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Abstract

This article presents a proof-of-concept IoT platform for automated CO, emissions monitoring and direct
carbon quota calculation at the software level. Instead of physical sensors, a Python-based digital twin was
developed to generate synthetic ppm data incorporating sinusoidal oscillations, random noise, and linear
drift. The raw values undergo two-point calibration (a = 1.02; b = -5) and are converted to tonnes per hour
using the density of CO,. To assess accuracy, an “ideal” noise- and drift-free sinusoid is generated and
compared against the calibrated measurements. The primary purpose of this work is therefore not limited to
channel emulation but to validate the feasibility of an end-to-end IoT pipeline covering the entire data
lifecycle - from data generation and calibration to quota calculation and registry integration. While the
present model is limited to CO, as a baseline indicator, it establishes a solid foundation for future extensions
toward multi-component mixtures and adsorption dynamics. The results confirm the viability of the
proposed “generation — processing — quota calculation — registry” architecture and provide a basis for
integration with real IoT devices, MQTT/REST networking protocols, and the national emissions trading
system.
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1. Introduction

In the era of pervasive digitalization, the Internet of Things (IoT) has emerged as a novel paradigm for
monitoring carbon emissions. IoT can be defined as a network of interconnected physical devices,
instruments, and other objects equipped with sensors and software, all linked via the Internet to
collect, store, analyze, and exchange data and derived insights [1], [2], [3]. Market forecasts estimate
that the global IoT market will reach USD 445.3 billion by 2025 and soar to over USD 934 billion by
2033 — more than tripling revenue within a decade — while the number of connected IoT devices
worldwide is expected to triple over the same period [4].

Contemporary industrial CO, monitoring systems primarily rely on Continuous Emissions
Monitoring Systems (CEMS), which cover roughly 70 % of carbon emissions in the power sector [5],
as well as on comprehensive energy-management platforms such as Siemens’ SIMATIC Energy
Manager, Schneider Electric’s EcoStruxure, Johnson Controls’ Metasys, Honeywell Forge, and IBM
Envizi [6]. A key component of the European Emissions Trading System (ETS) is its quota-allocation
mechanism, and accurate enterprise-level CO, monitoring underpins effective ETS operation and
transparent carbon-quota trading. Although these systems deliver high measurement fidelity and
data collection, their integration with reporting tools (e.g., the EU ETS Reporting Tool) often requires
manual data uploads and does not guarantee real-time quota adjustment. Digital solutions such as
Predictive Emissions Monitoring Systems (PEMS) use historical data to estimate emissions but do not
support fully automated quota calculation and registration, leading to decision-making delays and

*BAITmp’2025: The 2nd International Workshop on ‘Bioinformatics and Applied Information Technologies for medical
purpose”, November 12-13, 2025, Ben Guerir, Morocco
" Corresponding author.
These authors contributed equally.
n.dziubanovska@wunu.edu.ua (N. Dziubanovska); v.maslii@wunu.edu.ua (V. Maslii)
@ 0000-0002-8441-5216 (N. Dziubanovska); 0000-0002-9672-9669 (V. Maslii)

@ @ © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



increased risk of inaccuracies. N. Ding et al. (2025) emphasize that achieving high accuracy in low-
concentration CO, measurements critically depends on robust calibration and quality-control
mechanisms [5]. Moreover, traditional monitoring methods exhibit limitations — low accuracy and
sampling frequency, significant hysteresis, and limited reliability [7]. Ding et al. further highlight
that comprehensive carbon accounting, which is most widespread, demands precise recording of
carbon-footprint activities, a requirement that often exceeds the financial capacity of small and
medium-sized enterprises and is further undermined by human error [5].

Ukraine is currently preparing to implement a national emissions-trading system, as mandated by
its Association Agreement with the European Union. This initiative imposes stringent requirements
on the transparency, timeliness, and reliability of greenhouse-gas reporting. The absence of an
integrated “sensor-to-registry” data transfer mechanism creates a potential gap between on-site
quota calculations and their official verification in the state registry. In response, this work develops
and tests a proof-of-concept IoT platform featuring a Python-based digital twin of the sensor to
generate synthetic CO, data, apply two-point calibration, and automatically compute quota volumes
for submission to an experimental “mock” registry. The proposed “sensor — quota-calculation —
registry” architecture demonstrates the technical feasibility of an end-to-end integration model and
provides a foundation for future deployment with physical IoT devices, MQTT/REST protocols, and
national reporting systems in the context of Ukraine’s emissions-trading system.

The primary purpose of this study is therefore not limited to channel emulation, but to validate a
proof-of-concept IoT pipeline covering the entire data lifecycle — from digital-twin based data
generation through calibration and quota calculation to registry integration.

2. Literature review

For effective emissions monitoring, intelligent management via the Internet of Things has been
investigated across various sectors — primarily energy, manufacturing, and construction [5].
According to the International Energy Agency, carbon emissions from the energy sector in 2022
accounted for approximately 40 % of global emissions, making it the largest industrial source of
carbon output and energy consumption [8].

A. Arsiwala, F. Elghaish, and M. Zoner (2023) explored pathways to carbon neutrality by
proposing an integrated IoT and Al solution — key components of a digital twin — implemented as an
interactive monitoring dashboard [9]. S. Winter et al. (2025) introduced a unified digital-twin
framework and data model that enable seamless, continuous information exchange among all
stakeholders [10].

Y. Jiang and Z. Mao (2025) note that carbon-emissions monitoring is critical for implementing
reduction strategies, yet excessive reliance on detailed energy data and manual calculations renders
the data-collection process low-frequency, time-lagged, and unreliable. They proposed an
ICEEMDAN-Inception-Transformer model capable of providing accurate hourly carbon-emissions
data collection for energy-sector enterprises [11].

Li Qingqing et al. (2024) argue that achieving carbon neutrality requires an efficient, reliable
carbon ecosystem comprising regulatory bodies, emissions-reduction organizations, and
independent auditors. They developed the Modelx+MRV+O system based on IoT and blockchain
technologies [12]. Blockchain and IoT can ensure data integrity, transparency, and immutability,
facilitating the dissemination of carbon credits within the toolkit of emissions-reduction measures
[13], [14].

3. Methodology

In our work, we have implemented a software pipeline in pure Python that emulates the complete
CO; emissions monitoring data lifecycle - “generation — processing — storage — analysis” (Figure
1). In the first stage, the sensor emulator module produces a sequence of ppm readings by modeling
ambient concentration as a sinusoidal waveform, overlaid with random Gaussian noise and a linear



drift from the initial timestamp. Each data point is tagged with its send time and enqueued into a
Python internal queue, which acts as the sole communication channel between the generator and the
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Figure 1: Block diagram of the “generation — processing — storage — analysis” pipeline for the
IoT platform for automated CO, monitoring and quota calculation.

The sensor emulator generates a series of NUM_SAMPLES (100) observations at a fixed interval
(0.5 s). One hundred measurements provide a statistically significant dataset for metric evaluation,
and the 0.5 s interval allows the full dataset to be collected in 50 s while maintaining sufficient
resolution to capture the waveform and noise.

For each measurement, the following are computed:

1. The base sinusoid modeling the cyclic variation in concentration is given by:

b 400+200 —sin (t _ to) 1 (1)
= —+ . +
ase 600 ’

where t is the start time of the series.

This value corresponds to ideal_ppm, i.e., ideal_ppm=base. The parameters were selected with the
following considerations:

400 ppm - the approximate mean background CO, concentration in the atmosphere at ground
level.

200 ppm - the amplitude of cyclic fluctuations, yielding a wave from 200 to 600 ppm; this
simulates daily concentration changes resulting, for example, from variations in industrial activity or
diurnal photosynthetic uptake by vegetation. This wider span was intentionally chosen to test the



robustness of calibration and to approximate possible variations observed in localized industrial or
environmental settings.

600 s in the denominator of the sine argument sets the oscillation period to about 10 minutes in the
“accelerated” timescale, allowing many daily-like cycles to be emulated within a short measurement
session.

2. Random noise, modeled as

noise~ N (0,10) ppm. (2)

A standard deviation of 10 ppm represents a typical level of fluctuation observed in consumer or
semi-industrial NDIR sensors over a single measurement session. This magnitude of noise introduces
sufficient variability without distorting the overall waveform.

3. Linear drift, defined as

drift “L 01 ppm/d ®
rijt = ——— * U. m .
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0.1 ppm/day - a small, slow drift typical of NDIR modules caused by temperature variations or
sensor aging. It is divided by 86400 s (24 h) so that each second contributes only a minute offset. In the
accelerated simulation timescale used in our experiment, this drift is proportionally added to each
generated data point, ensuring that long-term sensor instability is represented even within short
measurement sessions.

As a result, we obtain the final raw ppm value ppm,,,=base + noise +drift together with the
send timestamp £, and the elapsed time from the start, re s,,=t-t,,.
In the collector, each “message” is read from the queue, the receive time t,,., is recorded, and the

latency is computed as latency =t,,,, -t Calibration is performed using a two-point method:

PPM o, =0" PP, + D, (4)

where a=1.02, b=-5.

These coefficients were chosen to align two anchor points: when the raw sensor reads 400 ppm,
the correction brings it close to the true 400 ppm, and when it reads 1000 ppm, it brings it close to
1000 ppm. A linear regression through these two reference points provides a quick adjustment of the
sensor’s output to a calibrated instrument. This simple linear correction compensates for the sensor’s
systematic bias.

The corrected ppm values are converted to tonnes per hour using the classical formula:

Pco,=1.977 k—% ©)
m
_ ppm,., (6)
mkg/s_l—oe.pCOZ’
M o=m 3600 (7)

t/h ™ kg/s'm'

k
The density of CO, (1-977 —g?,) is the physical value under standard conditions (1 atm, 25 °C). It
m

is used to convert concentration (ppm) into a mass flow rate (kg/s). We then apply a factor of
3600/1000 to convert kg/s into tonnes/hour. This step simulates the transformation of concentration
into a mass emission rate.

Simultaneously, all processing results are written to a local SQLite database (the readings table for
raw and calibrated ppm values and mass flow) for persistent storage and to a CSV file (quotas.csv)



acting as a “mock registry” of quotas, thereby simulating integration with the national emissions
trading system.

In the final step, the analytics module selectively reads the accumulated data, generates an “ideal”
noise- and drift-free sinusoidal curve, and compares it with the calibrated data stream by computing
the root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination

(R?).
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RMS Eppm: FZ (ppmcorr,»_idealppmi) ’
i=1
N ©)
MAE _ ppm=%z | ppm,,, -ideal _ ppm,
i=1
(10)

N
z (pprncorr.-ideal—pprni)2 N
i=1 ’ 1 .
, ideal _ ppm= N z ideal _ ppm;,

N
i=1
1

R? =
_ppm=1-
Z (ideal _ ppm;-ideal _ ppm)2

i=

These metrics enable the assessment of how closely the synthetic data stream matches the “ideal”
by using our noise- and drift-free model based on the same underlying sinusoid but without any
random components.

At each step, performance (latency) was measured as the difference between the send timestamp
and the in-memory processing time. Concurrently, a latency distribution plot for each message was
generated. The number of sent versus received messages (packet-loss) was also calculated.

Thus, the methodology encompasses the entire data lifecycle: parameterized data generation,
calibration, quota calculation, validation, and pipeline performance evaluation. This provides a solid
foundation for subsequent integration with real IoT devices and the national emissions trading
system.

4. Results

For quantitative evaluation of the accuracy and performance of the developed data pipeline, a series
of identical test runs were conducted in a controlled environment. The obtained results enable a
direct comparison of the system’s behavior with the theoretical model, free from external latency
factors.

These controlled experiments made it possible to evaluate both the accuracy of the synthetic
sensor emulation and the stability of the processing pipeline. In particular, we examined how closely
the calibrated data follow the ideal sinusoidal pattern and quantified the impact of noise and drift on
the overall measurement quality. This setup also allowed us to assess the end-to-end performance of
the pipeline in terms of latency, packet loss, and statistical error metrics.

In a 50-second session with a 0.5 s interval, 100 messages were generated and processed. To
compare the calibrated measurements against the reference noise- and drift-free sinusoid, Figures 2—
3 present the plot of ppm_,.. versus ideal ppm and the calculated versus ideal CO, emissions in
tonnes per hour.
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Figure 2: Comparative Plot of Calibrated Versus Ideal CO, Concentration Values.
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Figure 3: Comparative Plot of Calculated Versus Ideal CO, Emissions in Tonnes per Hour.

These figures clearly illustrate how random noise and drift scatter the real data around the ideal
curve, underscoring the need for further smoothing and adaptive calibration to reduce these
discrepancies.

To remove high-frequency noise, we applied a simple 5-point moving average (Figure 4). After
smoothing, the RMSE decreased from 11.85 to 8.82 ppm.



640

630

600

590 -

— Calibrated ppm
Smoothed ppm
—— Ideal ppm
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As shown in Figure 4, the moving average effectively smooths out high-frequency noise
fluctuations, bringing the measured curve closer to the underlying trend while preserving the overall
rising shape of the concentration. This confirms the appropriateness of applying filtering to enhance
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the stability and accuracy of the monitoring algorithm.

The values of the key performance indicators resulting from the simulation are presented in

Table 1.
Table 1
Key Accuracy and Performance Indicators of the Digital CO, Monitoring Pipeline
Indicator Value Description
RMSE_ppm 8.82 ppm Root mean square error between calibrated
ppm and ideal sinusoidal values
MAE_ppm 7.65 ppm Mean absolute error; on average measurements
deviate by 7-8 ppm
Mean Error_ppm 0.73 ppm Mean bias error, indicating a slight systematic
offset
Median Error_ppm 1.2 ppm Median of the error distribution; half of the
measurements lie within +1.2 ppm
Std Dev Error_ppm 11.1 ppm Standard deviation of errors, indicating the
spread of the error distribution
Min Error_ppm -25.4 ppm Maximum underestimation during the session
Max Error_ppm +29.8 ppm Maximum overestimation during the session
R? ppm 0.286 Proportion of the ideal signal’s variance

explained by the calibrated data




RMSE _tonnes/h

Latency_avg

Latency_min /

Latency_max

Packet loss

0.0009 t/h

0.000 s

0.000 s / 0.000 s

0.0 % (100/100)

RMSE in tonnes per hour; approximately
equivalent to ~9 ppm at the given flow rate

Average in-memory processing latency per
message

Minimum and maximum latency, limited by
Python’s timer resolution

No messages lost; all 100 messages processed

successfully

This table demonstrates that both the modeling accuracy (RMSE, MAE, R?) and the pipeline
performance (latency and transmission reliability) remain within the bounds of a software-only
emulation. The error distribution (ppm..» — ideal_ppm) exhibits a mean bias of approximately 0.7
ppm, a median of 1.2 ppm, a standard deviation of 11.1 ppm, a minimum of -25.4 ppm, and a
maximum of +29.8 ppm. All 100 messages were processed without any loss (packet loss = 0%) and
with effectively zero latency (avg/min/max latency = 0.000 s), underscoring the instantaneous in-
memory processing of the Python script.

Figure 5 shows the distribution of processing latency for each of the 100 messages.
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Figure 5: Distribution of Processing Latency for Each Message.

As shown in Figure 5, all points lie on the zero line (within the resolution of Python’s timers),
further confirming truly instantaneous in-memory processing without any real delays.

These results demonstrate an acceptable level of accuracy for the POC pipeline and its readiness
for subsequent deployment with real networking protocols and sensors.

5. Discusion

The results make it clear that our software-only emulation of the end-to-end pipeline - from sensor
to quota calculation - achieves the desired measurement accuracy and instantaneous data
processing, while also highlighting several key areas for future work.



Although the sinusoidal model with added Gaussian noise and linear drift effectively mimics the
basic behavior of NDIR sensors, actual devices are subjected to a far broader range of environmental
and operational disturbances - temperature swings, humidity, particulate contamination, and
electromagnetic interference. In real-world deployments, it will therefore be necessary to implement
multi-point calibration or adaptive filtering techniques to correct accumulating errors.

The zero latency observed in our in-memory prototype demonstrates that pure software
processing introduces no appreciable delay, but integrating a network layer (whether MQTT or
REST) will inevitably add transit delays that depend on link quality and broker load. Industrial
practice generally tolerates latencies of 1-2 seconds, so the next step should be to construct a testbed
with emulated brokers and measure how these metrics evolve when the system scales to several
dozen devices.

Integration with Ukraine’s national emissions trading system (ETS) will require not only a robust
data channel but also end-to-end message authentication, encryption, and auditability. A simple API
key may be insufficient; public-key infrastructure (PKI) or even a distributed ledger (blockchain)
could be considered to guarantee data immutability and trust.

Finally, the economic feasibility of such an automated pipeline must be assessed by weighing the
deployment costs of sensors and supporting infrastructure against the time savings and error
reductions in reporting. For small and medium-sized enterprises, bundling the core “software +
digital twin” solution with outsourced calibration and maintenance services may lower the barrier to
adoption.

It should be emphasized that the present proof-of-concept model is intentionally limited to CO; as
a baseline indicator to validate the feasibility of an end-to-end IoT pipeline for automated quota
calculation. In real industrial and environmental conditions, emission streams typically contain
multi-component mixtures such as CO,, CHy, NOy (primarily NO and NO,), and volatile
hydrocarbons, and are subject to competitive adsorption, diffusion, and multiphase equilibrium
processes. These phenomena significantly influence both the composition and the effective
concentration of emissions. Future research should therefore extend the proposed platform by
integrating multi-component models and adsorption dynamics, as highlighted in recent studies on
CO,/CH, interactions [15], adsorption modeling on activated carbon [16], and advances in CO,
capture by absorption and adsorption [17]. Incorporating these aspects will considerably broaden the
applicability of the IoT-based monitoring pipeline and make it more representative of real-world
scenarios.

In summary, these preliminary findings validate the concept and raise several practical questions
— how to adapt the algorithm to real sensors, how to secure a reliable transmission channel and
comply with regulatory requirements, and how to develop a cost-effective service model under
Ukraine’s ETS. This work thus provides a springboard for subsequent field trials, large-scale
deployments, and full integration with physical IoT hardware and national registry systems.

6. Conclusion

The experimental results validate the effectiveness of the proposed “sensor — processing — storage
— analysis” pipeline implemented entirely in software. By employing a Python-based digital twin
that generates a sinusoidal baseline overlaid with Gaussian noise and a slow linear drift, we achieved
a root-mean-square error (RMSE) of approximately 9 ppm and a coefficient of determination (R?) of
about 0.29 following two-point calibration. The complete absence of message loss and the near-zero
in-memory processing latency demonstrate the extraordinary speed and reliability of the internal
data pipeline.

This proof-of-concept platform lays a solid foundation for further practical and experimental
work — especially in light of Ukraine’s forthcoming national emissions trading system (ETS), which
demands stringent data timeliness and accuracy. The architecture supports field trials with actual
NDIR sensors, encompassing temperature- and humidity-dependent errors and multi-point
calibration schemes. Future development will extend the pipeline to real-world deployments by



integrating MQTT/REST protocols (introducing realistic network latencies and risks), porting
computational modules to microcontrollers, and establishing a secure transmission channel with
authentication and encryption for direct ETS registry uploads. Careful economic modeling of
platform maintenance and calibration services for small and medium-sized enterprises will be
essential to ensure accessibility and cost-effectiveness under resource constraints. In sum, the
proposed software pipeline represents a crucial stepping stone toward a full-scale IoT platform for
automated CO, monitoring and direct quota calculation within state registries.

At the same time, we acknowledge that the present proof-of-concept is limited to CO; as a single-
component indicator. In real industrial conditions, emission streams contain multi-component
mixtures and are affected by competitive adsorption and multiphase equilibrium. Addressing these
phenomena in future versions of the platform will further increase its applicability and bring the IoT-
based pipeline closer to real-world deployment.
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