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Abstract
This article presents a proof-of-concept IoT platform for automated CO₂ emissions monitoring and direct 
carbon quota calculation at the software level. Instead of physical sensors, a Python-based digital twin was 
developed to generate synthetic ppm data incorporating sinusoidal oscillations, random noise, and linear  
drift. The raw values undergo two-point calibration (a = 1.02; b = –5) and are converted to tonnes per hour 
using the density of CO₂. To assess accuracy, an “ideal” noise- and drift-free sinusoid is generated and 
compared against the calibrated measurements. The primary purpose of this work is therefore not limited to 
channel emulation but to validate the feasibility of an end-to-end IoT pipeline covering the entire data  
lifecycle – from data generation and calibration to quota calculation and registry integration. While the 
present model is limited to CO₂ as a baseline indicator, it establishes a solid foundation for future extensions 
toward multi-component  mixtures  and adsorption dynamics.  The  results  confirm the  viability  of  the 
proposed “generation → processing → quota calculation → registry” architecture and provide a basis for 
integration with real IoT devices, MQTT/REST networking protocols, and the national emissions trading 
system.
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1. Introduction

In the era of pervasive digitalization, the Internet of Things (IoT) has emerged as a novel paradigm for 
monitoring carbon emissions. IoT can be defined as a network of interconnected physical devices,  
instruments, and other objects equipped with sensors and software, all linked via the Internet to 
collect, store, analyze, and exchange data and derived insights [1], [2], [3]. Market forecasts estimate 
that the global IoT market will reach USD 445.3 billion by 2025 and soar to over USD 934 billion by 
2033 – more than tripling revenue within a decade – while the number of connected IoT devices  
worldwide is expected to triple over the same period [4].

Contemporary  industrial  CO₂ monitoring  systems  primarily  rely  on  Continuous  Emissions 
Monitoring Systems (CEMS), which cover roughly 70 % of carbon emissions in the power sector [5], 
as well as on comprehensive energy-management platforms such as Siemens’ SIMATIC Energy 
Manager, Schneider Electric’s EcoStruxure, Johnson Controls’ Metasys, Honeywell Forge, and IBM 
Envizi [6]. A key component of the European Emissions Trading System (ETS) is its quota-allocation 
mechanism, and accurate enterprise-level CO₂ monitoring underpins effective ETS operation and 
transparent carbon-quota trading. Although these systems deliver high measurement fidelity and 
data collection, their integration with reporting tools (e.g., the EU ETS Reporting Tool) often requires 
manual data uploads and does not guarantee real-time quota adjustment. Digital solutions such as 
Predictive Emissions Monitoring Systems (PEMS) use historical data to estimate emissions but do not 
support fully automated quota calculation and registration, leading to decision-making delays and 
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increased risk of inaccuracies. N. Ding et al. (2025) emphasize that achieving high accuracy in low-
concentration  CO₂ measurements  critically  depends  on  robust  calibration  and  quality-control 
mechanisms [5]. Moreover, traditional monitoring methods exhibit limitations – low accuracy and 
sampling frequency, significant hysteresis, and limited reliability [7]. Ding et al. further highlight 
that comprehensive carbon accounting, which is most widespread, demands precise recording of 
carbon-footprint activities, a requirement that often exceeds the financial capacity of small and 
medium-sized enterprises and is further undermined by human error [5].

Ukraine is currently preparing to implement a national emissions-trading system, as mandated by 
its Association Agreement with the European Union. This initiative imposes stringent requirements 
on the transparency, timeliness,  and reliability of greenhouse-gas reporting. The absence of an 
integrated “sensor-to-registry” data transfer mechanism creates a potential gap between on-site 
quota calculations and their official verification in the state registry. In response, this work develops 
and tests a proof-of-concept IoT platform featuring a Python-based digital twin of the sensor to 
generate synthetic CO₂ data, apply two-point calibration, and automatically compute quota volumes 
for submission to an experimental “mock” registry. The proposed “sensor → quota-calculation → 
registry” architecture demonstrates the technical feasibility of an end-to-end integration model and 
provides a foundation for future deployment with physical IoT devices, MQTT/REST protocols, and 
national reporting systems in the context of Ukraine’s emissions-trading system. 

The primary purpose of this study is therefore not limited to channel emulation, but to validate a 
proof-of-concept  IoT pipeline covering the entire data lifecycle  – from digital-twin based data 
generation through calibration and quota calculation to registry integration.

2. Literature review

For effective emissions monitoring, intelligent management via the Internet of Things has been 
investigated  across  various  sectors  –  primarily  energy,  manufacturing,  and  construction  [5]. 
According to the International Energy Agency, carbon emissions from the energy sector in 2022 
accounted for approximately 40 % of global emissions, making it the largest industrial source of  
carbon output and energy consumption [8].

A.  Arsiwala,  F.  Elghaish,  and  M.  Zoner  (2023)  explored  pathways  to  carbon  neutrality  by 
proposing an integrated IoT and AI solution – key components of a digital twin – implemented as an 
interactive  monitoring  dashboard  [9].  S.  Winter  et  al.  (2025)  introduced  a  unified  digital-twin 
framework  and  data  model  that  enable  seamless,  continuous  information  exchange  among all 
stakeholders [10].

Y. Jiang and Z. Mao (2025) note that carbon-emissions monitoring is critical for implementing 
reduction strategies, yet excessive reliance on detailed energy data and manual calculations renders 
the  data-collection  process  low-frequency,  time-lagged,  and  unreliable.  They  proposed  an 
ICEEMDAN-Inception-Transformer model capable of providing accurate hourly carbon-emissions 
data collection for energy-sector enterprises [11].

Li Qingqing et al. (2024) argue that achieving carbon neutrality requires an efficient, reliable 
carbon  ecosystem  comprising  regulatory  bodies,  emissions-reduction  organizations,  and 
independent auditors. They developed the Modelx+MRV+O system based on IoT and blockchain 
technologies [12]. Blockchain and IoT can ensure data integrity, transparency, and immutability, 
facilitating the dissemination of carbon credits within the toolkit of emissions-reduction measures 
[13], [14].

3. Methodology

In our work, we have implemented a software pipeline in pure Python that emulates the complete 
CO₂ emissions monitoring data lifecycle – “generation → processing → storage → analysis” (Figure 
1). In the first stage, the sensor emulator module produces a sequence of ppm readings by modeling 
ambient concentration as a sinusoidal waveform, overlaid with random Gaussian noise and a linear  



drift from the initial timestamp. Each data point is tagged with its send time and enqueued into a 
Python internal queue, which acts as the sole communication channel between the generator and the 
processor.

Figure 1: Block diagram of the “generation → processing → storage → analysis” pipeline for the 
IoT platform for automated CO₂ monitoring and quota calculation.

The sensor emulator generates a series of NUM_SAMPLES (100) observations at a fixed interval 
(0.5 s). One hundred measurements provide a statistically significant dataset for metric evaluation, 
and the 0.5 s interval allows the full dataset to be collected in 50 s while maintaining sufficient  
resolution to capture the waveform and noise.

For each measurement, the following are computed:

1. The base sinusoid modeling the cyclic variation in concentration is given by:

base= 400+200 ∙( sin (t - t0)
600

+1), (1)

where t0 is the start time of the series.

This value corresponds to ideal_ppm, i.e., ideal_ppm=base. The parameters were selected with the 
following considerations:

400 ppm – the approximate mean background CO₂ concentration in the atmosphere at ground 
level.

±200 ppm – the amplitude of cyclic fluctuations, yielding a wave from 200 to 600 ppm; this 
simulates daily concentration changes resulting, for example, from variations in industrial activity or 
diurnal photosynthetic uptake by vegetation. This wider span was intentionally chosen to test the 
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robustness of calibration and to approximate possible variations observed in localized industrial or 
environmental settings.

600 s in the denominator of the sine argument sets the oscillation period to about 10 minutes in the 
“accelerated” timescale, allowing many daily-like cycles to be emulated within a short measurement 
session.

2. Random noise, modeled as

noise~N (0,10 ) ppm . (2)

A standard deviation of 10 ppm represents a typical level of fluctuation observed in consumer or 
semi-industrial NDIR sensors over a single measurement session. This magnitude of noise introduces 
sufficient variability without distorting the overall waveform.

3. Linear drift, defined as

drift =
t - t0

86400
∙0.1 ppm / day .

(3)

0.1 ppm/day – a small, slow drift typical of NDIR modules caused by temperature variations or 
sensor aging. It is divided by 86400 s (24 h) so that each second contributes only a minute offset. In the 
accelerated simulation timescale used in our experiment, this drift is proportionally added to each 
generated data point, ensuring that long-term sensor instability is represented even within short 
measurement sessions.

As a result, we obtain the final raw ppm value ppmraw=base+noise+drift  together with the 

send timestamp t send and the elapsed time from the start, re sts= t - t0.

In the collector, each “message” is read from the queue, the receive time t recv is recorded, and the 

latency is computed as latency= t recv - t send. Calibration is performed using a two-point method:

ppmcorr=a ∙ ppmraw+b, (4)

where a=1.02, b=-5.
These coefficients were chosen to align two anchor points: when the raw sensor reads 400 ppm, 

the correction brings it close to the true 400 ppm, and when it reads 1000 ppm, it brings it close to  
1000 ppm. A linear regression through these two reference points provides a quick adjustment of the 
sensor’s output to a calibrated instrument. This simple linear correction compensates for the sensor’s 
systematic bias.

The corrected ppm values are converted to tonnes per hour using the classical formula:

ρCO2
=1.977  

kg

m3 ,
(5)

mkg / s=
ppmcorr

106 ∙ ρCO2
,

(6)

M t / h=mkg / s ∙
3600
1000

.
(7)

The density of CO₂ (1.977  
kg

m3)  is the physical value under standard conditions (1 atm, 25 °C). It 

is used to convert concentration (ppm) into a mass flow rate (kg/s). We then apply a factor of 
3600/1000 to convert kg/s into tonnes/hour. This step simulates the transformation of concentration 
into a mass emission rate.

Simultaneously, all processing results are written to a local SQLite database (the readings table for 
raw and calibrated ppm values and mass flow) for persistent storage and to a CSV file (quotas.csv) 



acting as a “mock registry” of quotas, thereby simulating integration with the national emissions  
trading system.

In the final step, the analytics module selectively reads the accumulated data, generates an “ideal” 
noise- and drift-free sinusoidal curve, and compares it with the calibrated data stream by computing 
the root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination 
(R²). 

RMS E ppm=√ 1
N
∙∑
i=1

N

( ppmcorr i
- ideal ppmi)2,

(8)

MAE _ ppm=
1
N∑

i=1

N

|ppmcorr i
- ideal _ ppmi|

(9)

R2 _ ppm=1-
∑
i=1

N

( ppmcorr i
- ideal _ ppmi)2

∑
i=1

N

(ideal _ ppmi - ideal _ ppm)2

 , ideal _ ppm=
1
N
∑
i=1

N

ideal _ ppmi

.

(10)

These metrics enable the assessment of how closely the synthetic data stream matches the “ideal” 
by using our noise‐ and drift‐free model based on the same underlying sinusoid but without any 
random components.

At each step, performance (latency) was measured as the difference between the send timestamp 
and the in-memory processing time. Concurrently, a latency distribution plot for each message was 
generated. The number of sent versus received messages (packet-loss) was also calculated.

Thus, the methodology encompasses the entire data lifecycle: parameterized data generation, 
calibration, quota calculation, validation, and pipeline performance evaluation. This provides a solid 
foundation for subsequent integration with real IoT devices and the national emissions trading 
system.

4. Results

For quantitative evaluation of the accuracy and performance of the developed data pipeline, a series 
of identical test runs were conducted in a controlled environment. The obtained results enable a 
direct comparison of the system’s behavior with the theoretical model, free from external latency 
factors.

These controlled experiments made it possible to evaluate both the accuracy of the synthetic  
sensor emulation and the stability of the processing pipeline. In particular, we examined how closely 
the calibrated data follow the ideal sinusoidal pattern and quantified the impact of noise and drift on 
the overall measurement quality. This setup also allowed us to assess the end-to-end performance of 
the pipeline in terms of latency, packet loss, and statistical error metrics.

In a 50-second session with a 0.5 s interval, 100 messages were generated and processed. To 
compare the calibrated measurements against the reference noise- and drift-free sinusoid, Figures 2–
3 present the plot of  ppmcorr versus ideal_ppm and the calculated versus ideal CO₂ emissions in 
tonnes per hour. 



Figure 2: Comparative Plot of Calibrated Versus Ideal CO₂ Concentration Values.

Figure 3: Comparative Plot of Calculated Versus Ideal CO₂ Emissions in Tonnes per Hour.

These figures clearly illustrate how random noise and drift scatter the real data around the ideal  
curve,  underscoring  the  need  for  further  smoothing  and  adaptive  calibration  to  reduce  these 
discrepancies.

To remove high-frequency noise, we applied a simple 5-point moving average (Figure 4). After 
smoothing, the RMSE decreased from 11.85 to 8.82 ppm.



Figure 4: Comparative Plot of Calibrated Data, 5-Point Moving Average Results, and Ideal Sinusoid 
in ppm.

As  shown in  Figure  4,  the  moving  average  effectively  smooths  out  high-frequency  noise 
fluctuations, bringing the measured curve closer to the underlying trend while preserving the overall 
rising shape of the concentration. This confirms the appropriateness of applying filtering to enhance 
the stability and accuracy of the monitoring algorithm.

The values of the key performance indicators resulting from the simulation are presented in 
Table 1.

Table 1
Key Accuracy and Performance Indicators of the Digital CO₂ Monitoring Pipeline

Indicator Value Description

RMSE_ppm 8.82 ppm Root mean square error between calibrated 
ppm and ideal sinusoidal values

MAE_ppm 7.65 ppm Mean absolute error; on average measurements 
deviate by 7–8 ppm

Mean Error_ppm 0.73 ppm Mean bias error, indicating a slight systematic 
offset

Median Error_ppm 1.2 ppm Median of the error distribution; half of the 
measurements lie within ±1.2 ppm

Std Dev Error_ppm 11.1 ppm Standard deviation of errors, indicating the 
spread of the error distribution

Min Error_ppm –25.4 ppm Maximum underestimation during the session

Max Error_ppm +29.8 ppm Maximum overestimation during the session

R²_ppm 0.286 Proportion of the ideal signal’s variance 
explained by the calibrated data



RMSE_tonnes/h 0.0009 t/h RMSE in tonnes per hour; approximately 
equivalent to ~9 ppm at the given flow rate

Latency_avg 0.000 s Average in-memory processing latency per 
message

Latency_min / 
Latency_max

0.000 s / 0.000 s Minimum and maximum latency, limited by 
Python’s timer resolution

Packet loss 0.0 % (100/100) No messages lost; all 100 messages processed 
successfully

This table demonstrates that both the modeling accuracy (RMSE, MAE, R²) and the pipeline 
performance (latency and transmission reliability) remain within the bounds of a software-only 
emulation. The error distribution (ppmcorr − ideal_ppm) exhibits a mean bias of approximately 0.7 
ppm, a median of 1.2 ppm, a standard deviation of 11.1 ppm, a minimum of –25.4 ppm, and a 
maximum of +29.8 ppm. All 100 messages were processed without any loss (packet loss = 0%) and  
with effectively zero latency (avg/min/max latency ≈ 0.000 s), underscoring the instantaneous in-
memory processing of the Python script.

Figure 5 shows the distribution of processing latency for each of the 100 messages.

Figure 5: Distribution of Processing Latency for Each Message.

As shown in Figure 5, all points lie on the zero line (within the resolution of Python’s timers),  
further confirming truly instantaneous in-memory processing without any real delays.

These results demonstrate an acceptable level of accuracy for the POC pipeline and its readiness 
for subsequent deployment with real networking protocols and sensors.

5. Discusion

The results make it clear that our software-only emulation of the end-to-end pipeline – from sensor 
to  quota  calculation –  achieves  the  desired  measurement  accuracy  and  instantaneous  data 
processing, while also highlighting several key areas for future work. 



Although the sinusoidal model with added Gaussian noise and linear drift effectively mimics the 
basic behavior of NDIR sensors, actual devices are subjected to a far broader range of environmental 
and  operational  disturbances –  temperature  swings,  humidity,  particulate  contamination,  and 
electromagnetic interference. In real-world deployments, it will therefore be necessary to implement 
multi-point calibration or adaptive filtering techniques to correct accumulating errors.

The  zero  latency  observed  in  our  in-memory  prototype  demonstrates  that  pure  software 
processing introduces no appreciable delay, but integrating a network layer (whether MQTT or 
REST) will inevitably add transit delays that depend on link quality and broker load. Industrial 
practice generally tolerates latencies of 1–2 seconds, so the next step should be to construct a testbed 
with emulated brokers and measure how these metrics evolve when the system scales to several 
dozen devices.

Integration with Ukraine’s national emissions trading system (ETS) will require not only a robust 
data channel but also end-to-end message authentication, encryption, and auditability. A simple API 
key may be insufficient; public-key infrastructure (PKI) or even a distributed ledger (blockchain) 
could be considered to guarantee data immutability and trust.

Finally, the economic feasibility of such an automated pipeline must be assessed by weighing the 
deployment  costs  of  sensors  and  supporting  infrastructure  against  the  time savings  and error 
reductions in reporting. For small and medium-sized enterprises, bundling the core “software + 
digital twin” solution with outsourced calibration and maintenance services may lower the barrier to 
adoption.

It should be emphasized that the present proof-of-concept model is intentionally limited to CO₂ as 
a baseline indicator to validate the feasibility of an end-to-end IoT pipeline for automated quota  
calculation.  In real  industrial  and environmental  conditions,  emission streams typically contain 
multi-component  mixtures  such  as  CO₂,  CH₄,  NOₓ (primarily  NO  and  NO₂),  and  volatile 
hydrocarbons,  and are subject to competitive adsorption,  diffusion,  and multiphase equilibrium 
processes.  These  phenomena  significantly  influence  both  the  composition  and  the  effective 
concentration of  emissions.  Future research should  therefore  extend the proposed platform by 
integrating multi-component models and adsorption dynamics, as highlighted in recent studies on 
CO₂/CH₄ interactions [15], adsorption modeling on activated carbon [16], and advances in CO₂ 
capture by absorption and adsorption [17]. Incorporating these aspects will considerably broaden the 
applicability of the IoT-based monitoring pipeline and make it more representative of real-world 
scenarios.

In summary, these preliminary findings validate the concept and raise several practical questions 
– how to adapt the algorithm to real sensors, how to secure a reliable transmission channel and  
comply with regulatory requirements, and how to develop a cost-effective service model under 
Ukraine’s  ETS.  This  work  thus  provides  a  springboard  for  subsequent  field  trials,  large-scale 
deployments, and full integration with physical IoT hardware and national registry systems.

6. Conclusion

The experimental results validate the effectiveness of the proposed “sensor → processing → storage 
→ analysis” pipeline implemented entirely in software. By employing a Python-based digital twin 
that generates a sinusoidal baseline overlaid with Gaussian noise and a slow linear drift, we achieved 
a root-mean-square error (RMSE) of approximately 9 ppm and a coefficient of determination (R²) of 
about 0.29 following two-point calibration. The complete absence of message loss and the near-zero 
in-memory processing latency demonstrate the extraordinary speed and reliability of the internal 
data pipeline.

This proof-of-concept platform lays a solid foundation for further practical and experimental 
work – especially in light of Ukraine’s forthcoming national emissions trading system (ETS), which 
demands stringent data timeliness and accuracy. The architecture supports field trials with actual  
NDIR  sensors,  encompassing  temperature-  and  humidity-dependent  errors  and  multi-point 
calibration schemes. Future development will extend the pipeline to real-world deployments by 



integrating  MQTT/REST  protocols  (introducing  realistic  network  latencies  and  risks),  porting 
computational modules to microcontrollers, and establishing a secure transmission channel with 
authentication  and  encryption  for  direct  ETS  registry  uploads.  Careful  economic  modeling  of 
platform maintenance  and  calibration  services  for  small  and  medium-sized  enterprises  will  be 
essential  to  ensure  accessibility  and  cost-effectiveness  under  resource  constraints.  In  sum,  the 
proposed software pipeline represents a crucial stepping stone toward a full-scale IoT platform for 
automated CO₂ monitoring and direct quota calculation within state registries.

At the same time, we acknowledge that the present proof-of-concept is limited to CO₂ as a single-
component  indicator.  In  real  industrial  conditions,  emission  streams  contain  multi-component 
mixtures and are affected by competitive adsorption and multiphase equilibrium. Addressing these 
phenomena in future versions of the platform will further increase its applicability and bring the IoT-
based pipeline closer to real-world deployment.
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