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Abstract
The architecture  and structure  of  a  complex  of  software  system components  designed to  implement 
mathematical  modeling  of  diffusion  transfer  processes  in  various  samples  of  microporous  materials,  
specifically zeolites, has been developed. This problem was solved in several stages. First, mathematical  
models of mass and heat transfer in zeolites were constructed and generalized for the case where the  
studied samples have an arbitrary number of layers and variable geometric parameters. For the developed 
mathematical models, presented in the form of boundary value problems and boundary conditions, their  
approximation by grid finite-difference schemes suitable for their further algorithmization was performed. 
At the next stage, the software implementation of each component of the software complex was carried 
out using the Wolfram Mathematica environment and programming language.  In the final  stage,  the 
architecture of the software complex was developed, which connects all its developed components, and 
also provides user interaction with the software system and allows them to vary the input parameters of  
the  implemented  mathematical  models.  Verification  of  the  developed  mathematical  models  and  the 
operation of the software system was carried out by testing the operation of all its components and using 
typical  parameters  of  zeolite  samples.  The  developed  software  complex  meets  the  needs  of  both 
researchers  and  engineers  directly  working  in  this  subject  area.  The  functionality  and  tools  of  the 
software complex can be further easily modified and complicated according to emerging needs.
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1. Introduction. Domain analysis

In recent years, there has been an active infiltration of methodologies and approaches developed 
within information technology, particularly software engineering, into science and technology in 
general.  For  example,  mathematical  modeling  methods  combined  with  object-oriented 
programming tools enable the study of new materials, micro- and nanostructures at a completely 
different  level  of  perception  and  visualization.  The  development  of  nanoscale  samples  with 
predetermined properties and geometries requires not only the physicochemical properties of the 
starting materials but also the application of complex software systems that control these processes 
and minimize human influence.

Diffusion processes related to mass and heat transfer kinetics constitute an actively and rapidly 
modernizing  part  of  modern  technologies.  Functional  materials  of  amorphous,  crystalline,  or 
semiconductor  origin  can  act  as  working  agents  for  the  transport  of  various  substances 
(hydrocarbon  molecules,  inert  gases,  water  vapor)  [1-3],  electrons,  and  quasiparticles  [4-6]. 
Working  with  such  functional  materials  is  quite  complex  and  requires  the  comprehensive 
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application  of  modern  methods  of  spectroscopy,  materials  science,  and  especially  information 
technology. In particular, the growth of microstructures of this type requires significant control  
over their geometric and spatial dimensions, which are actually the determining factor of their  
properties. In this regard, a whole direction has emerged in software engineering related to the 
subject area of developing software systems that allow pre-varying the properties and dimensions 
of microsystems [7, 8]. This is an extremely important and useful direction, as it allows engineers 
and  experimental  researchers  to  select  the  necessary  physical  and  geometric  parameters  of 
microstructures  and  their  systems  for  their  tasks  using  appropriate  software  [9-11].  It  also 
significantly saves costs, as growing crystalline structures with predetermined parameters using 
molecular beam epitaxy or ion implantation methods amounts to sums on the order of several  
million euros [12-14].

The development of mathematical models for diffusion processes has a rather long and complex 
history. It has its roots in research at the beginning of the 20th century by scientists in the fields of  
mathematical physics and materials science. These models were mostly analytical and did not have 
a significant impact on the development of technologies. Everything changed in the 60-70s of the 
last  century  when  scientists  from the  Glushkov  Institute  of  Cybernetics  managed  to  perform 
simulation and numerical modeling of diffusion kinetics processes in massive crystals for the first 
time.  The  results  obtained,  firstly,  well  described  the  experimental  results,  and  secondly,  the 
developed software, even within the framework of those times, could be quickly modified in the  
need to  apply  it  to  systems with  different  specifics  and parameters  [15].  The current  state  of 
research  in  this  problem often  lies  in  two  competing  directions.  The  first  direction  is  highly 
specialized software that is created practically once for a specific scientific problem or task. Such  
software works efficiently and optimally, but it has one significant drawback. It cannot be modified 
for  related  problems,  and  the  parameters  of  the  input  mathematical  model  can  only  be 
strengthened in a very narrow range in such a software system. An example of such software 
systems is the NextNano software package, which is updated several times a year. At the same 
time, the package includes a large number of software systems, of which only a small number will  
be  useful  to  users.  As  researchers'  experience  shows,  attempts  to  simultaneously  use  several 
different  NextNano  software  systems  can  give  radically  different  results,  which  significantly 
hinders  the  development  of  this  subject  area  from  the  point  of  view  of  modern  information 
technology. 

One of the problems facing software engineering in this subject area is the expansion of the 
functionality and specifications of the software package included in this software complex. As a 
result, hundreds of programmers can work on such software simultaneously, who are involved in 
both the development of mathematical models and the writing of the final code that implements 
the models [16-18].

In  the  proposed  paper,  the  task  is  set  to  build  mathematical  models  of  diffusion  transfer 
processes in complex multilayer samples created from microporous functional materials: zeolites 
and silica gel. In particular, similar problems were mentioned in papers [19,20]. To implement these 
mathematical  models,  their  representation  in  the  form  of  grid  problems  approximating  the 
resulting  boundary value  problems with  finite  difference  schemes  will  be  performed.  For  user 
convenience, a convenient human-machine interface and software system architecture have been 
developed. The developed information system will  be an interconnected software complex that  
allows you to quickly select the necessary dimensional and physical  parameters of the studied 
samples,  obtain  the  necessary  numerical  values  provided  by  mathematical  models,  and,  most 
importantly, interactively visualize the results of mathematical modeling. This software system will 
have  a  wide  purpose:  both  for  specialists  engaged  in  direct  research  and  for  engineers,  the 
functionality of the system will allow for its further improvements and variability.



2. Mathematical models applied to modeling diffusion processes

From the point of view of developing mathematical models of diffusion, the following is the basic  
model  [9-11].  It  is  assumed  that  the  diffusion  process  has  established  itself  throughout  the 
continuum of the studied sample, while the kinetics of diffusion are characterized by the dynamics 
of the process only at the boundaries of the medium of the zeolite crystalline material and the  
micropores contained therein. In this case, the mathematical model of diffusion is expressed by a 
self-consistent system of partial differential equations, which in the general case has the following 
form

(1)

The first of the equations in system (1) is used to describe the kinetics of diffusion throughout 
the body of the sample, and the second equation describes the diffusion process of volatile particles  
through the boundary of micropores with the material medium of an arbitrary zeolite. Finding any 
solutions, even numerical ones, of system (1) presents significant difficulties. To this end, in paper 
[9], diffusion was assumed to be an equilibrium process, which was ensured by the condition:

(2)

where the parameters a, b, afull were assumed to be dependent on the current concentration of the 
volatile agent, and in general form they were certainly complex nonlinear functions of temperature 
T, according to the so-called Langmuir isotherm, which considers the non-ideality of the gas, the 
size of the molecules and the interaction between them and with the crystal lattice of the sample as  
a limiting factor. In addition, the flow rate of gas through the sample was assumed to be adiabatic, 
according to the well-known relation:

(3)

In papers [10, 11], a number of approximations were made that simplified the mathematical 
module of diffusion (1). In particular, the equilibrium condition between the diffusion flow and the 
sample medium was simplified and presented in the following form:

(4)

where  is a constant value that characterizes diffusion in the so-called Henry's kinetics 
approximation. In this case, in expression (4), a small parameter ε, which characterizes the phase 
transition between the micropore medium and the sample medium, was used for the expansion. As  
a result,  expression (4)  and the original  equations of  the mathematical  model  are significantly 
simplified,  it  is  possible  to  obtain  their  analytical  expressions  by  applying  the  Laplace  and 
Heaviside differential-integral transformations. The simplified mathematical model of diffusion in 
this case takes the following form:

(5)



For the implementation of  the mathematical  model,  in particular the numerical  one,  it  was 
assumed that model (5) is characterized by the following initial conditions:

(6)

which characterize the initial concentrations in different boundary environments of the samples. In 
order to be able to apply the methods of integral transformations, it was also assumed that the  
mathematical  model  (5)  is  characterized  by  a  set  of  simple  interface  boundary  conditions, 
significantly simplifying the spectral problem:

(7)

The solutions of the mathematical model (5) with initial conditions (6) and boundary conditions 
(7) are obtained by the method of successive iterations using stationary perturbation theory in the 
form of such power series—an actual expansion in a series by a small quantity ε:

(8)

where each of the terms in expressions (8) could be obtained in an analytical, but at the same time  
in a rather complex for software implementation, formulaic construction.

The  mentioned  mathematical  model,  although  it  is  the  main  and  basic  one  for  describing 
diffusion  processes  in  samples  with  micropores,  nevertheless  has  a  number  of  significant 
shortcomings that do not allow it to be applied to the description of mass transfer processes in 
multilayer samples. These shortcomings include:

- the  use  of  approximations  and  perturbation  theory  at  early  stages  of  mathematical  model 
construction; initial conditions of the form (6) significantly impose restrictions on input data in 
the software implementation of the mathematical model;

- the convergence of  series in expressions (8)  is  difficult  to establish directly,  although direct 
calculations indicate the possibility of achieving the required computational accuracy; 

- boundary  conditions  (7)  are  very  formal  and  simplified,  their  application  to  multilayer 
structures would have totally incorrect results.

In summary, it should be concluded that to successfully solve the problem of constructing a 
mathematical  model  of  mass  transfer  in  multilayer  samples,  the  existing  mathematical  model 
should be significantly adjusted and improved. To do this, the following should be done: introduce  
more  general  initial  conditions  for  the  concentration  in  the  sample  and  its  micropores;  it  is 
necessary to completely, in a different approach, approach the derivation of boundary conditions at 
the boundaries of the sample layers, which relate to different types of materials, in order to more 
realistically describe them; for the obtained mathematical model, it is necessary to replace it with 
an  effective  difference  scheme,  which  is  not  most  optimally  suited  for  the  development  of  a  
software system, including on the basis of distributed and parallel computing; for a software system 
that implements a mathematical model, it is necessary to clearly think through its architecture and 
user interface. These problems are further solved sequentially in this paper.



3. Modification of mathematical models of mass transfer for the case 
of multilayer samples. Construction of grid finite-difference 
scheme

3.1. General problem statement. Mathematical model of diffusion in multilayer 
spherical samples

We will model the properties of diffusion processes in a spherical multilayer zeolite sample, the 
cross-section of which is shown in Fig. 1. In this figure, point 0 marks the center of the sample, and 

the coordinates  are the boundaries of the zeolite media with different porosity.

Figure 1: Cross-section of a spherical multilayer zeolite sample.

From a physical point of view, the diffusion process in the sample is complex and consists not 
only in the penetration of the diffusing agent into the zeolite medium. In essence, this process 
consists of two parts: diffusion in the intercrystalline medium of the sample and diffusion in the  
pores of this sample. Accordingly, the time-dependent concentrations of the dispersed substance in 

the  intercrystalline  medium  and  in  the  pores  are  denoted  by   and  ,  where 

 and we assume that the pores in the zeolite have a spherical shape and an average  

radius . We will also consider that diffusion occurs for a mixture of i components that do not 

interact with each other. Thus, such diffusion occurs both inside the volume   and  the 

volume  and is most fully described by a system of self-consistent equations:

(9)

where  and  are the diffusion coefficients of molecules of the i-th type inside the 

zeolite material and the pore medium, respectively. The quantity  characterizes the correction 
for the fact that the pores in the zeolite act as active adsorption centres. It is defined as follows:



(10)

where the dimensionless quantity   determines the porosity of the zeolite medium, which is 

different in each layer of the sample,  – is the Henry constant.
It  is  considered  that  for  concentrations  outside  and  inside  the  pores,  the  following  initial 

conditions are fulfilled:

(11)

To  generalize  the  mathematical  model,  we  assume  that  the  zeolite  system  with  pores  is 
characterized  by  three  types  of  boundary  conditions.  The  first  condition  characterizes  the 
constancy of concentration at the pore boundary:

(12)

The second boundary condition sets the adsorption equilibrium by analogy with the Langmuir 
condition [13]:

(13)

The third group of boundary conditions is designed to generalize the mathematical model for 
the case of an arbitrary number of different layers. They describe the equilibrium of concentrations 
and particle fluxes inside the layers of the zeolite sample. These boundary conditions have the  
following interface form:

(14)

3.2. Development of a finite difference scheme for the developed mathematical 
model. Approaches to algorithmization of the grid problem

Next, we need to obtain a finite-difference formula for the system of equations (9), which define the 
studied mathematical model. To do this, we will use the approximation of the first and second 
derivatives in the form of an approximated (right) first derivative and a three-point scheme for the  
second derivative. For an arbitrary function, the approximation has the following form:

(15)

Next, we will replace the domain of definition of the system of equations (9) with a discrete 
domain – a three-dimensional grid over the variables  r,  X, and  t. As a result of discretizing the 
domain of definition for each variable, a grid with nodes is obtained, which are defined as follows:

(16)



where  . Accordingly,  here  T  is  the  magnitude  of  the  time 

interval during which the process occurs, and is  the total radius of the sample.
For spherical samples, it is necessary to construct a difference scheme based on equations (9) 

with initial conditions (11) and boundary conditions (12), (13), (14). Using approximation (15) for 
equations (9), we will have:

(17)

Next, the approximation of the initial (11) conditions gives:

(18)

and the approximation of boundary conditions (12), (13) leads to expressions:

(19)

And finally, the approximation of the interface boundary conditions (14) gives us the following 
expressions:

(20)

Gathering now together the approximated original equations, initial and boundary conditions 
(17)-(20) after transformations, the final difference scheme is obtained, implementing our mathe-
matical model:

(21)

To algorithmize the developed grid mathematical  model,  we applied forward and backward 
substitution in the Wolfram Mathematica software environment. Backward substitution allows to 
efficiently  obtain the solution of  the grid problem (21),  based on the approximated initial  and 
boundary conditions. In this case, forward substitution is a preparatory stage in which the system 
is reduced to a triangular matrix form. Backward substitution is the stage of directly finding the 



solution using the coefficients obtained in the first stage. In the method of modeling the diffusion 
process developed by us, these two stages work together: first, intermediate values are found, and 
then  its  final  solution.  It  should  also  be  noted  that  the  methodology  developed  by  us  for 
constructing difference schemes of mathematical models and their algorithmization will also be 
effective in solving adjacent equations of heat conduction and diffusion, especially when using 
implicit schemes, such as the Crank-Nicolson method.

To algorithmize the developed grid mathematical  model,  we applied forward and backward 
substitution in the Wolfram Mathematica software environment. Backward substitution allows to 
efficiently  obtain the solution of  the grid problem (21),  based on the approximated initial  and 
boundary conditions. In this case, forward substitution is a preparatory stage in which the system 
is reduced to a triangular matrix form. Backward substitution is the stage of directly finding the 
solution using the coefficients obtained in the first stage. In the method of modeling the diffusion 
process developed by us, these two stages work together: first, intermediate values are found, and 
then  its  final  solution.  It  should  also  be  noted  that  the  methodology  developed  by  us  for 
constructing difference schemes of mathematical models and their algorithmization will also be 
effective in solving adjacent equations of heat conduction and diffusion, especially when using 
implicit schemes, such as the Crank-Nicolson method.

Figure 2: The result of the software system block operation for modeling the spatial dependence of 
the concentration distribution and its cross-sections using the Manipulate directive.

We performed a software implementation of the difference scheme block (21). It was built using 
the Manipulate module, which allows to arbitrarily change the sample size and the time interval in 
which the diffusion process occurs. An example of the operation of such a software system block is 
shown in Figure 2.

4. Development and design of software architecture for mathematical 
models of diffusion in multilayer samples

In accordance with the finite-difference form that implements mathematical models of diffusion 
kinetics,  software  was  developed  to  realize  these  models.  At  the  first  stage,  the  software 
architecture was developed, which provides the most understandable interactive interaction of the 
user with the software system. The direct goal was to ensure variability in the user's ability to 
change the input parameters of the mathematical model, its physical parameters, and the geometric  
confinement  of  real  studied  systems.  The  resulting  software  system  architecture,  which  is 
expressed in a use case diagram, is shown in Fig.ure3. It reflects the main interactions of the user  
with the system, defining the key scenarios of its use.



According  to  the  developed  architecture,  the  user  does  not  have  to  directly  familiarize 
themselves with the essence of  the mathematical  implementation of  abstract models,  since the 
system automates most of the calculation and data processing processes.  However,  restrictions 
were imposed in advance on the range of variable input parameters, expressing the technical side 
of the problem and the properties of the studied materials. These restrictions are determined based  
on empirical  data  and analytical  studies,  which allows to reduce the error  of  calculations and 
increase the reliability of the results. In addition, the architecture provides for the modularity of the 
system, which allows for its further adaptation and improvement. The main components of the 
system are distributed in such a way as to ensure the efficiency of computational processes, as well 
as convenience for the end user. An important aspect is the possibility of integration with other 
software systems, which expands the scope of application of the developed system.

Figure 3: Use case diagram of the software system.

As a result of implementing the architecture according to the use case diagram, the software 
system user can perform the following actions:
 Input of sample and layer sizes and variation of their sizes within an upper limit of 10 μm; 
 Input of the number of layers of the studied sample, with the upper limit of this number being 

limited to n=1000; 
 Input of the physical parameters of the sample. In the case of choosing a sample with known 

physical parameters for modeling, they are already contained in the mathematical model itself;
 Input of the material type. The software system provides for operation with the following 

materials: zeolites ZSM-5, ZSM-9, ZSM-12, silica gel; 
 Since  these  mathematical  models  were  implemented  in  the  form  of  Crank-Nicolson  type 

difference schemes, the software system user can change the time parameters of the input  
problem and control the accuracy of the difference scheme;

 For each mathematical  model  and for all  provided materials,  the possibility of 2D and 3D 
visualization of spatial diffusion distributions and temperature regimes during heat and mass 
transfer is fully implemented.



In Figure 4 are shown the activity diagram of the developed software system, which summarizes 
the  use  case  diagram presented  above.  According  to  the  developed  architecture,  the  software 
system, in its practical implementation, consists of two separate blocks, each of which contains 
four  subprograms  corresponding  to  different  types  of  studied  samples.  Thus,  the  developed 
software system allows to meet the needs of a wide range of researchers. In particular, it allows to 
be convenient for use by scientists and engineers who work directly in the experiment and mostly 
need specific numerical data for comparison. In addition, the flexible visualization tools used in 
Wolfram Mathematica will be useful for researchers who are engaged exclusively in aspects of  
applied mathematical modeling of such systems and samples.

Let's analyze the principles of working with the developed software system and its components 
in more detail.  Figure 4 shows an example of a user entering input parameters for zeolite and 
selecting the necessary component of the software system for its operation.

Figure 4: Activity diagram of the software system.

Work with the software system is implemented through an interface, using which the user can 
change  the  input  parameters  of  the  mathematical  model,  geometric  and  physicochemical 
parameters of materials using sliders. For example, the user menu for selecting sample parameters 
based on ZSM-5 zeolite is shown further in Figure 5.

Figure 5: User interface when working with input parameters of the studied sample.



As seen from Figure 5, the user of the software system can effectively change the geometric 
parameters of  the studied sample in the mathematical  model,  while the input physicochemical 
parameters can only be varied within realistic  limits  for a  given material  (in this  case,  ZSM-5 
zeolite). After selecting the input parameters, the user can select from a drop-down menu one of 
the three components of the software system responsible for modeling the structural properties of  
the sample, its sorption characteristics, and thermal conductivity, respectively.

5. Testing the software system operation. Analysis of diffusion in 
various types of samples, visualization of results

At the first stage of verification of the developed mathematical models, a comparison was made 
of the results given by the analytical model (9) [9] with the results obtained on the basis of the 
finite-difference  scheme  implementation.  For  the  calculations,  a  microstructure  of  a  spherical  
sample with linear dimensions of 50 μm, based on ZSM-12 zeolite with a porosity of 0.3, and pore 
sizes of 50 nm was selected. Methane at a temperature of 300K was chosen as the diffused agent.  
The  results  of  applying  the  software  system  components  based  on  analytical  and  discretized 
mathematical models are shown in Figure 6.

(a) (b)

Figure 6: Concentration distributions in a single-layer ZSM-12 zeolite in an analytical (a) and grid 
model (b).

(a) (b)

Figure 7: Concentration distributions of ZSM-5 zeolite with 8 layers: spatial dependence (a) and 
cross-section (b).



(a) (b)

Figure 8: Concentration distributions of ZSM-12 zeolite with 20 layers: spatial dependence (a) and 
cross-section (b).

(a) (b)

Figure 9: Concentration distributions of ZSM-12 zeolite with 20 layers: spatial dependence (a) and 
cross-section (b).

The results of implementing both mathematical models give a similar and close result, which 
indicates the reliability of these methods in application to single-layer samples. Further, using the  
developed software for finite difference schemes, mathematical modeling of spatial distributions 
and their cross-sections was performed for various types of samples made of different materials,  
but their number of layers corresponds to experimentally realized configurations. Figure 7 shows 
the results of such calculations for a sample with 8 layers of ZSM-5 zeolite with porosity from 0.1 
to 0.45.

Materials based on ZSM-12 zeolite usually have a large number of layers, the results calculated 
for a sample with 20 layers are shown in Figure 8. From the calculated dependencies, it is clearly  
seen that ZSM-11 zeolite has a much higher adsorption capacity than ZSM-5 zeolite, in particular  
due to a more uniform filling of pores in each of the sample layers. 

Finally, we applied the software package to a sample made of a common and frequently used  
material – silica gel. The calculated dependencies are shown in Figure 9. As can be seen, the silica 
gel sample strongly loses in adsorption properties to all samples made on the basis of zeolites. The 
maximum concentration of  the absorbed agent  is  obtained in  the centre  of  the sample,  and a  
significant part of it does not participate in the absorption process.



6. Conclusions

Mathematical  models  describing  diffusion  processes  in  material  samples  with  nanoscale  and 
microscale pores – have been constructed. A comparison of the developed mathematical models 
has been performed for their suitability to describe physicochemical processes in real technological  
conditions.

For the developed mathematical models, their discretization has been performed by applying the 
finite  difference method to  the equations describing diffusion transfer  processes  and boundary 
conditions that define the transfer balance in real existing material samples; Based on the obtained 
discretized mathematical models, their representation as grid problems has been performed. For 
each grid problem, the algorithmization of their solution by direct and reverse sweep methods in 
the Wolfram Mathematica environment has been carried out.

The architecture of the software system has been developed, which consists of software blocks 
implementing the grid problems of the diffusion mathematical models we have considered. The 
software system also contains a developed user interface that allows convenient variation of the  
parameters of mathematical models, geometric dimensions and physicochemical parameters of the 
studied samples.

The verification of the developed mathematical models and the software implementing them has 
been  performed  using  experimentally  realized  samples  and  by  testing  the  components  of  the 
software system for performance and realism of the obtained results. 

In  summary,  it  can  be  concluded  that  the  developed  software  system and the  components 
implemented in it will be directly useful both for researchers working in the field of heat and mass  
transfer modeling and for specialists engaged in solving specific technological problems. They can 
easily use the developed software product to quickly obtain the necessary active parameters for the 
mathematical models of the studied samples.
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