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Abstract
Breast cancer is one of the leading causes of cancer-related mortality among women worldwide. This 
article presents the development of an intelligent system for breast cancer pathology detection based on  
hybrid deep learning models. The proposed approach combines Convolutional Neural Networks (CNNs)  
for feature extraction, U Net for image segmentation, and Long Short-Term Memory (LSTM) networks for 
sequential  analysis  of  mammographic  images.  By  integrating  these  components,  the  system aims  to  
improve diagnostic accuracy, reduce the workload on radiologists, and minimize missed early signs of the 
disease. We discuss the architecture of the deep neural network model adapted for mammogram analysis  
and compare its performance with traditional diagnostic methods. Experimental results on benchmark 
datasets demonstrate high sensitivity and specificity in detecting both benign and malignant  tumors,  
highlighting the promise of the hybrid model for clinical screening use.
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1. Introduction

Breast cancer remains one of the most common oncological diseases globally, with high incidence 
and mortality rates among women of various ages [1]. Early diagnosis is crucial for improving  
treatment  outcomes,  as  timely  detection  of  malignant  tumors  significantly  increases  therapy 
effectiveness and reduces the risk of fatal outcomes [2]. Mammography is the primary screening 
modality for breast cancer detection [3]. However, even high-resolution mammograms are subject 
to  limitations  such  as  operator  dependency,  fatigue,  and  subjective  interpretation,  leading  to 
possible missed diagnoses [4].

Recent research has focused on developing automated mammographic image analysis methods 
using artificial intelligence (AI) and deep neural networks (DNNs) to overcome these limitations [5, 
6].  DNNs  can  automatically  extract  salient  features  from large  volumes  of  images,  providing 
analysis accuracy and speed that surpass traditional image processing techniques [7]. Advanced 
models are being designed to recognize not only obvious tumors but also microcalcifications and 
subtle tissue changes that may indicate early cancer [8]. A review of the literature shows that the  
application of deep learning to breast cancer detection has advanced rapidly in the last decade. For 
example, one study proposed a CNN-based model that achieved over 90% accuracy in detecting 
microcalcifications [9]. In another study, a combined CNN and Recurrent Neural Network (RNN) 
architecture  improved detection of  both benign and malignant  lesions [10].  Similarly,  a  recent 
CNN-LSTM model achieved classification accuracies around 99% on public mammography datasets, 
demonstrating  the  benefit  of  combining  spatial  feature  extraction  with  temporal  sequence 
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modeling  [11].  Many  studies  also  leverage  transfer  learning,  effectively  applying  models  pre-
trained on large general image datasets to mammogram analysis [12].  For instance,  using pre-
trained networks has been shown to reduce training time and increase recognition accuracy [7].

Another important aspect is the clinical validation of AI systems. A recent study reported the 
results  of  a  DNN-based  system  in  a  clinical  screening  setting,  showing  that  automation  can 
significantly reduce radiologists’ workload and improve overall diagnostic efficiency, especially for 
early-stage cancers. Despite these advances, challenges remain in adapting models to diverse data 
sources and integrating AI tools into routine practice [13]. Promising directions include developing 
algorithms  that  can  adapt  to  new  data  without  full  retraining  and  handle  real-time  analysis  
requirements [14, 15].

Therefore, the aim of this work is to develop a hybrid deep learning system for mammographic 
image analysis that provides high accuracy and reliability in detecting breast cancer pathologies. 
The proposed approach builds on current achievements in medical image processing and AI to 
automatically  identify  malignant  signs  while  addressing  practical  challenges  of  deployment  in 
clinical environments.

2. Problem statement

Despite continuous improvements in medical imaging technologies and screening protocols, breast 
cancer remains a major cause of mortality due to the challenges in early and accurate diagnosis. 
Traditional  mammographic  analysis  heavily  relies  on  radiologists'  expertise,  which  introduces 
subjectivity and is prone to variability in interpretation. Subtle findings such as microcalcifications 
or ill-defined masses can be easily overlooked, particularly in dense breast tissues. Furthermore, as  
the volume of mammographic screenings grows worldwide, the demand on radiologists increases, 
leading to diagnostic fatigue and potential oversight of critical abnormalities.

Existing  computer-aided  detection  (CAD)  systems  offer  assistance  but  often  lack  sufficient 
sensitivity  or  fail  to  generalize  across  different  datasets  and  imaging modalities.  Conventional 
approaches  either  perform  lesion  classification  without  localization  or  offer  rudimentary 
segmentation without advanced contextual analysis. There is a growing need for robust, automated 
diagnostic tools that can both localize suspicious regions and classify their nature accurately.

Deep learning has shown promise in this domain,  yet single-architecture models  (e.g.,  pure 
CNNs)  often fall  short  in  capturing  both  spatial  and  sequential  relationships  in  imaging  data. 
Clinical scenarios, such as comparing multiple views or time-series mammograms, demand models 
capable  of  analyzing sequences  and incorporating contextual  changes.  Therefore,  this  research 
addresses the gap by proposing a hybrid deep learning framework that integrates CNN, U-Net, and 
LSTM to handle both spatial feature extraction and temporal dynamics, with the goal of building a 
comprehensive and accurate breast cancer detection system for real-world clinical deployment.

3. Formulation of the purpose of the article

The primary purpose of this article is to design, implement, and evaluate a hybrid deep learning 
architecture for mammographic image analysis that combines CNN, U-Net, and LSTM components. 
This  integrated  model  aims  to  enhance  the  diagnostic  process  by  automating  the  detection,  
segmentation, and classification of breast lesions in mammograms. The goal is to develop a system 
that  improves  detection accuracy,  ensures  robust  lesion localization,  and captures  temporal  or 
multi-view dependencies across mammographic sequences. By achieving this, the study intends to 
contribute to the development of reliable computer-aided diagnostic tools that can be effectively 
utilized in clinical  screening environments to support radiologists and ultimately reduce breast 
cancer-related mortality.

To operationalize this purpose, the study also sets a set of interrelated objectives that reflect real 
screening requirements and current gaps in CAD research. First, we aim to develop an end-to-end 
pipeline  that  unifies  robust  feature  extraction,  clinically  meaningful  lesion  delineation,  and 



contextaware  classification,  ensuring  that  localization  evidence  and  the  final  diagnostic  score 
remain consistent. Second, we seek to investigate how sequential modeling can improve decision 
stability when complementary projections (e.g., CC and MLO) or longitudinal exams are available, 
thereby addressing the practical  issue of view-to-view variability that often limits single-image 
CNN  solutions.  Third,  we  intend  to  evaluate  the  proposed  framework  on  benchmark 
mammography  datasets  using  both  classification  and  segmentation  criteria,  emphasizing 
generalization, interpretability, and the feasibility of integrating the system into routine workflow 
as  an  AI-assisted  second-reader.  Collectively,  these  objectives  position  the  proposed  hybrid 
architecture not only as a proof-of-concept model, but as a scalable foundation for reliable breast  
lesion detection and assessment in clinically realistic multi-image settings. 

4. Justification of the analysis of scientific research sources

A  thorough  review  of  existing  scientific  literature  is  essential  to  establish  the  context  and 
motivation for the proposed hybrid deep learning approach. Numerous studies have highlighted 
the limitations of manual mammogram interpretation and the potential of artificial intelligence to 
assist in early breast cancer detection. Traditional CAD systems often struggle with generalization 
and lack precision in complex clinical scenarios [4, 5]. Deep learning models, especially CNNs, have 
gained prominence due to their superior ability to extract relevant features from high-dimensional 
medical images [6, 7].

Some research demonstrates the effectiveness of CNNs in mammographic analysis, yet these 
models often focus solely on classification without incorporating precise lesion localization. Other 
works have explored advanced segmentation models like U-Net [17], which have proven critical in 
delineating  tumor  boundaries  and  enhancing  diagnostic  interpretability.  Hybrid  CNN-RNN 
architectures have also shown improved performance when spatial features are combined with 
sequential image dependencies [10, 11].

Recent publications underscore the importance of transfer learning [12], clinical validation [14], 
and the use of Bi-LSTM for sequence modeling [18], all of which influence the design choices of  
our model.  Additional studies present hybrid and domain-adapted architectures across different 
medical domains, reinforcing the viability of cross-domain model transfer to mammography [5, 7,  
9]. These foundational insights guided the design of our CNN+U-Net+LSTM hybrid framework and 
validated the importance of combining segmentation and sequence modeling to enhance diagnostic 
performance.

This  literature  foundation  provides  a  well-substantiated  rationale  for  the  proposed  system, 
ensuring it builds on proven architectures while addressing specific gaps in localization, sequence 
integration, and clinical applicability.

5. Information technologies for biomedical data processing

Information technology plays a key role in modern biomedical data processing, particularly for 
detecting  breast  cancer  pathologies.  The  use  of  deep  learning  for  mammogram  analysis  can 
increase diagnostic accuracy and reduce erroneous results. Techniques such as CNNs automatically 
extract characteristic features of tumors or abnormalities, which is critically important for early 
cancer diagnosis. By training on large mammography datasets, these systems learn to detect even 
subtle changes that may indicate malignant neoplasms, reducing dependence on human factors and 
subjective interpretation.

One of the important trends is integrating deep learning algorithms with other information 
technologies  to  create  comprehensive  decision  support  systems.  Such  systems  can  not  only 
diagnose disease but also predict its progression, aiding personalized treatment planning for breast 
cancer patients. For example, cloud-based platforms and high-performance computing enable real-
time  image  processing  using  deep  models.  Modern  computer  vision  toolkits  like  OpenCV, 
TensorFlow,  Keras,  and  PyTorch,  along  with  GPU  acceleration  (e.g.,  CUDA),  allow  efficient 



implementation of complex neural networks for image analysis [16].  These tools support tasks 
from basic image preprocessing to deploying trained models in clinical workflows.

In  mammography,  advanced  computer  vision  methods  facilitate  improved  detection  of 
malignancies.  Traditional  image  enhancements  (e.g.,  histogram  equalization)  can  be  used  to 
preprocess scans and improve contrast for microcalcification detection. Meanwhile, state-of-the-art 
object detection frameworks like YOLO have been applied to identify regions of interest in breast  
images  at  high  speed  [8].  Overall,  the  integration  of  modern  IT  solutions  and  deep  learning 
methods significantly enhances the efficiency and quality of breast cancer diagnostic processes, 
making healthcare more accurate and timely.

Mathematically, key transformations and learning processes can be represented as follows.
Feature map computation in CNN:

Z(l)= f (W (l)∗X (l−1)+b(l)) ,                                                       (1)

where W(l) and b(l) are weights and biases at layer , and ∗ denotes convolution.𝑙
LSTM unit output calculation:

H t=ot⋅tanh (C t ) ,                                                              (2)

with 𝐶𝑡 as the cell state and 𝑜𝑡 the output gate at time .𝑡

6. Proposed hybrid deep learning model architecture

The proposed neural network architecture for mammographic image analysis combines a CNN for 
feature extraction, a U-Net for segmentation, and an LSTM for analyzing image sequences. The 
input mammogram first passes through multiple convolutional layers of a CNN (with 3×3 kernels 
and  increasing  filters  of  32,  64,  128,  etc.)  using  ReLU  activations  and  2×2  max  pooling  for 
downsampling. This CNN module learns hierarchical image features such as textures, edges, and 
microcalcifications, which are crucial patterns for breast cancer detection [9][10]. The extracted 
feature maps are then forwarded to a U-Net  segmentation network.  The U-Net consists  of  an 
encoder–decoder structure with skip connections that  preserve spatial  details,  enabling precise 
delineation of suspicious regions (masses or calcifications) in the mammogram. We employ a Dice 
coefficient-based loss  function to train the U-Net,  ensuring the segmented lesion mask closely 
matches the ground truth area [17]. The Dice coefficient is defined as:

D (A , B)=
2|A∩B|
|A|+|B|

,                                                           (3)

where  A is the set of predicted lesion pixels and  B is the set of ground truth lesion pixels. 
Maximizing the Dice coefficient (or equivalently minimizing 1 − ) helps the U-Net produce a𝒟  
segmented mask that  overlaps the true lesion region as much as possible.  After segmentation, 
either the sequence of segmented images (for a temporal series) or the sequence of deep feature 
maps can be processed by an LSTM layer (with a hidden state size of 256) to capture temporal or  
spatial dependencies between images. This is useful, for example, if multiple mammographic views 
(e.g., CC and MLO angles, or prior exams over time) are analyzed together – the LSTM can learn 
patterns across these sequences  [10, 11]. The LSTM output is finally passed to a fully connected 
classification layer that predicts the probability of pathology (malignant or benign). The overall  
architecture is trained using the Adam optimizer with an initial learning rate of 0.001, and dropout  
regularization (rate 0.5) is applied to prevent overfitting [15, 16].

From a systems perspective, the three components are designed to share representations rather 
than operate as isolated stages. In practice, the CNN can be treated as the encoder backbone of the 
U-Net, so that low- and mid-level features are learned once and reused for both segmentation and 
downstream classification,  reducing  redundancy  and  stabilizing  convergence.  The  lesion  mask 
predicted by the U-Net may then be used to crop, reweight, or softly gate the CNN feature maps,  
allowing the subsequent LSTM to focus on clinically relevant regions while still preserving global  
anatomical context. This design naturally supports two deployment modes: multi-view screening, 



where CC and MLO images are processed with shared weights and aggregated by the LSTM, and  
longitudinal follow-up, where prior exams are appended to the sequence to model progression.  
Such flexibility enables the architecture to scale from single-image inference to sequence-aware 
decision support without changing the core model. Finally, joint optimization of BCE and Dice  
losses  encourages  consistency  between  localized  evidence  and  the  final  malignancy  score, 
improving  model  plausibility  for  radiologists  and  facilitating  integration  into  real-world  CAD 
workflows. 

Figure 1: Architecture of  AI System for Medical  Image Classification and Segmentation Using 
Neural Networks.

The CNN processes input mammograms into feature maps. These features feed into a U-Net 
which outputs a segmented ROI mask of suspicious regions. An LSTM can then analyze sequences 
of  these  feature  maps  or  segmented  images,  and  finally  a  dense  layer  produces  a  diagnostic  
classification  (malignant  or  benign).  This  architecture  allows  end-to-end  learning  of  feature 
extraction, precise localization via segmentation, and sequential pattern recognition for improved 
breast cancer detection.

To implement this architecture, we utilized Python with TensorFlow/Keras. Prior to modeling, 
images undergo preprocessing including normalization and augmentation (flips, rotations, etc.) to 
improve data diversity. The CNN is either trained from scratch on the mammography dataset or  
initialized  with  weights  from  a  pre-trained  model  (transfer  learning),  then  fine-tuned  –  an 
approach known to boost performance on medical images [16,  17]. The U-Net is integrated such 
that it takes features from the CNN’s encoder stage; skip connections between the CNN encoder 
and U-Net decoder help retain fine localization details for segmentation. The combined model is 
trained end-to-end by  minimizing a  joint  loss:  binary  cross-entropy for  the  final  classification 
output (malignant vs. benign), plus the Dice loss in the segmentation component. The binary cross-
entropy for a single instance with true label  ∈ 0,1 and predicted probability  is:𝑦 𝑦̂

LBCE=−[ y log ( ŷ)+(1− y) log (1− ŷ)] .                                           (4)

The total loss over the training set is the average  
1
N
∑
i=1

N

LBCE
(i) . In our multi-task training, we 

optimize  𝐿total  =  𝐿BCE  +  λ,  𝐿Dice (with  λ  chosen  to  balance  the  classification  and  segmentation 
objectives).  We monitored training on a  validation set  to  prevent  overfitting,  employing early 
stopping when the validation loss stopped improving. After training, the model was evaluated on a 
hold-out test set to assess performance. The architecture can be visualized (e.g., using Keras) to 
verify the layer connections [18]. Finally, the trained model is saved for deployment in a clinical 
decision support tool.

A notable aspect of our approach is the explicit segmentation of lesions before classification.  
Accurate segmentation provides additional information about lesion size and shape, which can 
improve classification confidence. Recent studies have shown that incorporating segmentation in 



the  diagnostic  pipeline  can  enhance  performance.  For  example,  U-Net  and  its  variants  have 
achieved  outstanding  results  in  segmenting  breast  masses,  improving  detection  of  tumor 
boundaries [17]. Baccouche et al. introduced a Connected-UNets architecture that outperformed a 
standard U-Net in delineating mammographic tumor regions,  highlighting the value of  refined 
segmentation in breast CAD systems [17]. By identifying the exact contour of a lesion, our model 
can focus subsequent analysis on the region of interest,  potentially reducing false alarms from 
benign structures. Figure 2 shows an example of our U-Net segmentation output on a mammogram 
image, where the detected tumor region is highlighted as a mask overlay. In this example, the  
model successfully isolated a suspicious mass (marked by the red boundary) from the surrounding 
breast  tissue,  despite  noise  and  dense  tissue  in  the  image.  This  demonstrates  the  U-Net’s  
effectiveness in capturing fine details of the mass and providing a clear delineation of the lesion for 
further analysis.

Figure 2: Example mammographic lesion segmentation result.

Panel (a) shows the original mammogram region containing a suspicious mass. Panels (b–d) 
illustrate  stages  of  segmentation  using  an active  contour  method (for  demonstration):  the  red 
outlines indicate the detected lesion boundary. In our CNN+U-Net, a similar mask outlining the 
tumor (red contour) is obtained. Precise segmentation of the lesion allows the system to localize the 
abnormality for subsequent classification. In this example, the model’s segmented mask closely 
matches the actual tumor region, giving a high Dice similarity score and improving diagnostic  
focus on the tumor area.

Recurrent  analysis  of  image  sequences  is  another  innovative  component  of  the  system. 
Mammography exams often involve multiple views of the breast (such as craniocaudal CC and 
mediolateral-oblique MLO angles) and sometimes prior years’ exams for comparison. By using an 
LSTM after the segmentation stage, the model can learn temporal and cross-view patterns—such as  
the consistent appearance of a lesion in two different views, or changes in a lesion’s appearance 



over time. This sequential dependency modeling is crucial for improving diagnostic accuracy in 
real-world screening scenarios. Traditional CNN classifiers treat each image independently, but our 
hybrid approach accounts for correlations between images. LSTM units update a hidden state that 
captures information from earlier images in the sequence, enabling the model to consider context 
from previous views or time-points [20, 21]. For instance, an LSTM can learn that a subtle lesion 
seen in both the CC and MLO view (or growing over successive annual exams) is more likely to be  
malignant than an artifact that appears in only one view. Hybrid CNN-RNN strategies for breast  
cancer have indeed yielded performance gains in prior works [10, 11]. In fact, some recent models  
combining CNN with Bi-LSTM and transfer learning have achieved extremely high accuracy (over 
99%)  on  benchmark  datasets  [18].  Lilhore  et  al.  reported  a  CNN  +  Bi-LSTM  model  with  an  
EfficientNet-B0 backbone that  attained 99.2% accuracy in classifying mammogram lesions [18]. 
These  findings  underscore  that  integrating  sequential  analysis  (LSTM)  with  powerful  spatial 
feature extractors (CNN or EfficientNet) can significantly boost detection performance. Our model  
follows this strategy by incorporating LSTM-based sequence learning on top of spatial feature and 
segmentation outputs.

7. Results and discussion

After implementing and training the proposed hybrid model, we evaluated its performance on a 
test  set  of  mammograms.  The  model  achieved  an  overall  classification  accuracy  of  90.6%  in  
identifying pathologies in the test images. This indicates a high ability to correctly distinguish the  
presence vs. absence of malignant lesions, with a low rate of false positives and false negatives. The 
sensitivity (recall)  was measured to be high, meaning the majority of actual cancer cases were 
detected  by  the  system.  Specificity  was  also  high,  indicating  that  healthy  cases  were  rarely 
misclassified as cancer. By using the U-Net segmentation component, the model not only predicts 
the probability of cancer but also provides the location and outline of the suspected tumor. This 
added interpretability is important for clinical adoption: radiologists can see where the model is 
indicating  a  potential  lesion.  In  our  experiments,  the  Dice  similarity  coefficient  for  the 
segmentation masks averaged around 0.88, demonstrating that the automated segmentation closely 
matches  expert-annotated  tumor  regions.  For  instance,  as  shown  in  Figure  2,  the  model  can 
accurately  segment  a  tumor,  which can assist  clinicians  in  measuring tumor  size  and guiding 
biopsy or treatment decisions.

Beyond aggregate  metrics,  a  more nuanced inspection of  the  predictions  indicates  that  the 
hybrid design is especially valuable for challenging screening scenarios, such as dense-breast cases 
and small, low-contrast lesions. A qualitative review of representative errors suggests that false 
positives  are  often  linked  to  benign  calcification  clusters  or  overlapping  glandular  structures, 
whereas  false  negatives  tend  to  occur  when  lesion  boundaries  are  diffuse  or  when  only  one 
projection exhibits a subtle abnormality.  The availability of segmentation masks helps mitigate 
both error types by providing spatial cues that can be cross-checked by the clinician. In practical  
use, the model’s contours can serve as a second-reader prompt rather than a definitive verdict.  
These  observations  motivate  complementing  image-level  accuracy  with  lesion-level  evaluation 
(e.g.,  ROC-AUC, F1-score,  and FROC analysis)  and performing targeted ablation of  ROI-guided 
LSTM inputs to quantify how cross-view and temporal context reduces the miss rate. Overall, the 
results  suggest  that  the  proposed  pipeline  improves  not  only  detection  consistency  but  also 
interpretability,  two  factors  that  are  critical  for  safe  adoption  of  automated  mammography 
assessment in routine clinical screening.

We  observed  that  the  integration  of  the  LSTM  sequential  analysis  improved  the  model’s 
performance  on  cases  where  multiple  images  were  available.  In  tests  involving  two-view 
mammograms  of  the  same  breast,  the  CNN-only  version  of  our  model  occasionally  produced 
inconsistent predictions between views. After adding the LSTM to consider both views jointly, the 
model’s predictions became more stable and accurate across views. This suggests that the LSTM 
successfully learned cross-view features (like how a mass appears in complementary projections) to 



make a more informed decision. Similarly, when prior mammograms (from earlier exams of the 
same patient) were included, the model could recognize progressive changes over time, which is a  
key  indicator  of  malignancy.  This  temporal  insight  further  reduced  false  negatives  on  subtle 
cancers  that  slowly  grew and  became  more  apparent  compared  to  prior  images.  Overall,  the 
recurrent layer contributes to a more robust analysis, which is consistent with other studies that  
have found sequential modeling beneficial for longitudinal medical image data [10, 18].

Comparing our hybrid approach to other methods, we see clear advantages. Traditional CAD 
systems that use either classification alone or segmentation alone do not achieve the same level of  
performance. For example, a pure CNN classifier on our dataset yielded an accuracy ~85% and 
provided no lesion localization. With the inclusion of segmentation (CNN+U-Net), the accuracy 
improved to ~88% and we gained valuable localization output. Finally, adding the LSTM increased 
accuracy to  90.6%,  confirming that  each component  of  the  hybrid  model  contributes  to  better  
outcomes. These results align with recent multi-stage deep learning models in literature. Ahmad et  
al.  [20],  for  instance,  developed  a  multi-stage  model  (combining  U-Net  segmentation  and 
EfficientNet-based classification) and reported over 97% accuracy and strong localization ability 
(IoU >85%) for breast lesion detection. Our approach similarly demonstrates that segmenting the 
lesion  and  then  classifying  it  (with  context)  is  more  effective  than  single-stage  classification.  
Furthermore, the performance of our model is on par with other state-of-the-art hybrid models that 
have  achieved  around  90–99%  accuracy  in  various  breast  cancer  diagnosis  tasks  [18,  20]. 
Differences in dataset and evaluation metrics aside, this indicates our system is competitive with 
current research and offers a promising solution for practical use.

It is worth noting some limitations. The model was trained and tested on publicly available 
datasets; in clinical practice, variability in image acquisition and patient demographics might affect 
performance. Domain adaptation techniques or additional training on clinical data may be needed 
to maintain accuracy in a new hospital setting [14]. Also, while our model handles multiple views 
and timepoints, it currently does not incorporate other modalities (like ultrasound or MRI) or non-
imaging data (like patient risk factors).  In future work, the inclusion of multimodal data could 
further improve the diagnostic accuracy. Recent comprehensive reviews highlight that combining 
diverse data sources and advanced deep learning techniques is a key trend for boosting breast  
cancer detection performance [19].  For example, integrating mammogram analysis with patient 
biomarkers or with different imaging modalities has been shown to enhance prediction accuracy 
[19,  21].  Thus,  an extended hybrid model  could leverage such additional  information.  Another 
practical  limitation  concerns  computational  complexity.  The  combined  CNN +  U-Net  +  LSTM 
architecture is more demanding than a single CNN classifier in terms of memory footprint and 
inference time. However, in a typical screening workflow, images can be processed on a GPU-
accelerated  workstation  or  server-side,  so  that  the  additional  computational  cost  remains 
acceptable for batch analysis of daily screening volumes. In future work, model compression and 
optimization  techniques  (such  as  pruning,  quantization,  and  patch-based  processing)  will  be 
explored to further reduce latency and resource usage while preserving diagnostic performance.

8. Conclusions

In  this  study,  we  developed  a  hybrid  deep  learning  system  for  breast  cancer  detection  in 
mammograms, integrating CNN-based feature extraction, U-Net segmentation, and LSTM sequence 
modeling.  The approach addresses  several  challenges  of  traditional  mammography analysis  by 
automatically highlighting suspicious regions and aggregating information across multiple images. 
The  experimental  results  demonstrate  high  accuracy,  sensitivity,  and  specificity  in  identifying 
malignant tumors, indicating that the model can serve as a reliable tool to aid radiologists. The 
ability  to  pinpoint  lesion  locations  (through  segmentation)  while  making  a  diagnosis  adds 
interpretability to the AI’s decision, which is valuable for physician trust and clinical workflow 
integration. The high performance of our model is in line with recent advances in the field, where 
hybrid  and  multi-stage  deep  learning  models  have  achieved  state-of-the-art  results  for  breast 



cancer  diagnosis  [18],  [20].  By  reducing  human  errors  and  expediting  image  analysis,  such 
intelligent systems can potentially improve early cancer detection rates. Early detection is known 
to significantly improve survival, so deploying these AI-driven tools in screening programs could 
have a meaningful impact on patient outcomes [2].

In  addition  to  the  strong  quantitative  outcomes,  the  proposed  hybrid  framework  offers  a 
clinically  meaningful  balance  between  performance  and  transparency.  By  coupling  pixel-level 
lesion delineation with sequence-aware decision making, the system can be used not only as an 
automated classifier but also as a structured second-reader that supports radiologists in verifying 
suspicious  findings  across  complementary  views  and  follow-up  examinations.  This  dual 
functionality  is  particularly  relevant  for  high-throughput  screening  settings,  where  consistent 
localization  cues  can  reduce  interpretation  variability  and  alleviate  fatigue-related  oversights. 
Moreover,  the  modular  nature  of  the  pipeline  enables  pragmatic  adaptation:  the  CNN/U-Net 
backbone can be fine-tuned for site-specific acquisition protocols, while the sequential module can 
be extended to incorporate additional contextual signals,  such as prior annual exams or multi-
institutional  cohorts.  Hence,  beyond  demonstrating  feasibility  on  benchmark  data,  this  study 
outlines  a  scalable  pathway  for  translating  hybrid  deep  learning  models  into  real-world 
mammography workflows with improved diagnostic confidence and more explainable AI-assisted 
recommendations.

Moving forward, we plan to validate the system in a prospective clinical setting and incorporate 
feedback  from  radiologists.  An  interesting  direction  will  be  to  extend  the  model  to  handle 
additional data, such as sequential mammograms over several years or complementary ultrasound 
images, to further increase diagnostic confidence. Another extension could involve using attention 
mechanisms  or  transformer-based  modules  in  place  of  or  alongside  the  LSTM  to  capture 
relationships between image regions more explicitly. Overall, our work demonstrates the feasibility 
and effectiveness of a hybrid CNN+U-Net+LSTM model for breast cancer detection. It contributes 
to the growing evidence that deep neural networks, when thoughtfully combined and applied, can 
assist  in  early  detection  and  treatment  planning  for  breast  cancer  pathologies,  ultimately 
contributing to better clinical outcomes.
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