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Abstract

This study presents a novel geometric modeling approach for directional brachytherapy, focusing on
optimizing capsule placement within anatomically complex target regions. The proposed method
introduces composite capsule representations, combining cylindrical bodies with spherical radiation
zones, and employs normalized phi-functions to enforce spatial and angular constraints. A hybrid
optimization strategy is developed, integrating online and offline packing techniques to construct and
refine feasible configurations incrementally. The mathematical formulation treats the placement problem
as an identical item packing problem (IIPP), incorporating nonlinear programming to manage capsule
interactions and orientation control. Computational experiments were conducted across four examples
with varying capsule counts, geometric parameters, and constraint settings. Results demonstrate the
method’s adaptability to different anatomical conditions and effectiveness in non-parallel alignment. The
approach supports anatomically conformal treatment planning.
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1. Introduction

Brachytherapy is a form of internal radiotherapy where sealed radioactive sources are placed
directly within or near the tumor [1]. This technique allows for high-dose radiation delivery to
malignant tissues while minimizing exposure to surrounding healthy structures. It is widely used
in the treatment of prostate, cervical, breast, and head-and-neck cancers due to its precision and
localized effect. A critical aspect of brachytherapy planning is the spatial arrangement of
radioactive capsules within the target volume. These capsules are typically cylindrical, and their
placement must be optimized to achieve a uniform and therapeutically effective dose distribution
[2].

One of the foundational approaches in brachytherapy planning involves template-guided or
grid-based placement of radioactive sources. These methods rely on predefined geometric patterns
to ensure consistent spacing and orientation of capsules. While effective in standardized anatomical
contexts, they often lack adaptability to patient-specific geometries. For example, in prostate
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brachytherapy, fixed templates may not account for organ deformation or irregular tumor shapes,
leading to suboptimal dose coverage [3].

Recent developments have focused on inverse planning and optimization algorithms that allow
for more flexible source placement. These methods use dose-volume constraints and iterative
solvers to determine optimal capsule positions within the target volume. Modern approaches, such
as those described by Harris et al. [4], integrate imaging modalities and individualized planning
strategies to enhance dose conformity and minimize toxicity in prostate HDR brachytherapy.
Another promising direction is the use of geometric modeling and spatial optimization. These
approaches treat the capsule placement problem as a packing or tiling challenge, where cylinders
must be arranged within a bounded volume without overlap and with controlled orientation.
Tanderup et al. [5] demonstrated how such modeling improves dose conformity in cervical cancer
treatment. Furthermore, patient-specific anatomy modeling has become increasingly important.
Advanced imaging and segmentation techniques allow for the creation of 3D anatomical models,
which serve as the basis for personalized capsule placement.

A comprehensive review by Morén, Larsson, and Carlsson Tedgren [6] analyzes the
mathematical models used in high-dose-rate brachytherapy treatment planning and highlights the
evolution from purely dosimetric optimization to geometry-aware approaches. The authors
categorize existing methods into several classes, including linear and mixed-integer programming,
quadratic programming, stochastic metaheuristics, multi-criteria optimization, and robust
optimization. Linear and mixed-integer programming models are widely used to optimize dwell
times while satisfying dose-volume constraints. These models are effective for enforcing strict
clinical requirements but typically assume fixed source positions. In contrast, quadratic
programming focuses on minimizing dose deviations and is computationally efficient, though less
suited for handling hard geometric constraints. Stochastic and metaheuristic methods—such as
simulated annealing, genetic algorithms, and particle swarm optimization—offer greater flexibility
in exploring complex solution spaces. These approaches are particularly valuable when capsule
placement must be optimized in irregular anatomical regions or when incorporating geometric
constraints such as minimum inter-capsule distances and angular dispersion. Multi-criteria
optimization frameworks allow planners to balance competing objectives, such as maximizing
tumor coverage while minimizing exposure to organs at risk.

Recent advances have introduced geometric and computational methods for capsule placement
in brachytherapy, including packing algorithms that treat the problem as one of fitting multiple
cylinders within a bounded volume. These approaches leverage spatial modeling, dose
optimization, and constraint-aware placement strategies. For example, Yousif et al. reviewed
model-based dose calculation algorithms that incorporate anatomical geometry and material
properties to improve dose accuracy [7]. Study [8] presents a GPU-accelerated Monte Carlo tool for
HDR brachytherapy that significantly reduces computation time while maintaining high accuracy.
Investigation [9] presents a composite geometric modeling framework for brachytherapy planning,
where capsule placement is treated as a constrained packing problem with arbitrary orientations.

In most conventional models, the radiation source is assumed to be distributed along the axis of
the capsule. However, in certain cases, the source may be localized at one end of the capsule
typically at the center of one of its circular bases [7]. This configuration introduces asymmetry in
the radiation field and necessitates more refined modeling techniques to accurately predict dose
distribution. Such configurations are characteristic of directional brachytherapy, where the source
is designed to emit radiation preferentially in one direction. Modeling these sources requires
accounting for anisotropic dose distributions, which differ significantly from the symmetric kernels
used in conventional TG-43-based planning. Chapter [10] discusses the use of focal and directional
brachytherapy in prostate cancer, emphasizing the importance of accurate geometric modeling,
imaging guidance, and orientation control to optimize dose delivery and minimize toxicity.

A critical technical consideration in directional brachytherapy is the impracticality of placing
cylindrical capsules strictly parallel to the surface of living tissue, particularly along the tumor
boundary. Such parallel arrangements are not only anatomically challenging due to tissue



curvature and access limitations, but they can also lead to localized overdose, especially when
directional sources are used. Studies such as [6] emphasize the importance of incorporating
geometric constraints to avoid overly regular or symmetric placement patterns.

We propose a novel geometric modeling framework based on the packing of composite objects:
a cylinder representing the physical capsule, and a sphere centered at one of its bases representing
the localized radiation source. This modeling approach introduces several key advantages. The
model captures directional emission patterns, enabling more accurate dose calculations. By
adjusting the spatial relationship between capsules and their source zones, planners can fine-tune
dose gradients and enforce angular dispersion constraints. The spherical component defines a
localized region of radiation influence, allowing for precise control over capsule proximity and
minimizing dose overlap. Our composite geometric modeling framework allows flexible capsule
orientations and avoiding strict parallelism. This enables more adaptive and anatomically
conformal placement strategies, reducing the risk of dose hotspots and improving overall treatment
efficiency.

2. Problem statement

To ensure safe and effective placement of composite brachytherapy capsules, we model each
capsule as a union of two geometric components O,=C, U S;: a cylinder of with radius r and half-
height h representing the physical implant, and a sphere with radius p>r, centered at the
radiation source, fori €I = { 1,2,....N } where N is a sufficiently large number.

The center of each cylinder is located at the intersection of its axis and base. The center of each
sphere is located in the intersection point of its axis and the cylinder base. The position and
orientation of each object O; is defined by the tuple ui=(vi,@i), where vi=(x,.,yi,z,.) € R’ are
the spatial coordinates of the cylinder center, @i:((pi’wi) are the orientation angles. Let
u Z(ul, Uy, .o, uN) be the configuration vector of all objects. The object O, located in U; is denoted
as O,(u,), i €1,.

The direction of the axis of each cylinder is represented by a unit vector n, € R’, depending

from its orientation angles as follows: n,=(sin w,cos ¢,,sin w,sin @,,cos w, ).

The spheres represent the influence zones of emitted radiation. This composite structure allows
us to simultaneously control the physical feasibility of placement and the dosimetric impact on
surrounding tissues. The cylinder defines the spatial footprint of the implant within the target
region, while the sphere serves to regulate the proximity of the radiation source to other sources
and to healthy anatomical structures.

The target region T (tumor volume) is modeled as a convex polyhedron given by the
intersection of half-spaces A;x+B;y+ Cjz+Dj£0, J EJmZ{ 1,2,..., m}, where m is the number
of half-spaces:

The optimization objective is to maximize the number of capsules n< N that can be placed
inside T without overlap, while maintaining a minimum distance d between pairs of cylinders and
the frontier of T

Based on the phi-function method, the mathematical model of the problem is formulated as an
identical item packing problem (IIPP) [11]:

n"=max Y, ¥,(u,) st u€G, 1)

i€l

where the indicator function ‘Pi( u,.) is defined as:
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In (2), ®,(u,)=min{®, (u,)-d,®,(q,)} is a normalized phi-function for O, and T" where
T =R\ f (T, i €1y [12], D, (u;) is a normalized phi-function for C; and T, @, (a,)is a phi-
function for S, and T, a;=u;+h;n,
D, (u;,u;)=mini @y, (u;,u;)-d,®
function for O, and O;, i< j € I . Here, @
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Each phi-function serves a specific purpose:

CDiC(u,-) ensures that the cylindrical component of capsule O, is fully contained within T,
maintaining anatomical validity,

@, (a,) ensures that the spherical radiation zone does not extend beyond the target region,
protecting healthy tissue from unintended exposure,

CDijCC(ui,u j) enforces a minimum separation between the cylindrical bodies of C; and Cj,,
preventing physical overlap and excessive local dosing.

CDijCS(ui, a j) controls the distance between the cylinder C; and the radiation source of another
capsule, ensuring safe spatial separation,

(Dijsc( a,u j) ensures that the radiation source presented by S; is not too close to the cylinder S;
, preserving dose uniformity and avoiding interference,

fDUSS(ai,a j) maintains a safe distance between the radiation sources of different capsules,

preventing overlapping influence zones and cumulative dose effects.
Together, these constraints define the feasible region G={u ERSH:CDU(UI-,UJ-)ZO,I’<j el

for capsule placement, ensuring geometric compatibility, clinical safety, and dosimetric
effectiveness.

The precise number of composite capsules that can be accommodated within the target region T
, subject to the imposed minimum separation constraints, is not known a priori. Nevertheless, a
preliminary upper bound can be inferred by comparing the aggregate volume of the capsules to the
volume of the target domain.

To approach this IIPP, we adopt a sequential placement strategy, whereby capsules are
introduced one at a time into the domain, known as incremental block optimization [13] or online
packing [15]. This method, often referred to as block optimization, allows for incremental
construction of admissible configurations.

Central to this methodology is the formulation of normalized phi-functions, which serve as
analytical tools for evaluating spatial admissibility. An additional complexity arises from the
inclusion of orientation parameters, which define the angular disposition of each capsule and



influence both geometric feasibility and dosimetric performance. In the present study, the
cylindrical components of the capsules are approximated by convex polyhedral shapes for which
phi-function are constructed and well explored [12]. When selecting a sufficiently high number of
faces in the polyhedral approximation, the geometric distortion becomes negligible and does not
compromise spatial separation or dosimetric accuracy.

3. Solution approach

We propose a hybrid optimization strategy that combines elements of online packing and offline
packing. This approach enables both incremental configuration construction and global adjustment
of capsule positions and orientations. Strategy for solving the problem.

3.1. General strategy

In online packing phase, capsules are introduced sequentially into the target domain. Each new
capsule is initially placed with reduced size and fixed orientation, ensuring non-overlap with
previously placed capsules. This phase emphasizes feasibility under static conditions.

In offline packing phase capsule dimensions are gradually homotatically restored to their
original size. Simultaneously, all capsules are allowed to move and rotate. This phase involves
solving a nonlinear programming problem to optimize spatial arrangement while maintaining all
geometric and dosimetric constraints. This dual-phase strategy allows for adaptive placement in
complex anatomical regions, balancing computational efficiency with clinical accuracy.

3.2. Algorithmic steps

Step 1. Estimate capacity. Determine the number of capsules n that can potentially be placed
within the target region T, ensuring that each capsule P,(u,),i € I, fits geometrically.

Step 2. Incremental expansion. Set n:=n+1 to test the feasibility of placing an additional
capsule.

Step 3. Initialize Scaling. Set the scaling factor g,:=0.01.

Step 4. Online phase. Randomly generate a vector U,, ensuring v, €T,0<¢,<21m,0<w,<27.

Step 5. Offline phase. Solve the following nonlinear optimization problem
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The scaling factor g, means that the cylinder C,, is considered with variable radius g,r and
half-height g, h and the sphere S, is with radius g, p (see [16]).

Step 6. If gn*= 1 in a local minimum point of problem (6), (7), then return to Step 2. Otherwise,
go to Step 7.

Step 7. An approximate solution to problem (1) is taken to be n":=p-1. The algorithm
terminates.

The proposed hybrid optimization strategy combining online and offline packing offers a robust
framework for directional brachytherapy planning. By involving normalized phi-functions and
incremental block optimization, the method ensures that capsules are placed with respect to
anatomical constraints and radiation safety. The online phase facilitates rapid feasibility checks by
introducing capsules in reduced form, while the offline phase refines the configuration through
nonlinear programming, allowing simultaneous adjustment of positions and orientations. The
integration of angular constraints and composite object modeling (cylinder and sphere) allows for
precise control over directional dose delivery, minimizing overlap and enhancing treatment
quality. The algorithm’s modular structure also supports scalability and adaptability to various
anatomical sites and treatment protocols.

4. Numerical examples

To evaluate the performance and behavior of the proposed capsule placement algorithm, we
conducted a series of computational experiments with varying numbers of capsules, minimum
allowed distances and angular constraints. These experiments aim to illustrate how geometric
parameters influence the final configuration and feasibility of directional brachytherapy plans.

Example 1: 30 Capsules Without Angular Constraints In the first scenario, we considered a
configuration of 30 composite capsules, each consisting of: A cylindrical body with radius 1.0 and
height 1.5 units. A spherical radiation zone with radius 1.0 unit, centered at a base of the cylinder.
The placement domain was randomly generated to ensure that all capsules could be accommodated
without violating spatial constraints. The bounding box of the domain was: Width: 8.03 units
Length: 6.22 units Height: 12.49 units No angular constraints were imposed in this experiment,
meaning that capsules were allowed to orient freely in space. The minimum allowable distance
between capsules was set to zero, permitting direct contact between the capsules. The algorithm
successfully placed all 30 capsules within the domain, and the total computation time was 45
seconds. This configuration is shown in Fig.1.

Figure 1: Packing of 30 composite objects according to Example 1.



Example 2. In the second example, we extended the experiment to 40 composite capsules,
maintaining the same modeling principles but modifying the capsule geometry and domain size.
Each capsule consists of a cylinder with radius 1.0 and height 3.0 units, reflecting a 1:3 ratio
between radius and height. The spherical radiation zone retains a radius of 1.0 unit. The placement
domain was expanded to accommodate the increased number and size of capsules. The bounding
box of the domain was: width: 6.58 units Length: 14.42 units Height: 18.08 units. The runtime was
about 4 minutes. This configuration is shown in Fig.2.

Figure 2: Packing of 40 composite objects according to Example 2.

Example 3. In the third example, we investigated how angular and spatial constraints affect the
structure of capsule placement plans. The setup was similar to Example 2, with 40 composite
capsules, each consisting of a cylindrical body with a radius of 1.0 and a height of 3.0 units,
maintaining the same 1:3 ratio. The spherical radiation zone attached to each capsule had a radius
of 1.0 unit. Capsules were placed within a cubic domain measuring 15 x 15 x 15 units. Unlike
previous examples, this configuration introduced a minimum allowable distance of 1.0 unit
between the cylindrical bodies of any two capsules, ensuring physical separation and reducing the
risk of localized overdose. Additionally, angular constraints were imposed between capsules: [3,,,,
B e No angular constraints between capsules and domain boundaries. Runtime was about 5
minutes. The packing obtained is shown in Fig.3. This experiment demonstrates how the
introduction of geometric constraints, both spatial and angular, can significantly influence the
resulting configuration, leading to more clinically safer placement strategies.



Figure 3: Packing of 40 composite objects according to Example 3.

Example 4. In the final example, we introduced both inter-capsule and boundary-related angular
constraints to evaluate their combined effect on capsule placement. The setup remained consistent
with Example 3 in terms of capsule geometry: 40 composite capsules were used, each consisting of
a cylindrical body with a radius of 1.0 and a height of 3.0 units, maintaining the 1:3 ratio. The
spherical radiation zone attached to each capsule had a radius of 1.0 unit. To accommodate the
stricter constraints, the placement domain was enlarged beyond the dimensions used in previous
examples. According to the extracted data, the bounding box of the domain measured
approximately 16.07 x 15.15 x 20.18 units. The constraints applied in this scenario included a
minimum distance of 1.0 unit between the cylindrical bodies of any two capsules. Angular
constraints were also imposed between capsules, requiring the angle between their central axes

and angular constraints between capsules and the domain boundaries amin,,,, amax,,,. The

min>
resulting configuration, as shown in Fig.4, exhibits no parallel alignment neither between capsules
nor between capsules and the domain boundaries. The placement parameters are presented in
Table 1. This outcome confirms that the algorithm effectively enforces angular dispersion, even

under complex spatial conditions.

Figure 4: Packing of 40 composite objects according to Example 4.



Table 1
Placement parameters of cylindrical capsules

i X; Yi Z; 9, W,

1 14583 14.065 8.678 -0.636 1320
2 9.046 6.806 13.455 0.927 -0.345
3 17.138 15.987 21.653 -0.845 -0.922
4 10.083 12.167 25.694 0.927 -1.231
5 9.038 12.271 9.620 -0.927 -0.340
6 17.143 15.830 12.167 0.802 -0.622
7 13.424 6.111 20.102 -0.494 -0.431
8 14.875 5.326 9.719 0.201 0.900

9 10.492 17.314 10.218 -0.201 2.424

10 21.443 11.111 13.087 2.417 -0.525
11 10.083 7.847 8.678 -2.214 1.911

12 21.947 6.518 21.197 2.395 2.866

13 9.063 17.300 17.294 -2.935 0.215

14 17.784 6.747 21.599 2.214 -2.795
15 18.012 16.124 16.721 2.478 -2.096
16 21.947 16.028 20.200 2.435 2.875

17 13.410 16.837 18.216 -0.386 -0.591
18 17.061 6.340 15.279 2.502 -0.372
19 12.831 6.341 25.614 -2.554 1.291

20 14.033 9.485 10.969 3.616 2.288

21 9.038 16.373 23.253 -2.540 0.245

22 20.230 10.812 18.636 -0.305 2.147

23 19.830 6.373 25.696 -2.540 -1.326
24 21.947 15.771 13.684 2.309 0.302

25 17.216 10.774 15.678 -0.642 -0.328
26 10.033 13.290 15.342 -0.246 -2.541
27 11.780 9.663 16.585 0.201 -0.955
28 15.761 11.124 24.646 -2.361 0.529

29 21.273 5.876 14.950 -2.739 0.517

30 9.038 6.412 21.838 -0.601 -2.897
31 13.198 16.075 24314 -2.363 -2.857
32 21.918 6.325 10.063 0.632 0.263

33 21.766 11.669 23.979 -0.570 0.317

34 19.066 9.357 8.695 -2.214 1.222

35 10.286 11.724 21.535 0.745 1.295

36 20.844 16.014 25.594 -2.318 1.215

37 12.195 5.326 15.791 0.201 -0.793
38 20.526 16.298 8.755 0.589 -1.294
39 14.550 11.846 19.646 0.927 2.088

40 12.822 15.882 13.379 -0.920 2.303




The numerical experiments demonstrate the algorithm’s adaptability across synthetic cuboidal
domains. Importantly, the developed approach supports arbitrary convex polyhedral
representations and can be extended to handle non-convex anatomical regions.

5. Conclusion

This study presents an adaptable optimized geometric model for directional brachytherapy,
enabling precise and constraint-aware placement of radioactive capsules within anatomically
complex regions. By modeling each capsule as a composite object and applying normalized phi-
functions, the method effectively enforces spatial separation, angular dispersion, and dose
conformity. The hybrid optimization strategy, combining online and offline packing, demonstrates
strong performance across varying geometric and clinical scenarios. It allows for incremental
feasibility testing and global refinement, accommodating both fixed and dynamic constraints.

The computational experiments confirm that the algorithm reliably generates feasible, non-
overlapping configurations while respecting angular and spatial constraints. The final example
illustrates the method’s ability to eliminate parallel alignments, both between capsules and with
domain boundaries, which is critical for directional dose control and minimizing interference.

While the spherical radiation zone provides a mathematically tractable and physically intuitive
model for directional emission, we acknowledge that real anisotropic dose distributions may
require more refined representations. Future work may explore ellipsoidal or empirically derived
dose kernels to better capture source-specific anisotropy.

The use of convex polyhedral approximations for cylindrical components enables the
application of phi-functions but may introduce minor geometric distortions. Although these
approximations are computationally efficient, future studies will investigate exact phi-function
formulations for true cylinders to enhance placement accuracy.

This will also lay the groundwork for future advancements in real-time optimization, multi-
objective treatment planning, and integration with robotic-assisted delivery systems.
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