
Look Ma, No Hands: Supporting the semantic

discovery of services without ontologies

George A. Vouros, Fragkiskos Dimitrokallis, Konstantinos Kotis

AI-Lab, University of the Aegean, Karlovassi, Samos, Greece

{georgev, icsdm06002, kotis}@aegean.gr

Abstract. The work reported in this article aims to the discovery of WSDL

specifications that are assessed to match to specific data requirements1: Going

beyond the syntactic level, we aim at exploiting the human-intended semantics

of WSDL specifications At the core of the proposed method lies the Latent

Semantic Indexing (LSI) method, which automatically maps data requirements

specified in a query to part elements of WSDL input and output messages. We

study extensively the performance of the proposed method for different types of

experiments’ configurations. Experiments have been performed over an

extended number of services for various domains, with very encouraging

results.

Keywords: Latent Semantic Analysis, Semantic discovery of services

1 Introduction

The infrastructure for Web services is based mostly on standards such as UDDI [4,

16], SOAP [5] and WSDL [17]. WSDL (Web Service Description Language) is an

XML-based language for the specification of web services. WSDL is mainly focusing

on operational and syntactic details regarding the implementation and execution of

Web services. The lack of explicit semantics in WSDL makes services’ specifications

insufficient to satisfy the requirements for effective Web service ‘manipulation’ (e.g.

discovery, composition, invocation etc.) tasks, forcing the relevant mechanisms to be

based on keyword matches. While we may relate different types of semantics to the

web services (protocol semantics, execution semantics, non-functional semantics, e.g.

security, QoS, and others), we can distinguish two widely recognized types: (a) Data

semantics (introducing the semantic signature of services i.e. semantics of

input/output messages of service operations), (b) Functional Semantics (function of

operations and of the service itself). This paper focuses on data semantics, which is

generally accepted to be one of the most critical aspects regarding services’ semantic

description.

The key technology to the “semantic discovery” (and thus to the “semantic

matchmaking”) of Web services is ontologies. The key idea here is that the use of

1 This work is supported partially by the European Commission project Grid4All under grant

number FP6, project IST-Grid4All-2006-034567

ontologies for the specification of web services shall support agents to exploit the

semantics of services via logic-based inference mechanisms, gaining flexibility to the

service manipulation tasks. Three main approaches have been proposed for bringing

semantics to web services: OWL-S [1], WSDL-S [2] and WSMO [3]. However, given

a) the use of WSDL for the specification of existent services, as well as the use of

UDDI registries, b) the lack of commonly agreed domain ontologies, c) the lack of

ontologies for specific domains, and d) the high cost of semantically annotating

WSDL specifications by engineers, we have been motivated towards the approach

proposed in this paper.

Focusing on data semantics, the aim of this paper is to support the semantic

matchmaking of WSDL specifications, by exploiting the human-intended semantics

of specifications, without the use of ontologies. Towards this target, our approach

exploits the human-intended semantics of WSDL input/output messages and parts

captured mainly via commentary and descriptive textual information. Such textual

information regarding WSDL elements may be “fetched” from the service code, or

they may be given by the service providers during service advertisement. This

information is being exploited for the computation of the position that WSDL

specifications can obtain in a semantic space, where the data semantics of WSDL

specifications are expressed by means of a number of latent features. Given a query

(this is considered to be a specification for the requested service’s data semantics) the

objective of the proposed method is to represent this query using the computed latent

features and find the registered WSDL specifications that are close enough – and thus

similar – to the query, in the semantic space. Doing so, one may consider that these

latent features are the concepts of an ontology, which serve as intermediates for the

matching of WSDL specifications.

At this point we need to emphasize that although latent features are being used for

expressing the data semantics of requested and advertised services, the lack of

ontologies prohibit logic-based inferences, leading to the inability of the method to

explicitly identify inferred subsumption relations between services’ specifications.

The rest of the paper is structured in the following way: Section 2 provides the

related work, Section 3 provides a description of the problem and the background

technology, and outlines the matchmaking method. Section 4 presents the

experiments conducted towards evaluating the proposed method and finally, section 5

concludes the paper.

2 Related Work

Although several approaches introduce the semantic matchmaking of web services

(e.g. [6, 7, 8, 9, 10 and 12]), most of them require the use of a shared and well-agreed

ontology: Although this constraint may be relaxed by exploiting ontology mapping

techniques, these techniques need to be further enhanced towards their generic

deployment. Furthermore, the difficulties mentioned in Section 1 regarding the

semantic description of web services need to be tackled.

In this section we emphasize on the approaches that are closely related to the

proposed approach, i.e. to approaches that exploit the content of WSDL

specifications, and/or exploit textual information related to these specifications.

The OWLS-MX matchmaker [7] performs hybrid semantic matching that

complements logic based reasoning with syntactic IR based similarity metrics for

services specified in OWL-S. OWLS-MX aims to exploit the implicit semantics of

any part of OWL-S service description by representing it as a weighted category-

index term vector. Index terms are stemmed lexical items from a shared minimal

vocabulary. Concerning the similarity metrics, authors study four different token-

based string metrics: the cosine, the loss of information, the extended Jacquard and

the Jensen-Shannon information divergence. In contrast to OWLS-MX we go one

step “back”: we deal with WSDL specifications of services signatures, rather than

with their semantic counterparts in OWL-S, aiming to support the content-based

discovery of such specifications to a full extend, rather than in combination to logic-

based approaches. This is a rather hard problem given the scarceness of the

information, the dependency of specifications on the developers’ whim, and the small

size of the textual descriptions/comments. In addition, we aim at retrieving

specifications that match exactly to a query (rather than retrieving specifications that

are merely “neighbors” to the query).

Dealing also with WSDL specifications, aiming to address the challenges involved

in searching for web services, authors in [11] present Woogle, a web-service search

engine. In addition to simple keyword searches, Woogle supports similarity search for

web services. The key ingredient of the approach is a refinement of the agglomerative

clustering of parameters’ terms in the collection of web services into semantically

meaningful concepts. By comparing the resulting concepts, this work reports good

similarity measures. In contrast to this approach, rather than exploiting parameters’

terms co-occurrences, we aim at exploiting the human-intended meaning of WSDL

input/output messages’ part elements, “describing” them using a number of latent

features, and positioning them in a latent space. This approach, in combination to the

exploitation of services’ textual comments/descriptions, as our experiments show,

proves to be very precise.

Another web-service search engine (combining folksonomies and Semantic Web

Services technologies) [20] presents a method for semantic indexing and approximate

retrieval of Web services. It relies on graph-based indexing in which connected

services can be approximately composed, while graph distance represents service

relevance. A query interface translates a user’s query into a virtual semantic Web

service, which in turn is matched against indexed services. The approach is based on

the association of classes (ontology conceptualizations or folksonomy tags) with

WSDL service specifications: Thus it can be considered only as complimentary to our

approach.

In [12], close enough to the approach proposed in this paper, authors discuss a set

of WSDL similarity-assessment methods that can be used in conjunction with the

current UDDI API to support the service-discovery process. This method utilizes the

textual descriptions of the services, the identifiers of WSDL descriptions and the

structures of their operations, messages and types to assess the similarity of two

WSDL specifications. Given only a textual description of the desired service (as a

whole), this approach uses an information-retrieval method to identify and order the

most similar service description files. This step assesses the similarity of the query

(requested-service description) - extended to include semantically similar words

according to WordNet [14] - with the available services. A (potentially partial)

specification of the desired service behavior may further refine discovery by a

structure-matching computation step, exploiting mainly the lexical similarity of the

identifiers. Rather than relying on the lexical appearance of the identifiers, we aim

towards expressing their “meaning” by means of latent features, independently of any

external resource: Then, matches between service signatures are determined based on

semantic matches of WSDL input/output messages and parameters.

3 Service Discovery with Latent Semantics

3.1 Problem specification

This paper deals with the following problem:

“Given, (a) a repository R of WSDL specifications and (b) a specification of a

query Q that specifies the signature of the requested service, provide those services in

R that match with Q”.

As already pointed, we deal only with services’ signatures specified in WSDL (i.e.

with data semantics). More specifically:

- The signature of a service s specifies a set of input/output messages. These

are denoted <s,X,i>, where s is the service id, X is the type of the message,

input or output, and i is the id of the specific message.

- Each message <s,X,i> is associated with textual annotations: <s,i,Y,text>,

where s and i are as above, Y is the type of annotation provided, description or

comment, and text is the actual annotation text (possibly null). Each message

may be associated with more than one annotation.

- Each message <s,X,i> has one or more parameters (or parts):

<s,X,i,name,data_type>, where s,X,i are as above, name is the name of the

parameter, and data_type specifies a (atomic or complex) data type.

- Each parameter is associated with textual annotations: <s,i,name,Y,text>,

where s, i, name, Y and text are as specified above. Each parameter may be

associated with more than one annotation.

The way WSDL specifications are associated with annotations is thoroughly

explained in the following paragraphs.

Each WSDL specification in the registry includes a specification of the

corresponding service signature, as specified above. A query Q is also a specification

of the requested service signature using the above constructs.

The aim of the discovery mechanism is to find the service s in the registry that

matches the query Q. Formally, a service s matches a query Q , iff

∀ < s, input, i > ∃ < Q, input, j >: match(< s, input, i >, < Q, input, j >)

∧∧∧∧

∀ < Q, output, i > ∃ < s, output, j >: match(< Q, output, i >, < s, output, j >)

(1)

Given the above formula, for every input parameter of the advertised service there

must be a matching input parameter of the required service. Also, for each output

parameter of the required service there must be a matching output parameter of the

advertised service. We have to notice that alternative definitions, maybe allowing

greater matching flexibility, may be provided.

The function match determines whether the corresponding parameters match, and

provides their similarity degree. In the proposed approach the match function is being

computed by means of the Latent Semantic Indexing method.

3.2 Background information: Latent Semantic Indexing

The Latent Semantic Indexing (LSI) is a vector space technique originally proposed

for information retrieval and indexing [15]. It assumes that there is an underlying

latent semantic space that it estimates by means of statistical techniques using an

association N×M matrix of terms-documents. Latent Semantic Analysis (LSA)

computes the arrangement of a k-dimensional semantic space to reflect the major

associative patterns in the data. This is done by deriving a set of k uncorrelated

indexing factors (latent features). As already pointed out in the introduction, these

factors may be thought of as artificial concepts whose lexicalization is not important.

Given these factors, each term and document is represented by a vector of values,

indicating its strength of association with each of these underlying concepts. In other

words, the meaning of each term and document is expressed by k factor values, or

equivalently, by the location of a vector in the k-space defined by the factors. Then, a

document is the (weighted) sum of its component term vectors. The similarity

between two documents is computed by means of the dot product between the

corresponding representation vectors.

Concerning our problem, each document corresponds to each input/output message

or a message part, and each term is a distinct word in any of these “documents” (as it

will be explained, these pseudo-documents are being constructed by means of

annotations and message/part names).

For the computation of the k factors LSI employs a two-mode factor analysis by

decomposing the original association matrix into three other matrices of a very similar

form. This is done by a process called “Singular Value Decomposition (SVD)”. This

results in a breakdown of the original term-document relationships into linearly

independent factors. Some of these factors are not significant and are ignored. The

resulting k factors specify the dimensionality of the semantic space. By virtue of

dimension reduction from the N terms space to the k factors space, where k < N, terms

that did not actually appear in a document may still end up close to the document, if

this is consistent with the major patterns of association in the data.

When one searches an LSI-indexed database of documents, it provides a query (i.e.

a pseudo-document), which is a list of terms. The similarity between the query and

any document is computed by means of the dot product between the corresponding

representation vectors. Doing so, LSI returns a ranked list of documents, according to

their similarity to the query.

3.3 The Matchmaking Method

The proposed matchmaking method assumes as input a specification of the desired

web service (i.e. the query Q) and a repository R of registered services’ WSDL

specifications. All these services are “accompanied” by annotation files that associate

descriptive and commentary information to services’ specifications. After applying

the matchmaking method to the advertised web services, the output is a ranked list of

services according to their semantic similarity to the query. Although in our

experiments (for implementation convenience, only) queries are being specified in

WSDL, the proposed approach does not necessarily require the use of WSDL for the

syntax of the query: Given that the queries are transformed in “bags of words” (as

required by LSI), the proposed approach can also be used with keyword-based or

template-driven querying forms as in Web-services search engines (e.g. Opossum in

http://dori.technion.ac.il/, SeekDa in http://seekda.com/).

The proposed matchmaking method combines multiple sources of evidence to

determine similarity between the signatures of two web services. In particular it

considers the similarity between input and output messages, and between their

parameters (i.e. input parts and output parts, respectively).

More precisely our approach is divided into the following stages: a) the matching

of input messages, b) the matching of output messages, c) the matching of input parts

and d) the matching of output parts. The algorithm determines the matching of each of

these elements individually. The results are linearly combined to a single similarity

measure between WSDL specifications (Figure 2).

Fig. 2. The combination of stages for the computation of the overall similarity measure.

3.3.1 Annotation Files

The external annotation files (EAF) provide “slots” for the textual annotation of

WSDL elements: “Comments” and “description” slots for the service itself, for each

service’s interface, operation and input/output messages, and for each of the

corresponding parameters. It also provides support for specifying mappings between

WSDL elements and ontologies. The EAF is an XML file aligned with the WSDL

specification via XPATH expressions. Currently, comments and descriptions are

considered to aggregate any type of textual information.

Although we plan to incorporate SAWSDL [18] into our framework, we do not

commit to the use of SAWSDL at this stage, emphasizing mostly on the use of textual

descriptions/comments for WSDL elements.

3.3.2 Input/Output Messages’ similarity

Let us consider a message <s,X,i>, where s is the service id, X is the type of the

message (input or output) and i is the id of the specific message; as well as its

associated textual annotations <s,i,Y,text>, where Y is the type of annotation provided

(description or comment). We construct a bag of words including all words

comprising the message name and all words in the texts that annotate this specific

message: This constitutes the pseudo-document corresponding to the message. Each

word may be considered as a single term, or as a set of words (in case it is being

constructed by concatenating a number of simple terms, e.g. getinputdate_of_arrival):

We deal with both cases in our experiments. To improve the precision of our method

we eliminate words with little substantive meaning, i.e. stop-words, and we consider

only words that appear more than a certain number of times in the specific bag.

We compute the semantic similarity between each input (output) message of the

query Q and the input (respectively, output) messages of all the web services in the

registry by means of the LSI method: The method computes the semantic space by

building the association matrix, associating words occurring in the web services’

inputs (or outputs) and in their annotations, with the input (respectively, output)

messages’ pseudo-documents.

Similarly, each query to LSI is being constructed by means of the words in the

corresponding messages of the query specification Q: In other words, for each

message in Q, the proposed method constructs a separate LSI query. For each

input/output message of the query Q, LSI returns a matrix of registered services’

messages, together with a matching degree: Since each input/output message of Q can

match only with an input/output message of each s in the registry, the proposed

method keeps the highest ranked message per service s (i.e. the most similar one). For

each registered service s whose input/output messages match with the messages of Q,

a ranking (matching) degree ds is computed by averaging the similarities of all input

and output messages.

3.3.3 Input/Output part semantic similarity

Let us consider a parameter (message part) <s,X,i,name,data_type>, of a message i of

a service s, where name is the name of the parameter, and data_type specifies its data

type. This parameter is associated with textual annotations of the form

<s,i,name,Y,text>, where Y denotes the type of annotation and text the annotation text.

In this case, we construct a bag of words including all words in name and all words in

each text annotating this specific parameter: This constitutes the pseudo-document

corresponding to this parameter. As in messages, each word may be considered as a

single term, or as a set of words (in case it is being constructed by concatenating a

number of simple terms): We deal with both cases in our experiments. The pre-

processing stage of eliminating stop-words, and words that do not occur many times

in the specific bag, applies here as well.

We compute the semantic similarity between each input (output) parameter of the

query Q and the input (respectively, output) parameters of all the web services in the

registry by means of the LSI method: The method computes the semantic space by

building the association matrix, associating words that occur in the web services’

input (output) parameters and in their annotations, with the pseudo-documents

corresponding to the parameters. Similarly, each query to LSI is being constructed by

means of the words corresponding to an input/output parameter of the query Q.

Fig. 3. Ranking services based on input parts’ similarities

For each input/output parameter of the query Q, LSI returns a matrix of registered

services’ parameters, together with a matching degree: Since each input/output

parameter of Q can match only with an input/output parameter of each s in the

registry, the proposed method keeps the highest ranked parameter per service s. For

each registered service s whose input/output parameters match with the messages of

Q, a ranking degree ds is computed by averaging the matching degree of all input and

output parameters.

Since the method of ranking registered services using input/output messages, as

well as the method of using input/output parameters, is the same, let us exemplify the

computations with a simple example concerning input parameters. Suppose we have

the following advertised services: i) service s1 with three input parts: a, b, c, ii) service

s2 with one input part: d, and iii) service s3 with two input parts: e, f. The service

request Q has two input parts: x, y. The method uses LSI to compute the similarity

between the input part x of Q and all input parts of the advertised services, i.e. a, b, c,

d, e and f. The results are shown in table (a) of Figure 3. The method keeps for each

service only the input part that has the maximum degree of match. The result after this

step is shown in table (b) of Figure 3. Then, LSI computes the similarity between the

other input part y and all the input parts of the advertised services. The results are

shown in table (c) of Figure 3. Again, the method keeps for each service only the

input part that has the maximum degree of match. The result after this step is shown

in table (d) of Figure 3. Finally, these two tables (b) and (d) are summed and the result

is divided by the number of input parts of the request, as shown in table (e). This final

matrix associates each advertised service with a similarity to the query Q, based on

the computation of their input parts’ similarities.

3.3.4 Input/Output messages’ similarity by means of input/output parts

similarity

In addition to the above described approach, we have been experimenting with an

alternative method for the computation of input/output messages’ similarities, so as to

enrich the information consulted for the matching of messages: We construct the bag

of words for each input/output message not only using the message names with their

textual annotations, but adding also the associated input/output parts with their

annotations. In particular, we identify the input/output messages of a web service

operation together with the corresponding input/output parts of it. Then, the method

computes the matching similarity of the advertised services with the query in the same

way as we have described in the previous paragraphs.

3.3.5 Combining individual similarities

The result of the matching algorithm is a list of registered services matching to the

query Q, with their rankings. These ranking degrees result from averaging the degrees

computed by each of the individual stages described: a) the matching of input

messages, b) the matching of output messages, c) the matching of input parts and d)

the matching of output parts.

4 Experiments

To evaluate our approach, we have used service specifications from the OWL-S

Service Retrieval Test Collection (OWLS-TC) version 2 [19] as well as an additional

set of nine (9) Web services for Network Simulation (NS). From the OWLS-TC

collection, we have translated a set of 70 services to WSDL, due to problems faced

with the OWL-S-to-WSDL translation tool and due to services’ description duplicates

concerning the WSDL part elements. We have been experimented with 7 OWLS-TC

domains and the additional NS domain. Table 1 summarizes information concerning

the characteristics of the services in our repository R, i.e. the different domains of the

services (column 1), the number of services for each domain (column 2), and the total

number of WSDL input/output messages (column 3) and WSDL input/output distinct

parts (column 4) for each domain.

Table 1. Information about the experimental domains and services

Domain # Services # WSDL messages # WSDL Parts

1 Weapon 3 6 7

2 Education 9 9 82

3 Economy 14 14 31

4 Travel 9 9 27

5 Portal 22 8 63

6 Books 8 22 19

7 Medical 5 5 39

8 Network Simulation 9 21 41

Total 79 94 309

Concerning the WSDL specifications for domains 2 to 6, message part names are

mainly composed by a single-word term capitalized and an underscore character as a

prefix (e.g. _COUNTRY). For the domain 7, the messages part names are composed

by multi-word terms, either separated with an underscore or with no separator, or

using a combination of these (e.g.

GetPatientMedicalRecords_AuthorizedMedicalRecords). We handle individual,

distinct terms of multi-word terms separately, only in cases these are separated by an

underscore separator, which is one of the most generic case considered.

WSDL specifications have been manually annotated by human annotators that have

adequate knowledge of the related domains and services. They have been advised to

carefully choose the annotations in order to indicate as close as possible the intended

meaning of the input/output messages and of their parameters. Where possible,

annotators have been advised to get feedback from xsd-schema complex types

included in the WSDL specifications. Services in the “Network Simulation” domain

have been annotated by their developers. More specifically, we can identify 3

different annotation cases that have been applied in the corpus:

- Annotations that are formed by “free text including terms from xsd-schema

types and from the WSDL message part name”.

- Annotations that are formed by “free text including terms only from the

WSDL message part name”.

- Annotations that are formed by “a single term”. In this case, annotators

choose a single term without considering xsd-schema types or message’s part

names. For instance, for the “wsdl:part name="Capital_City"”, the annotator

has chosen the single-term-description “<description> Capital

</description>”, which “captures” the intended meaning of the entity

“Capital City”.

The result of this process is a set of annotations with terms belonging in one of the

following three categories: a) terms from xsd-schema types, b) terms from WSDL

message part names, or c) terms chosen by human annotators.

Table 2. Information concerning annotations per domain

Domain Annotation type

Travel, Portal Descriptions: category (b), Comments: category (a)

Books, Education Descriptions: category (b), Comments: category (a)

Economy Descriptions: category (b), Comments: category (a)

Weapon Descriptions: category (b), Comments: category (a)

Medical Descriptions: category(c), Comments: category (a)

Network Simulation Descriptions: category (c), Comments: category (c)

The use of free text with terms from the xsd-schema types and/or the WSDL message

part names, means that the annotator is allowed to form a natural language sentence

using these terms: E.g. “<description> The service requests accommodation using

country information </description>”. Although the use of free text may distract the

matching method (due to the incorporation of noisy terms), the freedom that the

approach gives to the annotator is important and realistic. In this example of

annotation, the annotator has combined terms (e.g. “country”) from messages’ part

names (category b). As another example, in the comment “<comment> The country

name is a string. A country is described with its capital, its currency, and its

government </comment>” the annotator has used terms (terms “capital”, “currency”,

“government”) from the xsd-schema type that corresponds to the specific message

part name (category a). Table 2 summarizes information concerning annotations per

domain. It must be noticed that all annotations contain 5 to 7 “significant” terms; i.e.

non stop-words that may drive the computation of elements’ intended mappings.

Given a query Q, we consider that the repository R includes one matching service. For

evaluation purposes we measured the precision (p) of the method (i.e. the percentage

of times that the method returns the correct service at the top of the ranked list), as

well as the Top-k precision (pk) of the method (i.e. the percentage of times that the

correct service is among the top k in the ranked list). Specifically, we have measured

p5 and p10.

The evaluation of the approach has been extensively conducted with a large

number of variations of the queries, so as to test the robustness of the proposed

approach, even in cases where annotations are misleading, or missing. According to

these variations, the words that are being used for the construction of the queries for

the input/output messages and parts vary significantly.

Specifically, words concerning the query Q may be fetched from:

- WSDL input/output message and part names without splitting them into

single words (this is considered to be the default case and it is not denoted in

the experiments).

- Splitting all words in the bag (this case is denoted by “split”)

- WSDL input/output messages’ annotations (this case is denoted by “in/out”)

- WSDL input/output parts’ annotations (this case is denoted by “inP/outP”)

- WSDL input/output messages’ annotations in conjunction with information

from the corresponding input/output parts (this case is denoted by

“inWP/outWP”)

Combinations of the above cases give the different configurations of the method.

For instance, the cases where the method considers only the matching of input/output

parts, constructing queries using WSDL input and output parts’ annotations together

with part names are denoted as LSA-inP-outP. As another example, the cases where

the method considers (a) the matching of input/output messages, constructing queries

using words from the WSDL input and output messages’ annotations in combination

with words from input and output parts’ annotations (i.e. the last case above), in

combination with (b) the matching of messages parameters, constructing queries

using WSDL input and output parts’ annotations, together with (c) splitting all words,

is denoted as LSA-inWP-outWP-inP-outP-split. Conclusively, as shown in the

Figures 4, 5, 6, we have run experiments with eight (8) configurations of the proposed

method.

For each case, we have considered alternatives for the filtering of words, based on

the times (t) of words’ appearance in the bag. Due to the very low numbers of words’

appearances we distinguished two cases: (a) Filtering out words that appear exactly

one time (t>1) and (b) including all words (t>=1).

First, we evaluated the proposed approach by placing each of the 79 WSDL

specifications included in the repository R as a query. This may be considered to be

the best case for our method since each query matches exactly with an advertised

service (Figure 4). In addition, we evaluated the method using each of the 79 services

in R as a query, but without considering their textual annotations. The results of these

cases are also presented in Figure 4. As shown, annotations play a significant role

towards increasing the precision of our method: This is particularly true for cases with

t>1. However, when all words are included in the bag of words (t>=1), even if

generally the results are better when considering annotations (even better from the

cases where t>1), some configurations fail to achieve better results from the

corresponding cases with no annotations: This is due to the incorporation of “noisy”

words.

Fig. 4. Cases where Q is in R.

To test the robustness of the proposed method in the presence of noisy words and

in cases where queries do not contain many “useful” terms, we have been

experimenting with a variety of cases for the queries. Thus, we have conducted

experiments by adding extra new words (let us call them noise-words) in the bag of

words of Q. Noise-words are randomly chosen from the textual annotations of

services included in the experimental corpus, given that these services belong to the

same domain with the domain of the query service. We have been experimenting with

one, three, and five noise-words per query. Figure 5 shows the results of these

experiments, together with two more graphs presenting results of the proposed

method when WSDL messages and part names are not included in the queries (and

without adding noise-words). In addition to the above, we have conducted further

experiments with noise-words: This time noise-words replace (one, three, or five)

words included in the query. Noise-words are new words and being chosen as in the

previous cases. Figure 6 presents the results of these additional experiments, in two

different sets of cases: a) Replacement of words with noise-words in queries that

include WSDL messages and part names, and b) replacement of words with noise-

words in queries that do not include WSDL messages and part names.

In Figures 5 and 6, it can be shown that the precision of the method scales

proportionally to the number of noise-words. The best results are achieved in cases

where all words are taken into account (t>1). In these cases, when the method

considers the input/output messages and their input/output parts separately, together

with the part name (split or not) (LSA-in-out-inP-outP-{split}) it achieves the best

results, even in cases with increased noise: It manages to present the correct service

among the top 5 (respectively, top 10) ranked services with precision greater than

85% (respectively, 93%). It must be pointed that the addition of 5 noise-words

with/without replacement, incorporates a major (if not radical) change in the

specification of the queries.

Fig. 5. Results of the proposed method a) adding noise-words in the queries, b) omitting
WSDL messages and part names without adding noise-words

5. Concluding Remarks

The work reported in this article aims to the discovery of WSDL specifications that

match specific data requirements by computing the intended semantics of part

elements of input/output messages.

Fig. 6. Results of experiments with replacement of query words with noise-words

Going beyond the syntactic level, we aim at exploiting the human-intended semantics

of WSDL specifications captured by means of comments and descriptions been

associated with these elements. The basic constituent of the proposed method is the

Latent Semantic Indexing (LSI) method, which maps data requirements specified in a

WSDL query to part elements of WSDL input and output messages. Preliminary

results for different types of experiments’ configurations are very encouraging: This

“basic” method manages to achieve quite high precision. Further work includes

testing the method in a large repository of WSDL specifications, and studying

extensively its dependency on the quality of annotations, also in combination with

other methods.

References

1. M. Burstein, et al. OWL-S: Semantic Markup for Web Services. W3C Member

Submission, Nov. 2004.

2. R. Akkiraju, et al. Web Service Semantics - WSDL-S. W3C Member Submission, Nov.

2005.

3. D. Roman, et al. WSMO - Web Service Modeling Ontology. In DERI Working Draft 14,

vol. 1, pp. 77–106. DERI, IOS Press, 2005.

4. OASIS http://www.oasis-open.org/home/index.php

5. Simple Object Access Protocol (SOAP) http://www.w3.org/TR/2000/NOTE-SOAP-

20000508

6. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service

Capabilities. In Proc. of ISWC 2002, pp. 333–347. Springer Verlag, 2002.

7. M. Klusch, B. Fries, M. Khalid, and K. Sycara. “OWL-S: Hybrid OWL-S Service

Matchmaking”. In Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the

Semantic Web, 2005.

8. Fernandez, A. Polleres, and S. Ossowski. “Towards Fine-grained Service Matchmaking by

Using Concept Similarity”. In Proc. of SMR2 2007, vol. 243 of CEUR-WS, pp. 31–45,

November 2007.

9. d’ Amato, S. Staab, N. Fanizzi, and F. Esposito, “Efficient discovery of services specified

in description logics languages”, In Proc. of SMR2 2007, vol. 243 of CEUR-WS, .pp. 15-

29, Busan, Korea, November 2007.

10. M. C. Jaeger, G. Rojec-Goldmann, G. Muhl, C. Liebetruth, and K. Geihs,“Ranked

Matching for Service Descriptions using OWL-S”, In Proc. of KiVS, p. 91-102 2005.

11. X. Dong, A. Halevy, J. Madhavan, E. Nemes, J. Zhang, “Similarity Search for Web

Services”, In Proc. of the 30th VLDB Conf., pp. 372-383 , Toronto, Canada, 2004,

12. D. Skoutas, A. Simitsis, T. Sellis, “A Ranking Mechanism for Semantic Web Service

Discovery”, in IEEE Congress on Services, pp. 41-48, Salt Lake City, UT, USA, 2007

13. Y. Wang and E. Stroulia, “Semantic Structure Matching for Assessing Web-Service

Similarity”, In Proceeding of ICSOC 2003, pp. 194-207, Trento, Italy, 2003.

14. Miller, G. (1995). WordNet: A lexical database for English. Communications of the ACM,

38(11) pp. 39-41

15. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman. Indexing by

Latent Semantic Analysis. Journal of the American Society of Information Science (1990),

41(6), 391-407

16. UDDI technical paper, http://www. uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

17. Web Services Description Language (WSDL) http://www.w3.org/TR/wsdl

18. Semantic Annotations for WSDL and XML Schema (SAWSDL)

http://www.w3.org/TR/2007/ REC-sawsdl- 20070828/

19. OWLS-TC, http://projects.semwebcentral.org/projects/ owls-tc/

20. E. Toch, A. Gal, I. Reinhartz-Berger, and D. Dori. A Semantic Approach to Approximate

Service Retrieval, to appear at ACM Transactions on Internet Technology, February 2008

http://www.oasis-open.org/home/index.php
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2007/%20REC-sawsdl-%2020070828/
http://projects.semwebcentral.org/projects/%20owls-tc/

	3.2 Background information: Latent Semantic Indexing

