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Abstract

This paper develops and verifies a streaming method for continuously clustering the helicopter turboshaft
engine’s gas temperature in front of the compressor turbine short-term fluctuations to assess the initial
stages of the first-stage turbine blade degradation connected to the compressor. The developed method
includes a signal quality control and imputation module, adaptive baseline detrending, local robust
normalization, multifunctional feature extraction in sliding windows, online dimensionality reduction,
and incremental clustering with exponential “forgetting” and dynamic component lifecycle management.
An expert-calibrated “cluster — physical degradation signature” map and an aggregated scalar metric
based on the assignments’ sliding fraction to a defective cluster are introduced for prompt alerting. The
method assesses the first-stage turbine blades’ degradations’ initial stages connected to the compressor.
The developed method was validated using TV3-117 engine flight data (1280 samples at 4 Hz) and
simulated scenarios (drift, transient spikes, increased noise, flatline, and regime change). Based on the
experimental results, a reproducible “defective” cluster signature was identified (increased window
average and increased short-term variability). The defective assignments’ sliding fraction consistently
exceeded the 0.20 empirical threshold in the degradation models, ensuring early and interpretable
warnings with a controlled false alarm rate.
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1. Introduction

It is known that helicopter turboshaft engines (TE) place high demands on the reliability and
accuracy of operating parameter monitoring, since the compressor and compressor turbine
component degradation directly affect thrust, fuel efficiency, and flight safety [1-3]. One of the
most informative indicators of engine condition is the gas temperature in front of the compressor
turbine, since its dynamics reflect changes in combustion modes, the blade’s aerodynamic
efficiency loss, and the possible formation of localized overheating [4-6]. Modern onboard sensors
record the temperature value every 2 seconds (sampling frequency of 0.5 Hz), which provides
sufficient resolution to capture short-term fluctuations accompanying the degradations’ initial
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stages but simultaneously creates a non-stationary and noisy time series large enough to require
special analysis methods [7, 8].

Traditional diagnostic approaches, such as [9, 10], often rely on thresholds, averaged values, or
periodic inspections, which hinders the early detection of slowly progressing defects and low-
amplitude anomalies manifested as short-term spikes or variable patterns. A flight mode instability,
the external conditions' influence, and the annotated data's lack of real failures make the task
particularly challenging. Methods with rigid model binding are either too sensitive to noise or lose
information content with frequent mode changes [11, 12]. In such conditions, a continuous, online-
oriented algorithm capable of identifying repetitive and rare patterns in streaming two-second data
appears to be a promising tool for increasing diagnostic sensitivity.

Based on the above, a method for continuous clustering of helicopter TE’s short-term gas
temperature fluctuations in front of the compressor turbine development is aimed at generating
robust, adaptive feature representations and cluster evolution metrics that link pattern distribution
changes to the compressor and turbine components’ physical degradation. The proposed approach
ensures early detection of deviations without the need for extensive tagging, increases resilience to
noise and temporal non-stationarity, and enables a transition from reactive to predictive
maintenance. Furthermore, it is noted that the research practical significance lies in the potential
reduction in operating costs and improved flight safety through the timely identification of the
compressor turbine blade degradation’s’ initial stages, thereby optimizing maintenance intervals.

2. Related Works

The importance of monitoring the gas temperature in front of the compressor turbine for
helicopter TE diagnostics has long been recognized, since its dynamics closely correlate with
changes in the gas-air tract (compressor performance, combustion efficiency, local overheating)
and it is often used as a key engine parameter [13]. This is the basis for both classical approaches to
detecting degradation (EGT margin, basic predictive models) [14-17] and modern data-driven
solutions [18-20].

Currently, there are three main areas of diagnostic approaches, which include thermodynamic
methods, such as [21, 22], and threshold algorithms, such as [23, 24], and statistical and machine
learning models used to construct a gas temperature values “baseline” and detect deviations.
Among them, popular ones are regression methods [25, 26], autoencoders [27, 28], decision trees
[29, 30], and boosting methods [31, 32], as well as complex digital twins [33] and deep neural
network architectures, including LSTM [34, 35], Transformer models [36, 37], and hybrid solutions,
such as [38-40], used to predict degradation and estimate the remaining service life. Recent studies
demonstrate the significant potential of digital twins and deep neural networks for accurately
modeling degradation processes. At the same time, these methods place increased demands on the
correct normalization of data and accounting for changes in operating modes.

One of the main challenges is the temporal variability of operating conditions (flight mode
changes, load changes, external conditions) and the low-amplitude presence, short-term bursts in
gas temperature, which traditional averaging methods and threshold detectors either ignore or
mistake for noise. Recent studies, such as [41-43], highlight the need for methods that are robust to
time-varying conditions. For example, spectral equalization normalization and self-tuning
preprocessing improve the neural networks training under changing conditions, but do not fully
solve the problem of identifying short, repeating patterns in data streams.

It is noted that in recent years, studies have appeared that use cluster analysis [44] and matrix
profile-based methods [45] to detect anomalies and recurring patterns in time series (including
cluster-aware modifications). These approaches are good for detecting typical patterns and local
anomalies without explicit labeling; however, most implementations are designed for batch
processing or focused on relatively long signal fragments (vibrations, power), rather than
streaming (online) processing of gas temperatures’ high-frequency short bursts with a 0.5 Hz



frequency. Furthermore, cluster-oriented matrix profile solutions rarely directly link cluster
evolution to the physical degradation of the helicopter TE compressor turbine blade.

Some recent studies, such as [46], propose adaptive neural network and hybrid methods for
local problems (signal reconstruction, adaptive predictive filtering), but empirical studies focusing
specifically on continuous clustering of two-second gas temperature flows and their interpretation
in helicopter TE compressor turbine blade degradation terms bremain insufficient. Furthermore,
measurement reliability issues (dual thermocouples, data gaps, signal reconstruction) under
helicopter flight conditions complicate the application of purely algorithmic solutions.

Thus, based on the above, a number of key unresolved issues have emerged, justifying the need
to develop a method for continuous clustering of gas temperature short-term fluctuations in
helicopter TE. Key among these is the need for reliable detection and stable extraction of low-
amplitude, short-term patterns amid significant fluctuations in operating conditions. Furthermore,
existing studies lack mechanisms for online adaptation to operating mode changes without
requiring full retrainability of models. Furthermore, it is necessary to consider the onboard
platform’s computational limitations, including limited resources and latency requirements, which
dictate the requirements for the solution’s computational efficiency. Finally, with a limited number
of labeled failure examples, semi- and unsupervised validation approaches are needed to assess the
cluster shift's significance for substantiating technical maintenance decisions.

Therefore, each of these issues cannot be addressed using existing batch, supervised, or “basic”
clustering approaches without specially developed online clustering mechanisms, adaptive
normalization, a cluster evolution tracking mechanism, and procedures for linking cluster changes
to physical degradation models. Therefore, developing a continuous clustering method focused on
helicopter TE two-second temperature flows for assessing compressor turbine blade degradation is
a pressing scientific and practical challenge.

3. Materials and Methods

The proposed method for continuous clustering of helicopter TE short-term temperature
fluctuations in front of the compressor turbine is formalized as a dataflow algorithm that accepts as
input a scalar time series of measurements x, = x(t,), where f, = t, + 2 - n with a sampling step of
At = 2 seconds. A window of m samples (window time T, = 2 - m seconds) and a sliding step s (in
samples) are introduced. Data flow processing is defined by the operation S, = {xn - m + 1, ..., x.}.
Primary preprocessing is reduced to baseline reconstruction and slow-time component
suppression, within which the baseline is estimated by an exponential moving average

b=ax,+(1—a)b, , (1)
and subtract it, obtaining the detrended signal X =x —b, . To ensure robustness to outliers,
robust normalization based on the median and MAD is used [47, 48]:

__x,—med,
" MAD, +€’
When data is missing, local imputation is applied, which is a linear interpolation or a model

regressor. When detecting “sticking” or artifacts, a zero-variance check is introduced for the
window. That is, if Var(S,) < 4, the signal is flagged as suspected sensor failure and reconstructed

med ,=median(S,), MAD,=median(|x—med,|), z )

by approximating the previous adequate windows. Each window S, is mapped into a feature space
R? with a feature set combining statistics, differential, and spectral characteristics. A typical feature
vector is represented as:
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where Hn:—‘z X, msi » 0o is the dispersion, y, K, are the asymmetry and excess
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average values, cvsf is the continuous wavelet transform scale coefficients vector.

are the gas temperature first and second derivatives over time

The cluster core is implemented as an incremental mixture of K components with parameters .
For assignment and updating, a stochastic gradient is used to maximize the Gaussian mixtures’
partial likelihood [49]. At the feature input step ¢, prior weights and responsibilities are calculated

as:
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The parameter update is performed with exponential forgetting A € (0, 1) as:
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The proposed mechanism ensures adaptation to the feature distribution’s evolution and the old
pattern’s forgetting. For non-degenerate distributions and automatic addition (or removal), the
component is supplemented with procedures for creating new clusters under low density
conditions:

quxN(d)[|uj’t,1,2j’t)<rnew. )

A new component is created with initial parameters
— — 42 —
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weak components are removed when N;; < 7. To reduce the sensitivity to the distribution’s
shape, it is permissible to use the density distance based on the Mahalanobis distance [50]:
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The anomalousness and associated degradation score are formulated as a hybrid score that takes
into account the distance from the nearest cluster, local density, and the change in cluster

occupancy rates over time. The anomalous score is defined as:
A(d)t):mjin(dj((pt))-exp(—B-log(nj’ﬁe)), (10)

where f > 0 scales the density contribution. To aggregate trends, a cluster share aggregation
window is introduced

e
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or, in discrete form,
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In the cluster evolution metric D (drift), the divergence between distributions in two adjacent
intervals is used:
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Degradation measurement is formalized through an expertly calibrated map of clusters and
physical condition. This is accomplished by introducing a “degradation signature” vector ; for the
Jj-th cluster, defined by statistical features (e.g., high p value, increased o value, spectral energy shift
to the high-frequency range), and an aggregated degradation assessment

Glt)=2 @ AP [t)(y, 1)+y-Dpylt), (14)
j=1

where AP(f) = P;; - P, w; are the weights determined by calibration (regression or Bayesian
approximation) and Ay, is the change in the mean in “hot” clusters. In the reference degradation
labels presence, it is possible to estimate the regression model

s(t)~p"d(T), ﬁ:argm;nZl(s<r),/ﬂ-®<r>)+A-Hﬁl

2 (15)

where &(1) is the aggregated cluster features set, and ¢ is the loss function (e.g., quadratic). It is
noted that the method is robust to noise due to several design features:

1. Robust normalization and detrending eliminate low-frequency noise.
Including scaling coefficients and wavelet energies in the feature space facilitates the short-
term spikes separation from background fluctuations.

3. Exponential forgetting A allows the algorithm to adapt to long-term mode changes without
retraining.

4. The procedures for creating or removing components provide mode “memory” and
automatic adjustment of the clusters’ number.

To detect sensor failures, smoothness and autocorrelation statistics are additionally calculated
based on the condition that if ACF (S, 1) ~ 1 and o is close to zero, the window is marked as
suspicious and excluded from the contributions P;, until the signal quality is confirmed.

The sensitivity and convergence analytical assessment is based on the fact that for a streaming
gas temperature signal with a fine step 7, the parameter estimates satisfy a stochastic
approximation to the mixture maximum likelihood, assuming stationarity of the local interval. It is
also noted that the adaptation rate is determined by A and the effective samples’ generalized size
eff:ﬁ' (16)

The computational complexity estimate per incoming milestone is based on computing the
densities for all K components, which requires O(K - &) for storing and inverting covariances (or
OK - d) for diagonal approximation of X). Memory is then limited to O(K - ). Practical

recommendations include choosing d < m via feature selection or streaming PCA (online Oja [51]),
where the principal component update is given by Oja’s rule:

wt+1:wt+nt.((Pt_wt.(wtr.qst))' (17)

The developed methods’ validation involves modeling the gas temperature values’ degradation

N

(with a linear or exponential shift of the mean and an increase in variance), injecting short-term
anomalies, and validating on historical flight data with expert labeling. Evaluation metrics include



detection (average detection delay A), precision and recall, ROC-AUC for A(¢) rates, and the cluster
structure (Silhouette, Adjusted Rand Index [52-54]) stability in the labeled intervals presence.

Thus, based on the above, Table 1 presents an algorithm for continuous clustering of short-term
fluctuations in the helicopter TE gas temperature, including successive stages of streaming data
reception, quality control and signal recovery, adaptive detrending and robust normalization, a
window representation formation and a multifunctional feature extraction, online dimensionality
reduction, incremental clustering with cluster life cycle management, the anomaly scoring
calculation and the cluster structure evolution, as well as procedures for matching cluster
signatures with physical signs of degradation and regulating alerts for assessing the turbine and

compressor blades' condition.

Table 1

The training dataset fragment

Number Step name Short description (step function) Output (note)
1 Input data and Continuous reception of scalar Sliding window buffer,
streaming reading data and buffering for sliding time metadata, provides a
windows. deterministic stream.

2 Signal quality Detection of gaps, artifacts, and Filtered or labeled signal,
control and measurement anomalies, suspicious fragments
restoration imputation, or bad window marked.

marking.

3 Baseline extraction Adaptive estimation of the mode’s Detrended time series,

and detrending slow-time component and its ready for local analysis.
removal to highlight short-term
fluctuations.
4 Robust Local statistically robust Normalized window
normalization normalization within a window to fragments with reduced
suppress outliers and account for impact of outliers.
regime transitions.

5 Window Formation of fixed and/or multi-  \windows ready sequence
generation scale windows for subsequent for feature generation.

feature extraction.

6 Feature extraction ~ Feature set generation (statistics,  Feature vectors for each

instantaneous dynamics, spectral- window.
wavelet characteristics,
embedding dynamics, etc.).
7 Stream An online PCA or streaming Compressed feature
dimensionality feature selection use for representation, reduced
reduction dimensionality control and computational load.
computational acceleration.

8 Incremental A streaming clustering algorithm An up-to-date cluster

clustering with exponential forgetting for =~ model and assignments for

updating cluster parameters in
real time.

incoming windows.
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Cluster lifecycle
management

Anomaly
assessment and
scoring

Cluster evolution
monitoring

Physical signature
matching

Decision rules and
alerts

Fault tolerance and
resource
management

Adaptive
calibration

Validation and
reporting

Mechanisms for creating new
clusters when new patterns
appear and removing
(aggregating) obsolete clusters.

Calculation of anomaly rates
based on cluster distance, density,
and population frequency
changes.

Tracking assignment
distributions, parameter drift, and
stability metrics over time.

alibration and maintenance of a
“cluster-physical degradation
signature” correspondence map
for interpretation.

Formalization of thresholds,
aggregation rules, or learnable
criteria for generating diagnostic
alerts.

Sensor failure detection,
computation redundancy, and
load adaptation to onboard
limitations.

Periodic or event-driven
adjustments to map parameters
and weights based on expert
annotation.

Quality metrics collection
(detection delay, precision, recall,
cluster stability) and report
generation for maintenance
regulation.

Dynamically changing
number of clusters, model
drift-resistant.

Anomaly rates for each
window, input for alert
rules.

Time series of cluster
shares and drift metrics.

Correspondence map,
interpretable degradation
indicators.

Diagnostic and predictive
alerts, indicators for TR.

Computational
degradation modes,
unreliable data flagging.

Updated calibration
parameters, false positives
(false negatives) reduction.

Reports and metrics sets
for performance
evaluation and operational
decision-making.

Thus, a streaming method for the short-term fluctuations’ continuous clustering in the
helicopter TE gas temperature in front of the compressor turbines with a 0.5 Hz sampling
frequency is proposed. This method includes robust preprocessing and detrending, multifunctional
feature extraction, online dimensionality reduction, and incremental clustering with cluster

lifecycle management for adaptation to operating mode transitions. The method provides a scalar
anomaly estimate and an aggregated degradation metric, coupled with an expertly calibrated
“cluster — physical signature” map, enabling early detection of turbine and compressor blade wear
signs under limited onboard computing resources.



4. Case study and discussions

In this study, a numerical experiment was conducted using the developed method on the helicopter
TE thermal dynamics under nominal conditions. The gas temperature in front of the compressor
turbine Tq(f), a real measurement series of the TV3-117 engine recorded by a standard onboard
sensor on a production Mi-8MTV helicopter (Figure 1), was used. The sensor is a set of 14 dual
chrome-alumel thermocouples of the T-102 type [55-57]. It is noted that the tests were carried out
at the 2500-meter altitude under standard atmospheric conditions (air temperature ~ 268 K,
pressure ~ 74 kPa). Signals were recorded at the At = 0.25 second interval (sampling frequency
4 Hz) for 320 seconds, which provided a 1280 readings sample.

mper re dynami
1120 G?ste pel ature lynamics

Gas Temperature, K

1110
0
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Time, s
Figure 1: Diagram of the TV3-117 engines’ gas temperature in front of the compressor turbine
dynamics (initial diagram for forming the initial dataset). (author's development).

It is noted that Figure 1 shows a TV3-117 engine’s gas temperatures in front of the compressor
turbine time series with a 4 Hz sampling rate over a 0 to 320 seconds’ range. The series’ average
temperature is approximately 1115 K, with measurements ranging from approximately 1090 to
1140 K. Against a weak low-frequency modulating trend background, a distinct high-frequency
component is present, consisting of short-term oscillations with a typical amplitude of
approximately 2 K and a characteristic period of approximately 5 seconds, manifested as regular
“high-frequency” bursts.

A signal’s pre-processing was performed by the onboard controller, and a two-stage filter was
used to suppress interference. This filter included initial smoothing using the Savitzky-Golay
method with an 11-sample window and a third-order polynomial. Outliers were then removed
using a 30 criterion, with gaps restored using linear interpolation. Systematic error correction
took into account the thermocouples’ calibration characteristics (with an error of no more than 1.5
K) and a correction for flow velocities up to 20 m/s. Gas temperature values were also normalized
to a single scale using z-normalization:

1 N
6.~ 2 To..
z(Tg)= =1 (18)
T 01N g
ﬁ'; (Tcms_ﬁ'; Tcms)

where T(Gi] is the i-th gas temperatures in front of the compressor turbine value recorded by

meas

the helicopter’s standard sensor. Based on the above, normalized gas temperatures in front of the
compressor turbine values hear were used to form the training dataset. This datasets’ fragment is
presented in Table 2.



Table 2
The training dataset fragment

Time, second Gas temperature raw value, K Gas temperature normalized value

0 11154 0,22527
40,031 1114,32 -0,44639
80,063 1115,25 0,13131
120,094 1115,12 0,05338
160,125 1115,03 -0,00612
199,906 1114,79 -0,15358
239,937 1115,22 0,11499
279,969 1115,77 0,45942
320 1114,74 -0,18315

To assess the training datasets’ homogeneity, traditional metrics were used, including the
number of observations, the mathematical expectation X and standard deviation o, the skewness
(SK) and kurtosis (KE) coefficients, the Shapiro-Wilk test (W and p-value) to check the
distributions’ normality, the Augmented Dickey-Fuller (Ay) and KPSS stationarity tests, the
Ljung-Box Q(h) test to identify autocorrelation, the Durbin-Watson (DW) statistic to assess the
autocorrelation of residuals after detrending, the Levene test (W) to compare variances between
segments, as well as segmental analysis of means and variances over equal sampling intervals
[58-60]:

2= oz 1Y (xoxf sk =k 3 [ KX Ckp=L.3[AE)
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where x(i) are ordered values, and the coefficients a; depend on the expected values of the order
statistics of the normal distribution, test hypothesis Hy: y = 0 (a unit root presence); model
Y = n + & where r, is a random walk, p, is the estimated autocorrelation function,
Z,=x;=%,
Table 3 presents the training dataset’s homogeneity evaluation numerical results, which include
the sample size, the main moments of the distribution (mathematical expectation, standard
deviation, skewness, and kurtosis coefficients), the statistical tests results for normality,
stationarity, and autocorrelation (Shapiro-Wilk, ADF, KPSS, Ljung-Box, and Durbin—-Watson), and
the test for variances equality (Levene) with the corresponding statistics and p-values.

; X, isthe median of the j-th group.

Table 3
The training dataset fragment
Metric Value
Number of samples 1280
Mean, K 1115,4
Std (population), K 1,994
Skewness -0,119
Excess kurtosis 0,285
Shapiro-Wilk (W) 0,994
Shapiro p-value 0,00001
ADF statistic -6,080
ADF p-value 0
KPSS statistic 0,538
KPSS p-value 0,017
Ljung-Box Q(10) 110,558
Ljung-Box p-value 0
Durbin-Watson 0,320
Levene (W) (4 segments) 0,215
Levene p-value 0,837

According to Table 3, the training set is characterized by a mean of approximately 1115,43
Kelvin and a relatively small population variance (o ~ 1,99 K). The skewness and kurtosis
coefficients are close to zero, indicating that the distribution is close to normal. However, formal
tests of normality yield conflicting results. The Shapiro-Wilk test rejects normality for the given
sample (low p-value), while the distributions’ moments are nearly symmetrical, which is a typical
effect of large data datasets, in which small deviations from normality become statistically
significant. Stationarity tests yield mixed results, according to which the ADF indicates a unit root
(stationarity) absence, while the KPSS detects a possible deviation from stationarity, indicating the
presence of a weak low-frequency trend or structural drift requiring detrending. The



Durbin-Watson statistic low value and the significant Ljung-Box test indicate a pronounced
autocorrelation in the series. At the same time, the Levene test does not reveal statistically
significant differences in variances between quartile segments, which confirms the relative
homogeneity of the variance component over time.

In addition, Table 4 presents the dataset segmental analysis results across four equal intervals,
namely, each segment’s readings’ initial and final indices, the average gas temperature level
estimated values (Mean, K), and the corresponding variances (Var, K), which allow us to estimate
the series’ first and second moments’ temporal homogeneity.

Table 4
The training dataset fragment
Segment Start_idx End idx Mean, K Var, K
1 0 319 1115,5 1,702
2 320 639 1115,3 2,049
3 640 959 11154 2,084
4 960 1279 1115,3 1,799

Segment analysis (Table 4) shows that the estimated mean temperature levels in all four equal
intervals are close to each other (the means spread does not exceed ~ 0,26 K), indicating a stable
baseline signal level and the absence of large-scale changes in operating modes in the observation
interval under consideration. Segment variances are also within a narrow range (~ 1,70...2,08 K2),
while the observed minor increases in variability in the second and third segments indicate a local
increase in short-term fluctuations rather than a systematic change in noise or a level shift. Taken
together, these results confirm the time series’ first and second moments’ relative homogeneity,
simultaneously emphasizing the need to apply locally adaptive normalization procedures and
account for the variance of temporal variability when constructing stream clustering.

A study was conducted on continuous clustering of short-term fluctuations in exhaust gas
temperature for a controlled scenarios set:

Nominal mode.
Increased noise level.
Slow average level drift.
Transient spikes.

Sensor “flatline” artifacts.
Regime change.

IR e

For each scenario, sliding window preprocessing, multifunctional feature extraction, streaming
clustering, and cluster share evolution analysis were implemented to assess the method’s
sensitivity, robustness, and early detection of degradation indicators. The studies’ results are
shown in Figure 2.

The PCA projection shown in Figure 2a shows three relatively compact point clouds with
partial overlap. One cluster is noted to occupy the central-lower region, while the other two are
shifted to the left and upward along the PC axes. The resulting clustering structure indicates the
presence of reproducible local patterns in the feature space under the nominal conditions.
However, the projection shown in Figure 2b shows a noticeable expansion of the cluster clouds and
an increase in overlapping zones, with one component acquiring a more extended distribution in
the PC1 direction. The obtained clustering results indicate a decrease in cluster separability with
increasing noise levels. The resulting clustering projection shown in Figure 2c demonstrates a



cluster’s shift and partial separation along the PC axes. It is also noted that the clouds are partially
located along the directional gradient of PC1, which is consistent with a slow trend presence in the
features. The obtained results indicate that gradual changes in the mode manifest themselves as
smooth motion in the feature space and can be detected by monitoring centroids or drift metrics.
Figure 2d clearly shows individual outliers and distinct groups separated from the main body of
observations. It is noted that these outliers form distinct clusters or tail branches in the projection.
This behavior confirms the feature set's ability to identify short-term, high-amplitude events but
also highlights the false-positive risk interpretations without additional aggregation logic based on
duration and frequency of events. The PCA projection shown in Figure 2e contains a “compact
dense cloud” corresponding to background variability and a separate compact cluster, which is a
set of points separated in the feature space. The resulting cluster separation is consistent with the
sensor’s “sticking” period. It is noted that this distribution requires the diagnostic signal quality
criteria to be used to distinguish true physical modes from measurement artifacts and to exclude
artifactual clusters from the training set. The projection shown in Figure 2f reveals two adjacent
but distinct regions, one of which contains dense clusters, while the other contains points shifted
along PC1, which correlates with the modeled mean shift. The resulting cluster topology indicates
the possibility of detecting mode changes based on distribution changes in the feature space and
justifies the use of thresholds for changes in cluster proportions or centroid shift monitoring for
rapid alerting.

PCA cluster projection
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Figure 2: The gas temperature in front of the compressor turbine parameter values clustering
results using the developed method: (a) Nominal mode; (b) Increased noise level; (c) Drift; (d)
Transient spikes; (e) Flatline; (f) Regime change (author's development).

Based on the gas temperature in front of the compressor turbine parameter clustering,
corresponding diagrams were obtained, which show characteristic patterns associated with a defect
in the compressor turbine blades (Figure 3).

Thus, as a result of the developed continuous clustering method’s experimental
implementations, a defect detection in a first-stage turbine blade directly related to the compressor
drive (the first turbine stage blade driving the compressor) is accomplished by identifying
persistent or repeating assignments of sliding window feature vectors to a single cluster. This



“defective” cluster’s centroid is characterized by an elevated average window temperature and
increased short-term variability, which corresponds to the physical mechanisms of localized
overheating. In this context, the proposed defect types include fatigue or impact cracks in the
leading edge and root joint, the working surfaces’ erosive abrasion, and the protective coatings’
localized loss (coating spallation), as well as an increase in the gap between the blade tip and the
guide vanes due to wear. All of these defects lead to the heat transfers’ localized deterioration and
the short-term “hot” events formation in the TG field. In feature space, this manifests as a separate,
partially distant point cloud in the PCA projection, while in the time domain, it manifests as a
short-term spike’s series and a subsequent increase in the assignments proportion to the
“defective” cluster. For operational detection, a scalar indicator representing an assignment’s
sliding proportion to the defective cluster was used, with a 0.20 empirical threshold. Exceeding this
threshold over a certain number of sliding steps is considered a warning trigger. The proposed
approach provides a balance between sensitivity and robustness to single outliers but requires
explicitly adjusting the threshold based on historical degradation markers and accounting for the
detection time delay due to the window length and aggregation step. It has been analytically
shown that individual short-term spikes can generate false positives without additional logic for
aggregation by frequency and duration of events, and a shift in the operating mode (drift or regime
change) generates a centroids’ smooth movement in the feature space, which requires the
detrending [61] or exponential “forgetting” [62] use during the cluster’s online updating.
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Figure 3: Results of compressor turbine defect detection based on the gas temperature in front of
the compressor turbine parameters’ values clustering: (a) Time series with highlighted windows
assigned to the “defective” cluster; (b) The feature’s PCA projection space with the highlighted
defect cluster and the centroid’s location; (c) The assignments proportion time series to the
“defective” cluster with the alert threshold (author's development).

A comparative analysis (Table 5) shows that the developed streaming continuous clustering
method occupies a practical niche between simple physical threshold approaches and resource-
intensive deep learning models. The developed methods’ application provides high potential for
early detection of short-term patterns while being operationally compatible with online processing,
while requiring minimal labeling and moderate computational costs.

Table 5
The comparative analysis results
Online Early Marking Noise Computational
Method . : . .
capability  detection required Resistance Cost
Developed streaming High High Low (semi- or ~ Average Medium
clustering method unsupervised)
Physical threshold High Low No Low Low
schemes
Classical machine Medium  Medium Low- Average Medium
learning (regression, medium
autoencoders, boosting)
Deep networks (and Low High High Low- High
digital twins) (onboard)  (during average
training)
Matrix profile Medium High Low Average Medium
Batch clustering (offline Low Low Low Low Low

Kmeans, GMM)




According to Table 5, the developed method’s advantages over its closest analogues include
adaptability to mode drift and interpretability through matching cluster signatures with physical
degradation markers. These advantages are offset by moderate robustness to high noise levels and
the need for signal quality control modules. It is noted that traditional threshold schemes are
simple and interpretable but ineffective for short-term events. Deep models demonstrate high
accuracy with large labeled datasets but are inapplicable to resource-constrained onboard
electronics without significant optimization.

Based on the above, the practical recommendation is to use streaming clustering as an
operational screening method, followed by verification through physical and statistical tests. In the
labeled precedents’ presence, it is necessary to use a retrospective confirmation model (DNN,
digital twin [62-65]) to improve accuracy and reduce the false positive proportion.

It is also noted that the developed methods’ practical limitations are related to the features and
the clustering algorithm selected sets’ sensitivity to the noise level and sensor artifacts (flatlines,
sticking, etc.). Therefore, its implementation should include signal quality control procedures
(dispersion and autocorrelation checks, flatline detection) and a cluster verification module using
physically interpretable indicators (temperature markers, blade distribution, diagnostic
measurements), as well as a calibration step on labeled degradation examples to evaluate ROC
curves, select the optimal threshold, and determine the minimum warning stability time.
Implementation into an onboard monitoring system requires preliminary sensitive parameter
analysis (window length, step size, number of clusters, and fraction threshold), testing on synthetic
defect injections, and adaptive recalibration procedure development for changing operating modes,
taking into account computational limitations and latency requirements.

Thus, the streaming clustering with cluster lifecycle management and a physically based
“cluster — defect” map combination is an important technical contribution, enabling early, robust,
and interpretable detection of the helicopter TE compressor turbine blades degradations’ initial
stages within the onboard computing platforms’ limitations.

5. Conclusions

A streaming method for continuous clustering of short-term gas temperature in front of the
compressor turbine fluctuations of helicopter turboshaft engines has been developed, focused on
streaming two-second measurements. The developed method consists of a processing pipeline.
There are quality control and imputation, adaptive baseline detrending, robust local normalization,
sliding window generation, multifunctional feature extraction (statistical moments, difference
characteristics, short-term spectral-wavelet components), streaming dimensionality reduction, and
incremental clustering with exponential “forgetting” and dynamic component lifecycle
management. To translate statistical inferences into diagnostic solutions, an expert-calibrated
“cluster <> physical degradation signature” map and an aggregated scalar degradation metric based
on changes in the cluster assignments proportions are proposed. The developed method introduces
several modification elements to ensure a balance between sensitivity to short-term patterns and
robustness to single outliers:

1. A robust detrending and local MAD normalization integration for robustness to regime
shifts.

2. A streaming clustering scheme with dynamic component creation or deletion mechanisms
and exponential forgetting, ensuring adaptation to regime shift without batch retraining.

3. A combined anomaly score that takes into account the distance to the cluster centroid,
cluster density, and cluster population rate variations.

4. Aggregation logic based on the assignment’s sliding proportion to a defective cluster to
reduce the number of false positives.



The developed method was validated using a real set of TV3-117 engine compressor turbine gas
temperature measurements (Mi-8MTV flight recordings, 1280 samples at 4 Hz after preprocessing)
and simulated scenarios, such as nominal mode, increased noise, slow drift, transient spikes, flatline
artifacts, and mode transitions. The experiment revealed a reproducible “cluster” signature
associated with the first-stage rotor blade degradations’ initial stage. A defective cluster’s centroid
is characterized by an elevated average window temperature and increased short-term variability,
forming a partially distant cloud in the PCA projection, while in the time domain, a short-term
“hot” spike series and an increase in the assignments proportion are formed. The practical
detection trigger is implemented as the defective assignments’ sliding proportion excess above a
0.20 empirical threshold over a minimum number of windows. This criterion’s introduction
demonstrated the developed methods’ ability to detect degradation departments earlier than
traditional packet or threshold schemes, with acceptable resistance to single noise pulses.
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