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Abstract
This paper develops and verifies a streaming method for continuously clustering the helicopter turboshaft 
engine’s gas temperature in front of the compressor turbine short-term fluctuations to assess the initial  
stages of the first-stage turbine blade degradation connected to the compressor. The developed method 
includes  a  signal  quality  control  and  imputation  module,  adaptive  baseline  detrending,  local  robust 
normalization,  multifunctional feature extraction in sliding windows,  online dimensionality reduction, 
and incremental clustering with exponential “forgetting” and dynamic component lifecycle management.  
An expert-calibrated “cluster → physical degradation signature” map and an aggregated scalar metric 
based on the assignments’ sliding fraction to a defective cluster are introduced for prompt alerting. The 
method assesses the first-stage turbine blades’ degradations’ initial stages connected to the compressor.  
The  developed  method  was  validated  using  TV3-117  engine  flight  data  (1280  samples  at  4  Hz)  and  
simulated scenarios (drift, transient spikes, increased noise, flatline, and regime change). Based on the  
experimental  results,  a  reproducible  “defective”  cluster  signature  was  identified  (increased  window 
average and increased short-term variability).  The defective assignments’  sliding fraction consistently 
exceeded  the  0.20  empirical  threshold  in  the  degradation  models,  ensuring  early  and  interpretable 
warnings with a controlled false alarm rate.
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1. Introduction

It  is  known that  helicopter  turboshaft engines (TE)  place high demands on the reliability  and 
accuracy  of  operating  parameter  monitoring,  since  the  compressor  and  compressor  turbine 
component degradation directly affect thrust, fuel efficiency, and flight safety [1–3]. One of the 
most informative indicators of engine condition is the gas temperature in front of the compressor 
turbine,  since  its  dynamics  reflect  changes  in  combustion  modes,  the  blade’s  aerodynamic 
efficiency loss, and the possible formation of localized overheating [4–6]. Modern onboard sensors  
record the temperature value every 2 seconds (sampling frequency of  0.5  Hz),  which provides  
sufficient  resolution  to  capture  short-term fluctuations  accompanying  the  degradations’  initial 
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stages but simultaneously creates a non-stationary and noisy time series large enough to require 
special analysis methods [7, 8].

Traditional diagnostic approaches, such as [9, 10], often rely on thresholds, averaged values, or 
periodic inspections,  which hinders the early detection of  slowly progressing defects  and low-
amplitude anomalies manifested as short-term spikes or variable patterns. A flight mode instability, 
the external  conditions'  influence,  and the annotated data's  lack of  real  failures make the task 
particularly challenging. Methods with rigid model binding are either too sensitive to noise or lose  
information content with frequent mode changes [11, 12]. In such conditions, a continuous, online-
oriented algorithm capable of identifying repetitive and rare patterns in streaming two-second data 
appears to be a promising tool for increasing diagnostic sensitivity.

Based  on  the  above,  a  method for  continuous  clustering  of  helicopter  TE’s  short-term gas 
temperature fluctuations in front of the compressor turbine development is aimed at generating 
robust, adaptive feature representations and cluster evolution metrics that link pattern distribution 
changes to the compressor and turbine components’ physical degradation. The proposed approach 
ensures early detection of deviations without the need for extensive tagging, increases resilience to 
noise  and  temporal  non-stationarity,  and  enables  a  transition  from  reactive  to  predictive 
maintenance. Furthermore, it is noted that the research practical significance lies in the potential  
reduction in operating costs and improved flight safety through the timely identification of the 
compressor turbine blade degradation’s’ initial stages, thereby optimizing maintenance intervals.

2. Related Works

The  importance  of  monitoring  the  gas  temperature  in  front  of  the  compressor  turbine  for 
helicopter  TE  diagnostics  has  long  been  recognized,  since  its  dynamics  closely  correlate  with 
changes in the gas-air tract (compressor performance, combustion efficiency, local overheating) 
and it is often used as a key engine parameter [13]. This is the basis for both classical approaches to 
detecting  degradation  (EGT margin,  basic  predictive  models)  [14–17]  and  modern  data-driven 
solutions [18–20].

Currently, there are three main areas of diagnostic approaches, which include thermodynamic 
methods, such as [21, 22], and threshold algorithms, such as [23, 24], and statistical and machine 
learning  models  used  to  construct  a  gas  temperature  values  “baseline”  and  detect  deviations. 
Among them, popular ones are regression methods [25, 26], autoencoders [27, 28], decision trees 
[29,  30],  and boosting methods [31, 32],  as well as complex digital twins [33] and deep neural 
network architectures, including LSTM [34, 35], Transformer models [36, 37], and hybrid solutions, 
such as [38–40], used to predict degradation and estimate the remaining service life. Recent studies  
demonstrate  the significant  potential  of  digital  twins  and deep neural  networks for  accurately 
modeling degradation processes. At the same time, these methods place increased demands on the 
correct normalization of data and accounting for changes in operating modes.

One of  the main challenges is  the temporal  variability of  operating conditions (flight mode 
changes, load changes, external conditions) and the low-amplitude presence, short-term bursts in 
gas temperature,  which traditional averaging methods and threshold detectors either ignore or 
mistake for noise. Recent studies, such as [41–43], highlight the need for methods that are robust to 
time-varying  conditions.  For  example,  spectral  equalization  normalization  and  self-tuning 
preprocessing improve the neural networks training under changing conditions, but do not fully 
solve the problem of identifying short, repeating patterns in data streams.

It is noted that in recent years, studies have appeared that use cluster analysis [44] and matrix  
profile-based methods [45] to detect anomalies and recurring patterns in time series (including 
cluster-aware modifications). These approaches are good for detecting typical patterns and local 
anomalies  without  explicit  labeling;  however,  most  implementations  are  designed  for  batch 
processing  or  focused  on  relatively  long  signal  fragments  (vibrations,  power),  rather  than 
streaming  (online)  processing  of  gas  temperatures’  high-frequency short  bursts  with  a  0.5  Hz 



frequency.  Furthermore,  cluster-oriented  matrix  profile  solutions  rarely  directly  link  cluster 
evolution to the physical degradation of the helicopter TE compressor turbine blade.

Some recent studies, such as [46], propose adaptive neural network and hybrid methods for 
local problems (signal reconstruction, adaptive predictive filtering), but empirical studies focusing 
specifically on continuous clustering of two-second gas temperature flows and their interpretation 
in helicopter TE compressor turbine blade degradation terms bremain insufficient. Furthermore, 
measurement  reliability  issues  (dual  thermocouples,  data  gaps,  signal  reconstruction)  under 
helicopter flight conditions complicate the application of purely algorithmic solutions.

Thus, based on the above, a number of key unresolved issues have emerged, justifying the need 
to  develop  a  method  for  continuous  clustering  of  gas  temperature  short-term  fluctuations  in 
helicopter TE. Key among these is the need for reliable detection and stable extraction of low-
amplitude, short-term patterns amid significant fluctuations in operating conditions. Furthermore, 
existing  studies  lack  mechanisms  for  online  adaptation  to  operating  mode  changes  without 
requiring  full  retrainability  of  models.  Furthermore,  it  is  necessary  to  consider  the  onboard 
platform’s computational limitations, including limited resources and latency requirements, which 
dictate the requirements for the solution’s computational efficiency. Finally, with a limited number 
of labeled failure examples, semi- and unsupervised validation approaches are needed to assess the 
cluster shift's significance for substantiating technical maintenance decisions.

Therefore, each of these issues cannot be addressed using existing batch, supervised, or “basic” 
clustering  approaches  without  specially  developed  online  clustering  mechanisms,  adaptive 
normalization, a cluster evolution tracking mechanism, and procedures for linking cluster changes 
to physical degradation models. Therefore, developing a continuous clustering method focused on 
helicopter TE two-second temperature flows for assessing compressor turbine blade degradation is  
a pressing scientific and practical challenge.

3. Materials and Methods

The  proposed  method  for  continuous  clustering  of  helicopter  TE  short-term  temperature 
fluctuations in front of the compressor turbine is formalized as a dataflow algorithm that accepts as 
input a scalar time series of measurements xn = x(tn), where tn = t0 + 2 · n with a sampling step of 
Δt = 2 seconds. A window of m samples (window time Tw = 2 · m seconds) and a sliding step s (in 
samples) are introduced. Data flow processing is defined by the operation Sn = {xn – m + 1, …, xn}. 
Primary  preprocessing  is  reduced  to  baseline  reconstruction  and  slow-time  component 
suppression, within which the baseline is estimated by an exponential moving average

bn=α⋅xn+(1−α )⋅bn−1                                                         (1)

and  subtract  it,  obtaining  the  detrended  signal  ~xn=xn−bn .  To  ensure  robustness  to  outliers, 

robust normalization based on the median and MAD is used [47, 48]:

medn=median(Sn) ,    MADn=median(|x – medn|) ,    zn=
xn−medn
MADn+ϵ

.                      (2)

When data is missing, local imputation is applied, which is a linear interpolation or a model 
regressor.  When  detecting  “sticking”  or  artifacts,  a  zero-variance  check  is  introduced  for  the 
window. That is, if Var(Sn) < δ, the signal is flagged as suspected sensor failure and reconstructed 
by approximating the previous adequate windows. Each window Sn is mapped into a feature space 
ℝd with a feature set combining statistics, differential, and spectral characteristics. A typical feature 
vector is represented as:

ϕ (Sn)=[μn , σ n2 , γn , κn ,max (Sn) ,min (Sn) ,
d xn
dt

,
d2 xn
d t2

, cvsf ],                            (3)



where  μn=
1
m
∙∑
i=1

m

xn−m+i ,  σn
2  is  the  dispersion,  γn,  κn are  the  asymmetry  and  excess 

coefficients,  
d xn
dt

 and  
d2 xn
d t2

 are  the gas  temperature first  and second derivatives  over  time 

average values, cvsf is the continuous wavelet transform scale coefficients vector.
The cluster core is implemented as an incremental mixture of K components with parameters . 

For assignment and updating, a stochastic gradient is used to maximize the Gaussian mixtures’  
partial likelihood [49]. At the feature input step ϕt, prior weights and responsibilities are calculated 
as:

r j , t=
π j , t−1 ∙ N (ϕt|μ j , t−1 , Σ j , t−1)

∑
k=1

K

π k , t−1 ∙ N (ϕt|μk , t−1 , Σk , t−1)
.                                              (4)

The parameter update is performed with exponential forgetting λ ∈ (0, 1) as:

N j , t=λ ∙ N j , t−1+r j , t , μ j , t=
λ ∙ N j , t−1 ∙ μ j , t−1+r j , t ∙ ϕt

N j , t

,

Σ j , t=
λ ∙ N j , t−1 ∙ Σ j , t−1+r j , t ∙ (ϕt−μ j , t ) ∙ (ϕt−μ j , t )

⊤

N j , t

+ε ∙ I .                              (5)

A priori weights are normalized as:

π j , t=
N j , t

∑
k

N k , t

.                                                               (6)

The proposed mechanism ensures adaptation to the feature distribution’s evolution and the old 
pattern’s  forgetting.  For  non-degenerate distributions  and automatic  addition (or  removal),  the 
component  is  supplemented  with  procedures  for  creating  new  clusters  under  low  density 
conditions:

max
j
N (ϕt|μ j , t−1 , Σ j , t )<τ new .                                                    (7)

A new component is created with initial parameters

μnew=ϕt , Σnew=σ n
2 ∙ I , N new=N 0 ,                                                (8)

weak components are removed when  Nj,t <  τdel. To reduce the sensitivity to the distribution’s 
shape, it is permissible to use the density distance based on the Mahalanobis distance [50]:

d j (ϕt )<√(ϕt−μ j , t )
⊤ ∙ Σ j , t

−1 ∙ (ϕt−μ j , t ) .                                            (9)

The anomalousness and associated degradation score are formulated as a hybrid score that takes 
into  account  the  distance  from  the  nearest  cluster,  local  density,  and  the  change  in  cluster 
occupancy rates over time. The anomalous score is defined as:

A (ϕt )=min
j

(d j (ϕt )) ∙exp (−β ∙ log (π j , t+ε )) ,                                  (10)

where  β > 0 scales the density contribution. To aggregate trends, a cluster share aggregation 
window is introduced

P j (τ )= 1
T
∙∫
t−τ

t

l {assign (ϕs)= j}ds ,                                           (11)

or, in discrete form,

P j , t=
1
W
∙ ∑
i=t−W +1

t

l {argmaxk (rk , i)= j}.                                        (12)



In the cluster evolution metric  D (drift), the divergence between distributions in two adjacent 
intervals is used:

D (t1 , t2)=KL( pΘ (t1)‖pΘ (t2))=∑
j=1

K

π j , t1
∙ log( π j , t1

π j , t2
)+ 12×

×∑
j

(tr (Σ j , t2

−1 ∙ Σ j , t1)+(μ j , t2−μ j , t1)
⊤ ∙ Σ j , t2

−1 ∙(μ j , t2−μ j , t1)−d) .                          (13)

Degradation measurement is  formalized through an expertly calibrated map of  clusters and 
physical condition. This is accomplished by introducing a “degradation signature” vector ψj for the 
j-th cluster, defined by statistical features (e.g., high μ value, increased σ value, spectral energy shift 
to the high-frequency range), and an aggregated degradation assessment

G (t )=∑
j=1

K

ω j ∙ ∆ P j (t ) ∙ ⟨ψ j ,1⟩+γ ∙∆ μhot (t ) ,                                        (14)

where ΔPj(t) =  Pj,t −  Pj,t-τ,  ωj are the weights determined by calibration (regression or Bayesian 
approximation) and Δμhot is the change in the mean in “hot” clusters. In the reference degradation 
labels presence, it is possible to estimate the regression model

s(t )≈β τ⋅Φ(T ) ,    β=argmin
β
∑
t

l (s (t ) , β⊤ ∙Φ (t ))+ λ ∙‖β‖2
2
,                          (15)

where Φ(t) is the aggregated cluster features set, and ℓ is the loss function (e.g., quadratic). It is 
noted that the method is robust to noise due to several design features:

1. Robust normalization and detrending eliminate low-frequency noise.
2. Including scaling coefficients and wavelet energies in the feature space facilitates the short-

term spikes separation from background fluctuations.
3. Exponential forgetting λ allows the algorithm to adapt to long-term mode changes without 

retraining.
4. The  procedures  for  creating  or  removing  components  provide  mode  ”memory”  and 

automatic adjustment of the clusters’ number.

To detect sensor failures, smoothness and autocorrelation statistics are additionally calculated 
based on the condition that if ACF (Sn, 1) ≈ 1 and σn

2  is close to zero, the window is marked as 

suspicious and excluded from the contributions Pj,t until the signal quality is confirmed.
The sensitivity and convergence analytical assessment is based on the fact that for a streaming 

gas  temperature  signal  with  a  fine  step  η,  the  parameter  estimates  satisfy  a  stochastic 
approximation to the mixture maximum likelihood, assuming stationarity of the local interval. It is 
also noted that the adaptation rate is determined by λ and the effective samples’ generalized size

N eff=
1
1−λ

.                                                                    (16)

The computational  complexity  estimate  per  incoming milestone is  based on computing the 
densities for all  K components, which requires O(K ·  d2) for storing and inverting covariances (or 
O(K ·  d)  for  diagonal  approximation  of  Σj).  Memory  is  then  limited  to  O(K ·  d2).  Practical 
recommendations include choosing d ≪ m via feature selection or streaming PCA (online Oja [51]), 
where the principal component update is given by Oja’s rule:

ωt+1=ωt+ηt ∙(ϕt−ωt ∙(ωt
⊤ ∙ ϕt )) .                                                  (17)

The developed methods’ validation involves modeling the gas temperature values’ degradation 
(with a linear or exponential shift of the mean and an increase in variance), injecting short-term 
anomalies, and validating on historical flight data with expert labeling. Evaluation metrics include 



detection (average detection delay ∆), precision and recall, ROC-AUC for A(ϕ) rates, and the cluster 
structure (Silhouette, Adjusted Rand Index [52–54]) stability in the labeled intervals presence.

Thus, based on the above, Table 1 presents an algorithm for continuous clustering of short-term 
fluctuations in the helicopter TE gas temperature, including successive stages of streaming data 
reception, quality control and signal recovery, adaptive detrending and robust normalization, a 
window representation formation and a multifunctional feature extraction, online dimensionality 
reduction,  incremental  clustering  with  cluster  life  cycle  management,  the  anomaly  scoring 
calculation  and  the  cluster  structure  evolution,  as  well  as  procedures  for  matching  cluster 
signatures with physical signs of degradation and regulating alerts for assessing the turbine and 
compressor blades' condition.

Table 1
The training dataset fragment

Number Step name Short description (step function) Output (note)

1 Input data and 
streaming reading

Continuous reception of scalar 
data and buffering for sliding 

windows.

Sliding window buffer, 
time metadata, provides a 

deterministic stream.

2 Signal quality 
control and 
restoration

Detection of gaps, artifacts, and 
measurement anomalies, 

imputation, or bad window 
marking.

Filtered or labeled signal, 
suspicious fragments 

marked.

3 Baseline extraction 
and detrending

Adaptive estimation of the mode’s 
slow-time component and its 

removal to highlight short-term 
fluctuations.

Detrended time series, 
ready for local analysis.

4 Robust 
normalization

Local statistically robust 
normalization within a window to 
suppress outliers and account for 

regime transitions.

Normalized window 
fragments with reduced 

impact of outliers.

5 Window 
generation

Formation of fixed and/or multi-
scale windows for subsequent 

feature extraction.

Windows ready sequence 
for feature generation.

6 Feature extraction Feature set generation (statistics, 
instantaneous dynamics, spectral-

wavelet characteristics, 
embedding dynamics, etc.).

Feature vectors for each 
window.

7 Stream 
dimensionality 

reduction

An online PCA or streaming 
feature selection use for 

dimensionality control and 
computational acceleration.

Compressed feature 
representation, reduced 

computational load.

8 Incremental 
clustering

A streaming clustering algorithm 
with exponential forgetting for 
updating cluster parameters in 

real time.

An up-to-date cluster 
model and assignments for 

incoming windows.



9 Cluster lifecycle 
management

Mechanisms for creating new 
clusters when new patterns 

appear and removing 
(aggregating) obsolete clusters.

Dynamically changing 
number of clusters, model 

drift-resistant.

10 Anomaly 
assessment and 

scoring

Calculation of anomaly rates 
based on cluster distance, density, 

and population frequency 
changes.

Anomaly rates for each 
window, input for alert 

rules.

11 Cluster evolution 
monitoring

Tracking assignment 
distributions, parameter drift, and 

stability metrics over time.

Time series of cluster 
shares and drift metrics.

12 Physical signature 
matching

alibration and maintenance of a 
“cluster-physical degradation 

signature” correspondence map 
for interpretation.

Correspondence map, 
interpretable degradation 

indicators.

13 Decision rules and 
alerts

Formalization of thresholds, 
aggregation rules, or learnable 

criteria for generating diagnostic 
alerts.

Diagnostic and predictive 
alerts, indicators for TR.

14 Fault tolerance and 
resource 

management

Sensor failure detection, 
computation redundancy, and 

load adaptation to onboard 
limitations.

Computational 
degradation modes, 

unreliable data flagging.

15 Adaptive 
calibration

Periodic or event-driven 
adjustments to map parameters 

and weights based on expert 
annotation.

Updated calibration 
parameters, false positives 
(false negatives) reduction.

16 Validation and 
reporting

Quality metrics collection 
(detection delay, precision, recall, 

cluster stability) and report 
generation for maintenance 

regulation.

Reports and metrics sets 
for performance 

evaluation and operational 
decision-making.

Thus,  a  streaming  method  for  the  short-term  fluctuations’  continuous  clustering  in  the 
helicopter  TE  gas  temperature  in  front  of  the  compressor  turbines  with  a  0.5  Hz  sampling 
frequency is proposed. This method includes robust preprocessing and detrending, multifunctional 
feature  extraction,  online  dimensionality  reduction,  and  incremental  clustering  with  cluster 
lifecycle management for adaptation to operating mode transitions. The method provides a scalar 
anomaly  estimate  and  an  aggregated  degradation  metric,  coupled  with  an  expertly  calibrated 
“cluster → physical signature” map, enabling early detection of turbine and compressor blade wear 
signs under limited onboard computing resources.



4. Case study and discussions

In this study, a numerical experiment was conducted using the developed method on the helicopter 
TE thermal dynamics under nominal conditions. The gas temperature in front of the compressor 
turbine TG(t), a real measurement series of the TV3-117 engine recorded by a standard onboard 
sensor on a production Mi-8MTV helicopter (Figure 1), was used. The sensor is a set of 14 dual  
chrome-alumel thermocouples of the T-102 type [55–57]. It is noted that the tests were carried out 
at  the  2500-meter  altitude  under  standard  atmospheric  conditions  (air  temperature  ≈  268  K,  
pressure ≈ 74 kPa). Signals were recorded at the Δt = 0.25 second interval (sampling frequency 
4 Hz) for 320 seconds, which provided a 1280 readings sample.

Figure 1: Diagram of the TV3-117 engines’ gas temperature in front of the compressor turbine 
dynamics (initial diagram for forming the initial dataset). (author's development).

It is noted that Figure 1 shows a TV3-117 engine’s gas temperatures in front of the compressor 
turbine time series with a 4 Hz sampling rate over a 0 to 320 seconds’ range. The series’ average  
temperature is  approximately 1115 K,  with measurements ranging from approximately 1090 to 
1140 K. Against a weak low-frequency modulating trend background, a distinct high-frequency 
component  is  present,  consisting  of  short-term  oscillations  with  a  typical  amplitude  of 
approximately 2 K and a characteristic period of approximately 5 seconds, manifested as regular 
“high-frequency” bursts.

A signal’s pre-processing was performed by the onboard controller, and a two-stage filter was 
used  to  suppress  interference.  This  filter  included  initial  smoothing  using  the  Savitzky-Golay 
method with an 11-sample window and a third-order polynomial.  Outliers  were then removed 
using a ±3σ criterion, with gaps restored using linear interpolation. Systematic error correction 
took into account the thermocouples’ calibration characteristics (with an error of no more than 1.5 
K) and a correction for flow velocities up to 20 m/s. Gas temperature values were also normalized 
to a single scale using z-normalization:

z (TG)i=
TGmeas

(i ) − 1
N
∙∑
i=1

N

TGmeas

(i )

1
N
∙∑
i=1

N

(TGmeas

(i ) − 1
N
∙∑
i=1

N

TGmeas

(i ) )
2
,                                        (18)

where TGmeas

(i )  is the i-th gas temperatures in front of the compressor turbine value recorded by 

the helicopter’s standard sensor. Based on the above, normalized gas temperatures in front of the 
compressor turbine values hear were used to form the training dataset. This datasets’ fragment is 
presented in Table 2.
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Table 2
The training dataset fragment

Time, second Gas temperature raw value, K Gas temperature normalized value

0 1115,4 0,22527

... ... ...

40,031 1114,32 -0,44639

... ... ...

80,063 1115,25 0,13131

... ... ...

120,094 1115,12 0,05338

... ... ...

160,125 1115,03 -0,00612

... ... ...

199,906 1114,79 -0,15358

... ... ...

239,937 1115,22 0,11499

... ... ...

279,969 1115,77 0,45942

... ... ...

320 1114,74 -0,18315

To  assess  the  training  datasets’  homogeneity,  traditional  metrics  were  used,  including  the 
number of observations, the mathematical expectation x  and standard deviation σ, the skewness 
(SK)  and  kurtosis  (KE)  coefficients,  the  Shapiro-Wilk  test  (W and  p-value)  to  check  the 
distributions’  normality,  the  Augmented  Dickey-Fuller  (Δyt)  and  KPSS stationarity  tests,  the 
Ljung-Box  Q(h) test to identify autocorrelation, the Durbin-Watson (DW) statistic to assess the 
autocorrelation of residuals after detrending, the Levene test (W) to compare variances between 
segments,  as  well  as  segmental analysis of means and variances over equal  sampling intervals 
[58–60]:

x=1
n
∙∑
i=1

n

xi , σ=√ 1n ∙∑i=1n (xi−x )2 , SK=1
n
∙∑
i=1

n

( xi−xσ )
3

, KE=1
n
∙∑
i=1

n

( xi−xσ )
4

−3 ,

W=
(∑
i=1

n

ai ∙ x (i ))
2

∑
i=1

n

(xi−x )2
, ∆ y t=α+β ∙ t+γ ∙ y t−1+∑

i=1

p

δ i ∙ ∆ y t−i+ε i ,                      (19)

KPSS= 1

n2
∙∑
i=1

n St
2

σ̂ 2
, St=∑

i=1

t

ε̂ i , DW=
∑
t=2

n

(et−et−1)
2

∑
t=1

n

et
2

,Q=n ∙ (n+2) ∙∑
k=1

h ρ̂k
2

n−k
,



W=(N−k
k−1 )∙

∑
j=1

k

n j ∙ (Z j •−Z j • •)
2

∑
j=1

k

∑
i=1

n j

(Z ij−Z j •)
2

,

where x(i) are ordered values, and the coefficients ai depend on the expected values of the order 
statistics  of  the  normal  distribution,  test  hypothesis  H0:  γ =  0  (a  unit  root  presence);  model 
yt =  rt +  εt,  where  rt is  a  random  walk,  ρ̂k  is  the  estimated  autocorrelation  function, 

Z i j=|X ij−~X j|;  ~X j  i s the median of the j-th group.

Table 3 presents the training dataset’s homogeneity evaluation numerical results, which include 
the  sample  size,  the  main  moments  of  the  distribution  (mathematical  expectation,  standard 
deviation,  skewness,  and  kurtosis  coefficients),  the  statistical  tests  results  for  normality, 
stationarity, and autocorrelation (Shapiro–Wilk, ADF, KPSS, Ljung–Box, and Durbin–Watson), and 
the test for variances equality (Levene) with the corresponding statistics and p-values.

Table 3
The training dataset fragment

Metric Value

Number of samples 1280

Mean, K 1115,4

Std (population), K 1,994

Skewness -0,119

Excess kurtosis 0,285

Shapiro-Wilk (W) 0,994

Shapiro p-value 0,00001

ADF statistic -6,080

ADF p-value 0

KPSS statistic 0,538

KPSS p-value 0,017

Ljung-Box Q(10) 110,558

Ljung-Box p-value 0

Durbin-Watson 0,320

Levene (W) (4 segments) 0,215

Levene p-value 0,837

According to Table 3,  the training set is  characterized by a mean of  approximately 1115,43 
Kelvin  and  a  relatively  small  population  variance  (σ ≈  1,99  K).  The  skewness  and  kurtosis 
coefficients are close to zero, indicating that the distribution is close to normal. However, formal  
tests of normality yield conflicting results. The Shapiro-Wilk test rejects normality for the given 
sample (low p-value), while the distributions’ moments are nearly symmetrical, which is a typical 
effect  of  large  data  datasets,  in  which  small  deviations  from  normality  become  statistically 
significant. Stationarity tests yield mixed results, according to which the ADF indicates a unit root 
(stationarity) absence, while the KPSS detects a possible deviation from stationarity, indicating the 
presence  of  a  weak  low-frequency  trend  or  structural  drift  requiring  detrending.  The 



Durbin-Watson  statistic  low  value  and  the  significant  Ljung-Box  test  indicate  a  pronounced 
autocorrelation  in  the  series.  At  the  same  time,  the  Levene  test  does  not  reveal  statistically 
significant  differences  in  variances  between  quartile  segments,  which  confirms  the  relative 
homogeneity of the variance component over time.

In addition, Table 4 presents the dataset segmental analysis results across four equal intervals, 
namely,  each  segment’s  readings’  initial  and  final  indices,  the  average  gas  temperature  level 
estimated values (Mean, K), and the corresponding variances (Var, K), which allow us to estimate 
the series’ first and second moments’ temporal homogeneity.

Table 4
The training dataset fragment

Segment Start_idx End_idx Mean, K Var, K

1 0 319 1115,5 1,702

2 320 639 1115,3 2,049

3 640 959 1115,4 2,084

4 960 1279 1115,3 1,799

Segment analysis (Table 4) shows that the estimated mean temperature levels in all four equal 
intervals are close to each other (the means spread does not exceed ≈ 0,26 K), indicating a stable 
baseline signal level and the absence of large-scale changes in operating modes in the observation 
interval under consideration. Segment variances are also within a narrow range (≈ 1,70…2,08 K2),  
while the observed minor increases in variability in the second and third segments indicate a local  
increase in short-term fluctuations rather than a systematic change in noise or a level shift. Taken 
together, these results confirm the time series’ first and second moments’ relative homogeneity, 
simultaneously  emphasizing  the  need  to  apply  locally  adaptive  normalization  procedures  and 
account for the variance of temporal variability when constructing stream clustering.

A study was  conducted  on  continuous  clustering  of  short-term fluctuations  in  exhaust  gas 
temperature for a controlled scenarios set:

1. Nominal mode.
2. Increased noise level.
3. Slow average level drift.
4. Transient spikes.
5. Sensor “flatline” artifacts.
6. Regime change.

For each scenario, sliding window preprocessing, multifunctional feature extraction, streaming 
clustering,  and  cluster  share  evolution  analysis  were  implemented  to  assess  the  method’s 
sensitivity,  robustness,  and  early  detection  of  degradation  indicators.  The  studies’  results  are 
shown in Figure 2.

The  PCA projection shown in  Figure  2a  shows three  relatively  compact  point  clouds  with 
partial overlap. One cluster is noted to occupy the central-lower region, while the other two are 
shifted to the left and upward along the PC axes. The resulting clustering structure indicates the  
presence  of  reproducible  local  patterns  in  the  feature  space  under  the  nominal  conditions. 
However, the projection shown in Figure 2b shows a noticeable expansion of the cluster clouds and 
an increase in overlapping zones, with one component acquiring a more extended distribution in 
the PC1 direction. The obtained clustering results indicate a decrease in cluster separability with 
increasing noise  levels.  The resulting clustering projection shown in Figure 2c  demonstrates  a 



cluster’s shift and partial separation along the PC axes. It is also noted that the clouds are partially  
located along the directional gradient of PC1, which is consistent with a slow trend presence in the 
features. The obtained results indicate that gradual changes in the mode manifest themselves as  
smooth motion in the feature space and can be detected by monitoring centroids or drift metrics. 
Figure 2d clearly shows individual outliers and distinct groups separated from the main body of 
observations. It is noted that these outliers form distinct clusters or tail branches in the projection.  
This behavior confirms the feature set's ability to identify short-term, high-amplitude events but 
also highlights the false-positive risk interpretations without additional aggregation logic based on 
duration and frequency of events. The PCA projection shown in Figure 2e contains a “compact 
dense cloud” corresponding to background variability and a separate compact cluster, which is a 
set of points separated in the feature space. The resulting cluster separation is consistent with the  
sensor’s “sticking” period. It is noted that this distribution requires the diagnostic signal quality 
criteria to be used to distinguish true physical modes from measurement artifacts and to exclude 
artifactual clusters from the training set. The projection shown in Figure 2f reveals two adjacent  
but distinct regions, one of which contains dense clusters, while the other contains points shifted 
along PC1, which correlates with the modeled mean shift. The resulting cluster topology indicates 
the possibility of detecting mode changes based on distribution changes in the feature space and 
justifies the use of thresholds for changes in cluster proportions or centroid shift monitoring for  
rapid alerting.

                             a                                                    b                                                   c

                             d                                                    e                                                     f

Figure 2: The gas temperature in front of  the compressor turbine parameter values clustering 
results  using the developed method:  (a)  Nominal  mode;  (b)  Increased noise level;  (c)  Drift;  (d)  
Transient spikes; (e) Flatline; (f) Regime change (author's development).

Based  on  the  gas  temperature  in  front  of  the  compressor  turbine  parameter  clustering, 
corresponding diagrams were obtained, which show characteristic patterns associated with a defect 
in the compressor turbine blades (Figure 3).

Thus,  as  a  result  of  the  developed  continuous  clustering  method’s  experimental 
implementations, a defect detection in a first-stage turbine blade directly related to the compressor 
drive  (the  first  turbine  stage  blade  driving  the  compressor)  is  accomplished  by  identifying 
persistent  or repeating assignments of  sliding window feature vectors to a  single cluster.  This 



“defective”  cluster’s  centroid is  characterized by an elevated average window temperature and 
increased  short-term  variability,  which  corresponds  to  the  physical  mechanisms  of  localized 
overheating. In this context,  the proposed defect types include fatigue or impact cracks in the 
leading edge and root joint, the working surfaces’ erosive abrasion, and the protective coatings’ 
localized loss (coating spallation), as well as an increase in the gap between the blade tip and the  
guide vanes due to wear. All of these defects lead to the heat transfers’ localized deterioration and 
the short-term “hot” events formation in the TG field. In feature space, this manifests as a separate, 
partially distant point cloud in the PCA projection, while in the time domain, it manifests as a 
short-term  spike’s  series  and  a  subsequent  increase  in  the  assignments  proportion  to  the  
“defective”  cluster.  For  operational  detection,  a  scalar  indicator  representing  an  assignment’s 
sliding proportion to the defective cluster was used, with a 0.20 empirical threshold. Exceeding this 
threshold over a certain number of sliding steps is considered a warning trigger. The proposed 
approach provides a balance between sensitivity and robustness to single outliers  but requires  
explicitly adjusting the threshold based on historical degradation markers and accounting for the 
detection time delay due to  the window length and aggregation step.  It  has  been analytically 
shown that individual short-term spikes can generate false positives without additional logic for 
aggregation by frequency and duration of events, and a shift in the operating mode (drift or regime  
change)  generates  a  centroids’  smooth  movement  in  the  feature  space,  which  requires  the 
detrending [61] or exponential “forgetting” [62] use during the cluster’s online updating.

a

b

0 50 100 150 200 250 300

Time, s

1100

1105

1110

1115

1120

1125

1130

G
a
s 

Te
m

p
e
ra

tu
re

, 
K

Time series with detected defect windows highlighted

TG (defect scenario)
Window centers
defect windows

-2 0 2 4 6

PC1

-3

-2

-1

0

1

2

3

P
C

2

PCA projection of sliding-window features 
(defect cluster highlighted)

Defect cluster (#1)
Cluster #2
Cluster #3



c

Figure 3: Results of compressor turbine defect detection based on the gas temperature in front of 
the compressor turbine parameters’ values clustering: (a) Time series with highlighted windows 
assigned to the “defective” cluster; (b) The feature’s PCA projection space with the highlighted 
defect  cluster  and  the  centroid’s  location;  (c)  The  assignments  proportion  time  series  to  the 
“defective” cluster with the alert threshold (author's development).

A comparative analysis (Table 5) shows that the developed streaming continuous clustering 
method occupies a practical niche between simple physical threshold approaches and resource-
intensive deep learning models. The developed methods’ application provides high potential for 
early detection of short-term patterns while being operationally compatible with online processing, 
while requiring minimal labeling and moderate computational costs.

Table 5
The comparative analysis results

Method
Online 

capability
Early 

detection
Marking 
required

Noise 
Resistance

Computational 
Cost

Developed streaming 
clustering method

High High Low (semi- or 
unsupervised)

Average Medium

Physical threshold 
schemes

High Low No Low Low

Classical machine 
learning (regression, 

autoencoders, boosting)

Medium Medium Low-
medium

Average Medium

Deep networks (and 
digital twins)

Low 
(onboard)

High 
(during 

training)

High Low-
average

High

Matrix profile Medium High Low Average Medium

Batch clustering (offline 
Kmeans, GMM)

Low Low Low Low Low



According to Table 5,  the developed method’s advantages over its closest analogues include 
adaptability to mode drift and interpretability through matching cluster signatures with physical 
degradation markers. These advantages are offset by moderate robustness to high noise levels and 
the need for  signal  quality  control  modules.  It  is  noted that  traditional  threshold schemes are  
simple  and  interpretable  but  ineffective  for  short-term events.  Deep  models  demonstrate  high 
accuracy  with  large  labeled  datasets  but  are  inapplicable  to  resource-constrained  onboard 
electronics without significant optimization.

Based  on  the  above,  the  practical  recommendation  is  to  use  streaming  clustering  as  an 
operational screening method, followed by verification through physical and statistical tests. In the 
labeled  precedents’  presence,  it  is  necessary  to  use  a  retrospective  confirmation  model  (DNN, 
digital twin [62–65]) to improve accuracy and reduce the false positive proportion.

It is also noted that the developed methods’ practical limitations are related to the features and 
the clustering algorithm selected sets’ sensitivity to the noise level and sensor artifacts (flatlines,  
sticking,  etc.).  Therefore,  its  implementation  should  include  signal  quality  control  procedures 
(dispersion and autocorrelation checks, flatline detection) and a cluster verification module using 
physically  interpretable  indicators  (temperature  markers,  blade  distribution,  diagnostic 
measurements),  as well as a calibration step on labeled degradation examples to evaluate ROC 
curves,  select  the  optimal  threshold,  and  determine  the  minimum  warning  stability  time. 
Implementation  into  an  onboard  monitoring  system  requires  preliminary  sensitive  parameter 
analysis (window length, step size, number of clusters, and fraction threshold), testing on synthetic  
defect injections, and adaptive recalibration procedure development for changing operating modes, 
taking into account computational limitations and latency requirements.

Thus,  the  streaming  clustering  with  cluster  lifecycle  management  and  a  physically  based 
“cluster → defect” map combination is an important technical contribution, enabling early, robust, 
and interpretable detection of the helicopter TE compressor turbine blades degradations’ initial 
stages within the onboard computing platforms’ limitations.

5. Conclusions

A streaming  method  for  continuous  clustering  of  short-term gas  temperature  in  front  of  the 
compressor turbine fluctuations of helicopter turboshaft engines has been developed, focused on 
streaming two-second measurements.  The developed method consists  of  a  processing pipeline. 
There are quality control and imputation, adaptive baseline detrending, robust local normalization, 
sliding  window  generation,  multifunctional  feature  extraction  (statistical  moments,  difference 
characteristics, short-term spectral-wavelet components), streaming dimensionality reduction, and 
incremental  clustering  with  exponential  “forgetting”  and  dynamic  component  lifecycle 
management.  To  translate  statistical  inferences  into  diagnostic  solutions,  an  expert-calibrated 
“cluster ↔ physical degradation signature” map and an aggregated scalar degradation metric based 
on changes in the cluster assignments proportions are proposed. The developed method introduces 
several modification elements to ensure a balance between sensitivity to short-term patterns and 
robustness to single outliers:

1. A robust  detrending and local  MAD normalization integration for robustness to  regime 
shifts.

2. A streaming clustering scheme with dynamic component creation or deletion mechanisms 
and exponential forgetting, ensuring adaptation to regime shift without batch retraining.

3. A combined anomaly score that  takes into account the distance to the cluster centroid, 
cluster density, and cluster population rate variations.

4. Aggregation logic based on the assignment’s sliding proportion to a defective cluster to 
reduce the number of false positives.



The developed method was validated using a real set of TV3-117 engine compressor turbine gas  
temperature measurements (Mi-8MTV flight recordings, 1280 samples at 4 Hz after preprocessing)  
and simulated scenarios, such as nominal mode, increased noise, slow drift, transient spikes, flatline 
artifacts,  and  mode  transitions.  The  experiment  revealed  a  reproducible  “cluster”  signature 
associated with the first-stage rotor blade degradations’ initial stage. A defective cluster’s centroid  
is characterized by an elevated average window temperature and increased short-term variability, 
forming a partially distant cloud in the PCA projection, while in the time domain, a short-term 
“hot”  spike  series  and  an  increase  in  the  assignments  proportion  are  formed.  The  practical 
detection trigger is implemented as the defective assignments’ sliding proportion excess above a 
0.20  empirical  threshold  over  a  minimum  number  of  windows.  This  criterion’s  introduction 
demonstrated  the  developed  methods’  ability  to  detect  degradation  departments  earlier  than 
traditional packet or threshold schemes, with acceptable resistance to single noise pulses.
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