The  authors  [44]  propose  a 
hybrid anomaly detection system based on RPL,  which combines an autoencoder for detecting 
atypical  patterns  in  network  metrics  and  Similarity  Network  Fusion  (SNF)  for  integrating 
information from multiple data sources. The solution demonstrates high sensitivity to wormhole 
and gray hole attacks. However, the algorithm has high computational complexity and depends on 
the configuration of the autoencoder and SNF hyperparameters, which can complicate integration 
on embedded devices with limited resources.  Studies [45–47] also apply machine learning methods 
to detect routing attacks, such as black holes, gray holes, and wormholes, which were mentioned 
above.  Their  approaches  focus  on  analyzing  anomalous  node  behavior  in  IoT  and  6LoWPAN 
networks  using classification algorithms such as  artificial  neural  networks,  decision trees,  and 
support vector machines.

3. Basics

Routing parameters have a sequential temporal nature. This means that each node in the network  
generates not separate independent records, but dynamic time series that describe the change in its  
state over a certain period. In this regard, traditional autoencoders based on fully connected layers 
are not effective enough, as they do not take into account temporal dependencies between events 
[48]. Instead, Long Short-Term Memory (LSTM) is a specialized architecture capable of retaining 
long-term dependencies in time series, which is important for analyzing the behavioral patterns of 
network nodes. The LSTM autoencoder architecture combines the advantages of two approaches:  
compressing  sequences  into  a  representation  using  an  encoding  module  (LSTM  encoder)  and 
restoring these sequences using a decoding module (LSTM decoder). At the same time, the model is 



trained only on “normal” samples, i.e., network behavior in the absence of attacks. As a result, it  
learns patterns of standard routing activity. After training, such a model is capable of comparing  
input sequences with the expected normal pattern. If the behavior of a node differs significantly  
from  the  trained  one  (i.e.,  has  a  high  reconstruction  error),  it  is  automatically  classified  as  
anomalous,  allowing  the  potential  attack  to  be  localized.  It  is  also  worth  noting  that  LSTM 
autoencoders are effective in cases where anomalies are complex or hidden in nature, as is typical 
for  routing  attacks.  Thanks  to  the  ability  of  the  LSTM  structure  to  remember  temporal 
relationships, the model can recognize not only instantaneous deviations, but also slow drifts in 
node behavior, which are typical for distributed attacks with a delayed effect. Therefore, the use of 
LSTM autoencoders  is  appropriate  for  detecting  routing  attacks  in  IoT  environments,  as  this  
approach combines the ability to model the sequential nature of data, detect complex anomalies 
without prior attack labeling, and provides adaptability to different types of threats in distributed 
networks with limited resources.

In the context of building models for detecting routing attacks in IoT networks, especially those 
based on the RPL protocol, the choice of input parameters is essential for accurately representing  
both normal and abnormal behavior of network nodes. This study uses five main characteristics: 
data  transmission  delay  (delay),  expected  number  of  transmissions  (etx),  device  charge  level 
(battery), number of hops to the gateway (hop_count), and parent node identifier (parent_id). These 
characteristics  were  chosen  because  of  their  ability  to  reflect  critical  aspects  of  RPL  protocol 
functioning,  as  well  as  their  sensitivity  to  abnormal  influences  caused by external  or  internal  
threats.  Delay is  an  indicator  of  the  efficiency of  data  transmission along a  route.  In  a  stable 
network environment, the value of this parameter is relatively constant, while sudden changes in it  
may  signal  routing  failures  or  interference  from  third-party  nodes.  The  expected  number  of  
transmissions (etx), which reflects the average number of attempts required for successful packet  
delivery, is a direct indicator of the quality of the communication channel. In the context of the 
RPL protocol, which uses etx as one of the key metrics in its objective functions (e.g., MRHOF — 
Minimum Rank with Hysteresis Objective Function), abnormally high values of this parameter may 
indicate route disruptions, packet loss, or attempts at malicious traffic interception. The battery 
parameter, which indicates the charge level of a node, is important for analyzing the behavior of 
energy-dependent  devices.  Under  normal  conditions,  nodes  with  low  energy  levels  avoid 
participating in routing, but in cases of attacks such as black hole or sinkhole, malicious nodes can 
ignore their own energy status and artificially attract traffic for interception or destruction. The 
number of hops to the gateway (hop_count) is another topological parameter that determines how 
far a node is from the root device (DAG root) in the routing tree. Sudden changes in this metric 
may be the result of falsification of routing information or the appearance of “wormholes,” i.e., 
tunnels created between separate parts of the network to deceive the routing logic. The parent 
node identifier (parent_id) provides information about the current route of the node towards the 
root.  In  networks  operating  under  RPL  control,  the  parent  node  is  selected  based  on  a 
comprehensive assessment of availability, connection quality, and energy efficiency. A change of 
parents for no apparent reason or at a high frequency may indicate an attempt to redirect traffic,  
particularly  in  the  context  of  black  hole  or  routing  table  poisoning  attacks.  That  is  why  the 
parent_id parameter is useful for detecting topological instability caused by malicious influences. 
The  above  parameters  allow  us  to  cover  both  dynamic  routing  characteristics  and  stability 
indicators, connection quality, and energy resource status. This provides sufficient information for 
effective  training  of  anomaly  detection  models,  in  particular  neural  networks  based  on 
autoencoders or recurrent architectures. Given that the RPL protocol supports adaptation based on 
several metrics simultaneously, the combination of delay, etx, battery, hop_count, and parent_id 
forms a representative feature space for analyzing both normal and attacked behavior of nodes in 
IoT networks.

For each node  i∈{1,2,…,n}  we have a sequence of  T vectors of features of dimension  d.  Let us 
represent time series in the form:



X i={x1i , x2i ,…, xT
i }, x ti∈ Rd

(1)

where  X i – i-th sequence of length  T;  x t
i=[ x t ,1i , x t ,2

i ,…, x t , d
i ] – i-th feature vector at time  t; 

d=5 – number of signs: delay, etx, battery, hop_count, parent_id.
Min-Max Scaling converts the values of each feature from an arbitrary range to a range [0,1]:

x scaled=
x−xmin
xmax−xmin

,∀ x∈ X (2)

At the input of LSTM, we have a tensor X∈ Rn×T ×d, where n – number of nodes (batch size); T  

– time series length; d – dimension of the feature vector (input_size).
For each node (sequence), LSTM processes elements in time:

ht
i , ct

i=LSTM (x ti x t , ht−1i , ct−1
i ) (3)

where ht
i∈ Rd – hidden state; ct

i∈ Rd – memory status; d  – dimension of the hidden layer of 

LSTM (hyperparameter).
In the last step, we obtain the representation vector:

zi=hT
i ∈ R64 (4)

The sequence is decoded from the initialized vector:

ĥt=LSTM dec (zi , ĥt−1 , ĉt−1) (5)

Restoration to the space of signs:

x̂ t=W ĥt+b ,∀ t∈ {1 ,…,T } , (6)

where W ∈ R5×64 , b∈ R5.
Training  is  performed  only  on  normal  data.  The  mean  square  error  of  reconstruction  is 

optimized:

L= 1
T∗d∑t=1

T

∑
j=1

d

(x t , ji − x̂ t , j
i )2 (7)

Reconstructed vector:

X̂ i={x̂1i ,…, x̂T
i } (8)

Mean square error for each sequence:

MSEi= 1
T∗d∑t=1

T

∑
j=1

d

(x t , ji − x̂ t , j
i )2 (9)

The threshold value is determined by the 95th percentile of errors in the training sample:

τ=Percentile95({MSEi}train) (10)

Classification:

ŷ i={0 , if MSEi≤ τ
1 , if MSEi>τ

(11)

Figure 1 shows a block diagram of attack detection using LSTM Autoencoder.



Figure 1: Block diagram of attack detection using LSTM Autoencoder.

The paper implements an architecture for detecting anomalies in time series of routed IoT data 
based on an LSTM autoencoder. The model combines deep learning with preprocessing of data and 
statistical evaluation of deviations. The architecture is based on an LSTM layer with 64 neurons 
and a ReLU activation function, which allows the model to take into account dependencies in the 
time dimension.  At  the  encoder  stage,  the  input  sequence  of  size  10×5  (10  time steps  with  5 
features:  delay,  etx,  battery,  hop_count,  parent_id)  is  compressed into  a  latent  vector  of  fixed 
length.  The  vector  is  repeated  using  the  RepeatVector  layer,  which  forms  a  sequence  of  ten 
repetitions of the latent representation. The decoder reconstructs the original sequence through 
another LSTM layer with 64 neurons and a ReLU function, after which a TimeDistributed layer 
with a fully connected layer is applied, returning the output in the same format as the input data.

The model is compiled with the Adam optimizer and a loss function in the form of mean square  
error. Training is performed on normal samples selected from 80% of the sample, with subsequent 
division into training and validation subsets. The number of training epochs was 50, and the batch  
size was 32. MinMaxScaler was used to normalize the features, which guarantees scaling of values 
within [0,1], which is important for the stable operation of LSTM layers.



After training was completed,  the model  was applied to  the test  sample  to  reconstruct  the 
sequences. The error rate of each sample was calculated as the average square difference between 
the  initial  and  reconstructed  data  across  all  features  and  time  steps.  To  separate  normal  and 
abnormal examples, an error threshold was determined based on the 95th percentile of MSE values 
on the training set. All samples that showed a reconstruction error higher than this threshold were  
classified as anomalies.

4. Reliability assessment

The CICIoT2023 dataset was used to generate the data for this anomaly detection task. During the 
experimental study, a system for detecting routing anomalies in IoT networks was modeled based 
on an LSTM autoencoder, which was trained exclusively on normalized (safe) data (Table 1). The  
total  size  of  the  initial  sample  was  10,000  records,  evenly  distributed  between  the  “safe”  and 
“unsafe” classes (5,000 each). To train the model, 80% of the sample (8,000 records) was selected,  
including 4,000 normal and 4,000 abnormal samples, but the training process itself was performed 
only on normal samples. The remaining 2,000 records (1,000 for each class) were used to evaluate 
the quality of classification during the testing phase. 

Table 1
Distribution of records in the dataset by training and testing stages

Records Total Safe Unsafe

Train 8,000 4,000 4,000Test 2,000 1,000 1,000

All data 10,000 5,000 5,000

The LSTM autoencoder model was trained for 50 epochs using the Adam optimizer and a loss 
function in the form of mean squared error (MSE). After training, a classification threshold was 
determined based on the 95th percentile of MSE for the training set, which allowed the test samples 
to be divided into normal and abnormal without the need to label attacks during training.

Analysis of the confusion matrix for the test set showed high classification accuracy (Table 2).  
The model correctly classified 981 out of 1000 abnormal samples (True Positive), with only 19 false  
negatives  (False  Negative).  At  the same time,  it  correctly  identified 984 normal  samples  (True 
Negative),  with  only  16 false  positives  (False  Positive).  Thus,  the  model's  accuracy was  98.4%, 
which indicates its high ability to detect atypical behavior of routed IoT nodes. 

Table 2
Classification error matrix for the test sample

Records Total
Test

TP TN FP FN

Safe 1,000 0 984 16 0

Unsafe 1,000 981 0 0 19

Based on the data obtained, the following performance indicators can be calculated.
Recall – the ratio of correctly classified positive samples to the total number of positive samples:



Recall= TP
TP+FN (12)

Precision – the proportion of correctly identified malicious events among all events that the 
system identified as malicious:

Precision= TP
TP+FP (13)

Accuracy – the proportion of  correctly detected and correctly undetected events  among all  
events:

Accuracy= TP+TN
TP+FP+FN+TN (14)

The  results  presented  in  Figure  2  demonstrate  the  high  efficiency  of  the  constructed 
classification model according to the main quality assessment metrics. In particular, the accuracy is  
98.25%,  which  indicates  the  model's  overall  ability  to  correctly  classify  both  safe  and  unsafe 
records.  A  recall  of  98.10%  indicates  the  model's  ability  to  detect  the  vast  majority  of  truly 
dangerous cases without significant losses. At the same time, a precision of 98.40% indicates that  
most objects classified as dangerous are indeed so. In general, the obtained metric values indicate 
the balanced and reliable operation of the model, which allows for the effective detection of threats 
with a minimum number of false positives and false negatives.

Figure 2: Model evaluation results by key metrics.

For a more visual analysis of the effectiveness of the constructed LSTM autoencoder model, the 
distribution of the reconstruction error (MSE) and the dynamics of loss changes during training 
were visualized.

Figure  3  shows  the  distribution  of  reconstruction  error  for  normal  (marked  in  blue)  and 
abnormal (marked in orange) sequences. As can be seen from the histogram, the MSE values for 
safe (normal) samples are concentrated in the range from 0 to 0.06, while the errors for abnormal  
samples  are mainly in the range of  0.32–0.38.  Such a clear gap between the two distributions  
indicates effective training of the autoencoder on normal behavior patterns and allows setting a 
threshold value for sample classification. The position of the 95th percentile on the training set of 
normal samples is  between these groups,  which ensures high sensitivity and specificity of  the  
model in detecting anomalies.



Figure 3: Visualization of reconstruction errors for anomaly detection.

Figure  4  shows a  graph of  the  change  in  the  root  mean square  error  on  the  training and 
validation samples over 50 training epochs.

Figure 4: Dynamics of model loss MSE during training.

A rapid decrease in loss is observed during the first 10 epochs, after which the curve approaches  
a plateau, indicating model convergence. The absence of a significant difference between the Train 
Loss and Validation Loss curves indicates stable training without overfitting. The final loss values 
on  both  sets  are  at  the  level  of  ≈0.03,  which  indicates  a  high  level  of  the  model's  ability  to 
reproduce the normal behavior of IoT nodes.

5. Conclusions

The paper implemented and experimentally investigated a model for detecting routing anomalies 
in IoT networks based on an LSTM autoencoder trained on normal data.  The proposed model 
demonstrated  high  efficiency  in  detecting  atypical  behavior  of  network  nodes,  achieving  a 
classification accuracy of  98.4%.  The main advantage of this  approach is  the model's  ability to 
detect  both  obvious  and  hidden  anomalies  without  prior  attack  labeling,  which  is  especially 
relevant for real IoT environments with limited resources. 

The  use  of  the  LSTM  recurrent  architecture  made  it  possible  to  effectively  model  time 
dependencies between routing parameters such as transmission delay, number of hops, expected 
number of  transmissions,  device charge level,  and parent node identifier.  Setting the threshold 



value  at  the  95th  percentile  of  the  root  mean  square  error  allowed  us  to  adaptively  identify 
anomalous patterns in the test set without additional tuning to the specifics of the attacks.

Thus, the results of the study confirm the feasibility of using LSTM autoencoders as a basis for  
building systems for  detecting routing anomalies  in  RPL-type protocols  in  the context  of  IoT. 
Further work includes optimizing the computational complexity of the model for its integration 
into real sensor nodes, as well as extending the approach by combining it with other methods, in  
particular,  trust  models,  statistical  analysis,  and hybrid deep networks to detect  more complex 
attacks in distributed networks.
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