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Abstract

The article presents the results of the first comprehensive study in Ukraine dedicated to the automatic
detection of collaborationist messages and the classification of user accounts in social networks. Based on
a unique, hand-labelled dataset that includes more than 12,862 texts and extended corpora of over 140,000
and 400,000 messages from various Telegram groups, two models have been developed: a multi-class
model for classifying messages (pro-Ukrainian, neutral, collaborationist) and a binary model for
classifying accounts. To improve accuracy, an ensemble approach using TF-IDF, symbolic n-grams, naive
Bayesian and logistic regression was applied. The developed system demonstrates high accuracy on test
data (Accuracy = 0.9438) and is capable of effectively analysing large arrays of texts in batch processing
mode. The paper conducts a comparative analysis with modern research in the field of disinformation
detection, identifies the key advantages of the approach, and formulates the practical value of the system
for law enforcement agencies, think tanks, and information security projects. The presented results
provide the basis for further development of tools for the automated detection of collaborators in the
digital space.
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1. Introduction

On social networks, you can find many different opinions on a variety of topics. In such an
environment, people feel more relaxed and at ease, allowing them to express their thoughts
without hesitation. Therefore, social networks are a reliable source for analysing the genuine
opinions of society. This effect of social media fluency is amplified when people write messages in
a group of like-minded people. That is why collaborative groups on social networks are the best
environment for the spread of traitors to Ukraine. People from the occupied territories are
generally divided into three groups: those who left the occupation, those who remained for their
own reasons but do not hold pro-Russian views, and those who have been waiting for Russia for a
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long time and are now enjoying its occupation. People from the occupied territories are
concentrated in local groups of a specific city or town, and these are usually two types of groups:
pro-Ukrainian, waiting for the return of Ukraine, there are people from the first two groups; and
pro-Russian groups, where individuals from the last group are concentrated, they rejoice at Russia
and wait for it to seize more territories. Information will be collected from the previous types of
groups. This topic of searching for and condemning collaborators is currently very relevant, since
these persons in the occupied territories are extremely dangerous. The main reason is that they
inform the Russian military about the exact whereabouts of people who had or still have a pro-
Ukrainian position, former Ukrainian soldiers, or even their relatives. What happens to our people
afterwards is exceedingly terrible, to put it briefly, and in veiled words used by people from the
occupied territories, they are "put in basements". These persons may still not be punished, even
after the de-occupation of Ukrainian territories, which makes our people feel unnecessary and
unprotected, as these collaborators who "put them in basements" are now calmly walking around
the cities. That is why we need to support the law enforcement system and ultimately convict
collaborators in accordance with Ukrainian law. Currently, there is no such system in Ukraine, and
no dataset exists on this topic. The only publicly available information is the existence of websites
and Telegram groups that list collaborators, most of whom are from specific regions, along with a
record of crimes committed by them.

The purpose of this study is to develop an information system for searching and classifying
collaborative messages, as well as analysing and categorising user accounts. Main tasks:

1. Create a system that classifies wusers' messages on social networks as
pro-Ukrainian/neutral/collaborationist: Create a dataset of 10862 lines (messages), that is,
extract messages from a certain collaborator from social networks; Manually mark the
dataset for 10862 messages; Create a dataset from messages taken from several
collaborationist groups.

2. Divide the dataset from different users into two parts: one containing users who wrote
fewer than 50 messages, and the other containing the rest. The part of the dataset
containing messages from users who have written fewer than 50 messages will be used for
this model, while the other part will be used for the next model.

3. Create a dataset based on a pro-Ukrainian chat, where all pro-Russian messages are deleted,
and mark all messages as (-1).

4. Manually mark 2032 messages from the dataset, where the messages of users who have
written fewer than 50 messages.

5. Leave 2,000 lines in the dataset with pro-Ukrainian messages to prevent class imbalance.

6. Train the initial model on a dataset of 10,862 and 2,000 pro-Ukrainian messages, as well as
2,032 pro-Russian messages.

7. Label 88864 messages based on the created model.

8. Find a model that would allow you to most accurately mark the rest of the messages
automatically based on 11000 messages from one collaborator and part of the checked and
relabeled messages from different users.

9. Create an ensemble of the best models on 141357 messages.

10. Train the ensemble.

11. Mark the rest of the messages from different users based on this ensemble.

12. Create an ensemble based on the best models.

13. To teach this ensemble.

14. Test the model.

15. Create a system that classifies users' social media accounts as collaborators/non-
collaborators: Based on the last ensemble, mark the dataset of messages for which users
who wrote more than 50 messages wrote.

16. Find the conditions under which accounts will be classified as collaborationist.

17. Mark the accounts of users who wrote messages in the pro-Ukrainian group as 0.



18. Find the models that show the best results.
19. Train the model.
20. Test the model.

The object of the study is the processes of analysing information messages spread in social
networks. The subject of the study is the methods and means of searching, analysing, and
classifying messages of a collaborationist nature, based on the principles of computational
linguistics and machine learning. Currently, no publicly available information system classifies
collaborationist messages in Ukraine. There is no such dataset, so I had to create and label it
myself. If you look for systems with similar topics, then the closest thing you can find is systems
that detect false or spammy content, rumours or crises. Such systems utilise NLP, ML, VAE, belief
functions, and a combination of human and ML [1-4]. That is, computational linguistics and
machine learning already have examples of models that will be used in this study; however, they
have never been applied in such a context, for such a purpose, at least in the public domain. Such a
system cannot be found.

This system can help law enforcement in Ukraine identify traitors to Ukraine (collaborators), as
manually checking the social networks of each person is an impossible task in the modern world.
This system will help you quickly check messages written by any person and determine if there are
collaborative sentiments in their messages. Thus, law enforcement officers will be able to promptly
identify traitors and open cases against them, and eventually convict offenders. Additionally, this
system can be applied directly to social networks to detect and remove dangerous messages.
Thanks to this, Ukrainians will no longer need to see Russian propaganda on their social networks.
As a result, this will lead to a decrease in the number of collaborators themselves, since the fewer
people who read Russian propaganda, the fewer people who believe in it. In addition, it would be
possible to create a startup based on this system that would find pro-Russian messages and hide
them from the user, similar to such systems as stopRU (a browser extension that blocks Russian
videos on YouTube), RuFilter (an extension that allows you to disable .ru domains,
ru.wikipedia.org, sites with Russian letters) [5-6]. It is also possible to create a similar system to
identify collaborators in countries where there is a serious threat of information occupation, such
as the Baltic countries, Georgia, and Poland. With the help of such systems, it would be possible to
filter pro-Russian messages in these countries as well, because there are collaborators not only in
Ukraine but also in Russia, who do not plan to stop at us; our partners must also see and
distinguish the threat [7-10].

2. Related works

Currently, two models that were created during the study (a model that classifies messages as pro-
Ukrainian/neutral/collaborationist, and a model that classifies accounts as neutral and
collaborationist) are the first such models due to their unique themes. The closest analogues that
can be found for the first model in classifying collaborationist messages are the XLNet model [11],
which categorises pro-Russian/neutral/pro-Ukrainian tweets, and a study [12-24]. Next, we will
carry out a detailed analysis and describe each such study.

In [11], tweets from pro-Russian, neutral, and pro-Ukrainian sources were used for this model.
The results showed that accuracy initially improved with increasing data volume, but decreased
slightly when multiple datasets were used, indicating the need for a balance between data quality
and quantity. This research enhances the ability to detect and analyse disinformation in real-time,
thereby contributing to effective public information management and strategic communication
efforts during war. Despite the use of advanced models, research faces limitations such as dataset
bias, generalisation problems, high computational requirements, and a focus on specific platforms,
which limit the widespread application of their findings. XLNet is an advanced NLP model
designed to overcome the limitations of previous models, such as BERT. It is based on the
Transformer architecture, but XLNet is distinguished by its new approach to permutation-based



learning. Unlike BERT, which employs a masked language modelling technique, XLNet utilises an
autoregressive permutation-based learning objective, enabling the model to efficiently capture
bidirectional context while preserving natural language structure. This permutation approach
allows the model to learn the relationships between words in a more general manner, thereby
enhancing its understanding of linguistic relationships within a sequence. Unlike BERT, which
relies on masked language modelling, XLNet generates predictions by maximising the probability
of a sequence under all possible permutations of the factorisation order [11-12].

Article [13] is a study that analyses how the media influenced and reflected public opinion
during the first month of the war, utilising news and Telegram channels in Ukrainian, Russian,
Romanian, French, and English. They implemented binary classification using the following models
for input vectors consisting of 41 self-generated linguistic features and 116 keywords (normalised
by text length in tokens): decision tree, linear regression, support vector machine (SVM), and
neural networks, using stratified 5x cross-validation (10% for testing and 90% for training). For
comparison with the learned features, they extracted an embedding using the multilingual BERT
model and trained the linear model using it. These researchers collected 18,229 texts, 8,872 of which
contained pro-Western narratives and 9,357 with pro-Russian narratives, and conducted three
experiments: the first used data only from the news, the second used data only from Telegram, and
the third used a mixed set. Additionally, the researchers analysed their best-performing SVM model
to determine the importance of both linguistic traits and keywords using the trait permutation
method. Disadvantages of this study include poor generalisation to Telegram and French and
Romanian texts, as well as limited analysis of multimodal signals (images and videos). The figure
shows how the researchers identified the advantages and disadvantages of the methods they used:

The article [14] describes the process of creating a dataset comprising over 38 million posts
from Russian media, including state-owned outlets, as well as from social networks such as VK and
Twitter. VK primarily presents media to an audience within the country, while Twitter presents it
to an audience outside. Two different thematic models were employed: a structured topic model
and a contextually informed neural topic model (CTM - Correlated Topic Model). The Structural
Topic Model (STM) is a popular LDA-style probabilistic model that improves on previous
approaches by allowing users to include arbitrary metadata. CTM is based on a variational
autoencoder and incorporates pre-trained sentence embeddings into document representations,
thereby reducing the assumptions made about the word set by traditional models. The main results
obtained by the researchers are as follows: state media paid more attention to military topics.

In contrast, independent media used the term "war" more often, whereas state media used the
term "operation”. Scientists also encountered three main limitations: in interpretation, instability,
and oversimplification. In data, not all topics are consistent, and even in sequential issues, it is
challenging to determine completeness. For example, the CTM topic most relevant to Ukraine
(Topic 5) refers to two mostly unrecognised breakaway states in eastern Ukraine: the DPR and the
LPR, suggesting that this topic reflects clearly pro-Russian coverage of events, which we expect to
be more prevalent in state media. While word statistics and manual analysis suggest that
independent media discuss the war more frequently than state media, the model's theme models
indicate otherwise. Volatility makes it challenging to trust the results, and more research is needed
to improve consistency and reliability. Word-level metrics do not take into account context, and
most thematic models, including STMs, make assumptions about "word bag" and independence.
While CTM weakens the assumption of a "word bag" by embedding sentences, the disadvantage
compared to STM is that it does not parameterise topics using metadata.

The article [15] examines the application of GNN in detecting fake news, particularly in the
context of disinformation campaigns, such as those observed in Russia's information war against
Ukraine. This study focuses on automating the analysis of negative psychological impact in online
media using knowledge graphs (KG) and GNN-based models, including GraphSAGE, GAT and
GCN. By encoding relationships in knowledge graphs, these techniques facilitate the detection of
harmful content shared on social media. Despite promising results, the study highlights several
limitations, including reliance on large, labelled datasets, issues with the stability and accuracy of



models across different platforms, and the need for substantial computing resources, particularly
for real-time monitoring.

The article [16] explores how social media users, in particular on the Russian subreddit of the
Reddit platform, act as "visual gatekeepers of the audience", selectively sharing their view of the
world in order to influence public opinion, especially during Russia's war against Ukraine. Through
critical analysis of visual content, the study examines how goalkeepers create a visual "information
bilbashka" that reinforces their social reality and ideological views. The main findings reveal that
during polarising events, users reinforce specific narratives, often portraying Russia in a favourable
light and condemning perceived opponents, which can lead to the radicalisation and bias of visual
content. A limitation of this research is its focus on a single subreddit, which may not reflect
broader audience dynamics on other platforms or in different contexts.

The article [17] examines the themes and sentiments expressed by Ukrainian-speaking
Telegram users during the first six months of Russia's war against Ukraine, using machine learning
techniques to analyse social media data. This study employs theme modelling using non-negative
matrix factorisation with Kullback-Leibler divergence and sentiment analysis utilising pre-trained
models to categorise themes and emotional colouring of messages. A significant limitation is the
concentration of the data set on a single platform (Telegram), which may not cover the entire
spectrum of social discussions around the war.

The article [18] analyses Russia's bot-based propaganda and Ukraine's social media
counternarratives during key stages of Russia's war against Ukraine in 2022. Using TweetBERT to
model topics and integrating the BEND framework with Moral Foundations Theory, this study
examines how bots manipulated narratives to justify Russia's actions and counter NATO, while
Ukraine used similar tactics to promote solidarity and resilience. The main limitation of this study
is its exclusive focus on bot-generated content, which may not fully reflect human interactions or
the overall impact on public opinion.

The article [19] examines the impact of Twitter's policy on labelling Russian state media
accounts, analysing whether labelling has reduced the reach and influence of these accounts since
the start of Russia's war against Ukraine. Using the ARIMA model to track engagement rates before
and after the implementation of Twitter labelling on February 28, this study measures changes in
tweet reach by focusing on the number of retweets. The main limitation is the lack of a causal
relationship between Twitter's labelling policy and the decline in engagement, which may be
attributed to concurrent events such as the restriction of Russian media in Europe and the blocking
of Twitter by Russia.

The article [20] presents the OLTW-TEC method, an advanced machine learning approach for
detecting disinformation in Ukrainian-language materials that utilises a set of text classifiers and a
sliding window for dynamic online learning. The proposed method combines several classifiers to
adapt to changes in data, ensuring high accuracy and relevance in real-time scenarios. A significant
limitation of the proposed method is the high computational requirements, which can hinder
scalability, especially for large-scale or resource-constrained applications.

The article [21] examines the processing of Russian disinformation about the war using three
popular LLM-based chatbots: Perplexity, Google Bard, and Bing Chat. Using an Al audit approach,
this study examines the consistency, accuracy, and use of disclaimers in chatbot responses to
queries related to Russian disinformation narratives. The main limitation of this study is the LLM's
inherent stochasticity, which leads to significant variability in results and often inadvertently
reinforces false narratives.

The article [22] presents the Entity-Aware Approach (EAA) to identify logical errors in
Kremlin-related social media content, specifically targeting disinformation about the war in
Ukraine. Using Named Object Recognition (NER), EAA replaces named objects with generic labels
to improve model performance by reducing confusion in error detection, especially when applied
to Kremlin tweets. The results demonstrate that when combined with the DeBERTa language
model, EAA outperforms the underlying models on both non-domain-specific datasets (LOGIC) and
domain-specific datasets (RuFal). However, the current study is limited in that it relies on a single



NER approach and dataset. Therefore, additional datasets and ensemble methods should be
considered in future work.

The article [23] explores the role of Ukrainian and Russian diaspora communities in spreading
disinformation on social media, with particular emphasis on content related to the war in Donbas
and the MH17 crash. This study uses a combination of social media analysis and ML classification
methods to identify user communities and classify them by diaspora affiliation (Ukrainian, Russian,
or other). A significant limitation of the study is the lack of multilingual data, as it is limited to
English-language tweets, which may not accurately reflect the full extent of diaspora participation
in disinformation campaigns.

The purpose of the latest study [24] is to show the potential of social networks for cyber
intelligence in the context of the Russian-Ukrainian cyber war. Language detection and translation,
sentiment analysis, TF-IDF, LDA, Porter stemming, n-grams, and real-time monitoring using the
Twitter API were used for analysis. The results of the study showed that discussions about
sanctions and energy security dominate the topics of Russian propaganda, the peak of negative
sentiments fell on mass DDoS attacks at the end of November 2022, and a high awareness of
Ukrainians on the topic of information security and "cyber patriotism" was also recorded on the
positive side. Disadvantages of the study include multilingualism and translation, data noise, short
texts, API limitations, topic shift, class balance, credibility, multimodality, georeferencing, and
distribution of attacks.

Let's compare the results of the research [11-24] with those of our study. In contrast to the
XLNet-based research [11], we used a variety of data sources to identify collaborationism: from
collaborationist groups on Telegram to a highly patriotic group on Telegram (in particular,
Sternenko's chat [24]). In addition, only 42000 data points were used in this study. In contrast,
103,759 messages were used for the classification model of collaborationist messages (10,862 from
one collaborator, 2,000 messages from a pro-Ukrainian group, and 90,897 messages from a
collaborationist group). Additionally, the researchers manually labelled only 5,000 messages, while
12,862 messages were manually labelled.

Although the study [14] has a sufficient amount of data (38 million), which is more than my
dataset, and examines messages from two social networks — VK and Twitter, the researchers only
created a dataset, not a machine learning module. This dataset contains only pro-Russian messages,
which will complicate future research based on it, as it requires pro-Ukrainian and neutral data to
train quality and impartial models. Although the study [15] bears almost the greatest similarity to
mine, ours has significant advantages and differences. In particular, the researchers limited
themselves to only 18229 messages. In comparison, ours includes 401601 messages for the model
that classifies user accounts (372941 messages from pro-Russian groups and 39601 from pro-
Ukrainian groups) and 141360 messages for the model that examines messages, without attribution
(39601 of the same data from a pro-Ukrainian chat, 90897 messages from pro-Russian chats, and
10862 manually labelled messages from an individual collaborator. Compared to my metrics, their
models yield mediocre results, despite using more modern models.

In contrast to the study [15], our models yield excellent results on various platforms. Notably,
we tested messages from accounts extracted from Twitter, and the model demonstrated quite good
results. Most likely, the size of my dataset for the model affected its performance, allowing it to
distinguish between different messages. Unlike the study [16], which investigated only an
"information bubble" in the form of a Russian subreddit, models about collaborators were trained
on data from two pro-Russian and one pro-Ukrainian Telegram chats.

The advantage of our models compared to the study [17] is that the data used to train them
includes not only Ukrainian-speaking users but also Ukrainian speakers, Russian speakers, and
users with a mixture of these languages. The study [18] only examined messages written by bots,
whereas our research utilised messages written by real people. In addition to the fact that the study
[19] used data from Twitter, it examined only Russian media. It identified the lack of a causal
relationship between Twitter's labelling policy and the decline in engagement, which was



attributed to concurrent events such as the restriction of Russian media in Europe and the blocking
of Twitter by Russia.

The primary issue with the study [21] is the inherent stochasticity of the results, which leads to
significant variability in responses and often inadvertently reinforces false narratives. In contrast,
naive Bayesian and logistic regression models do not have such problems. In addition, this study
focused solely on chatbots, whereas our message included collaborators, which changes the study's
purpose. There is a significant drawback in the study [22], as it relies on a single NER approach and
dataset. In contrast, different datasets are used, and an ensemble is created by combining the two
vectorisation methods and models. In addition to the fact that the study [23] focuses solely on
diasporas, a disadvantage of this study is the lack of multilingual data, as it is limited to English-
language tweets, which may not accurately reflect the full extent of diaspora participation in
disinformation campaigns.

Although many have researched Russian propaganda and Russian narratives [1-10], no one has
yet investigated the role of collaborators. And their rhetoric is still different, for example, he writes:
"I'm glad the occupation came, when Russia came, it got better," while the propagandist writes:
"The Ukrainian military is shelling themselves," although the collaborator uses the rhetoric of a
propagandist in many ways, he still has unique types of messages that are not characteristic of
others. Main disadvantages:

One social network.
Restrictions by polar groups.
Marking all messages from the pro-Ukrainian group as pro-Ukrainian.

Ll e

Language restriction.

To train the model, data was used exclusively from Telegram, ignoring other social networks,
such as Twitter, Instagram, or Vkontakte. It can lead to the fact that models can understand and
classify messages written on the Telegram social network well, but show inferior results when
given messages written on other social networks, since the structures of writing messages on
Telegram and other social networks differ.

Only two polar groups on Telegram were used to train and test the models: two collaborationist
groups and one pro-Ukrainian group. It can lead to models poorly targeting "neutral people”, i.e.,
those who do not express a pro-Ukrainian or pro-Russian position. Although models know what
neutral messages look like, they are often presented by people who already have a clear pro-
Ukrainian or pro-Russian stance.

To position users with a pro-Ukrainian position, not counting users in pro-Russian groups that
acted as the opposition, messages from a pro-Ukrainian group were used, where all Russian
propaganda is filtered (a check was carried out, and no pro-Russian messages were found), so it
was decided to mark all messages from this group as pro-Ukrainian messages. It can lead to the
model recognising neutral messages as pro-Ukrainian.

Only two languages were used for the models: Ukrainian and Russian, as well as a combination
of these languages. It entails significant limitations; in particular, the model cannot recognise other
languages, although collaborators can write messages in different languages, spreading propaganda
to users who do not know Ukrainian and Russian.

The primary issue is that there is no single model that examines collaborators, although
numerous studies have been conducted on Russian propaganda. Additionally, in studies examining
Russian propaganda, there is typically very little data available, so it is crucial to utilise sufficient
data. It is necessary to develop the first model in Ukraine that classifies collaborationist messages,
as well as a model that categorises accounts as neutral or collaborationist.



3. System analysis of the product development

The presented work is devoted to the development of an automated information system, "Sphere1",

designed for monitoring, collecting, analysing, and classifying information flows (text messages) in

social networks. The primary goal of the project is to automatically identify and categorise content
and accounts that exhibit signs of collaborationist activity. This toolkit is critical for ensuring

information security and countering disinformation campaigns. The Sphere system is aimed at a

wide range of institutions and researchers whose activities are related to the analysis of the
information space and national security:

1. Moderators and Analysts of Information Security in Government Institutions.

Law enforcement agencies are responsible for identifying and documenting threatening
information activities.

3. Media and investigative journalists who monitor the information environment.

Researchers in propaganda and disinformation use techniques to obtain large, labelled data

sets.

In the context of this study, the following specialised terms are used, presented in Table 1.

Table 1

Key concepts and terminology

Term

Definition

Stance detection

Automated categorisation of the text based on the author's attitude to
a specific topic. In this system, classification is carried out into three
categories: pro-Ukrainian, neutral, and collaborationist.

Collaborative content

Messages or patterns of account behaviour that express support for
the occupation administration or spread pro-Russian propaganda
rhetoric.

Weighted count
vectorizer

A method of constructing a vector representation of text, where each
lexical element (token) is assigned a weight reflecting its importance
in the corpus (for example, TF-IDF).

Count character
n-grams

Vectorisation of text based on the frequency of occurrence of
sequences of characters of a given length. It is used to increase the
model's resistance to spelling, slang, and transliteration variations.

Naive strict

Specific configuration of a naive Bayesian classifier (in particular,
Multinomial Naive Bayes) with tight settings of a priori probabilities.

Logistic regression

Linear model used for binary or multiclass classification. Evaluates
the probability of an object belonging to a particular class through the
logistics function.

The analysis of the current situation in the field of detecting hostile information activities
revealed a number of methodological and empirical gaps that need to be addressed:

Research focus.

Ll e

Limited training data.
Ethical challenges and classification accuracy.
Class Imbalance and the Problem of Pro-Ukrainian Messages.



The vast majority of scholarly papers focus on general aspects of Russian propaganda and pro-
Russian narratives. There is a shortage of specialised studies that focus directly on identifying
collaborationist content. Current models are often trained on relatively small datasets (up to 20,000
examples), and the number of qualitatively manually labelled messages usually does not exceed
5,000. It significantly limits the generalisation and accuracy of existing classifiers. The use of
classifiers at the state level requires extremely high precision. False positives can have serious
social consequences. Existing systems, which demonstrate a metric F; < 0,93, even on larger
samples, still carry significant risks. Most models do not adequately account for or handle pro-
Ukrainian messages, which often leads to their misclassification as "pro-Russian", likely due to
similarities in the level of aggressive language. The introduction of a separate label for pro-
Ukrainian messages is crucial to enhancing the model's accuracy.

The Sphere system is designed as a two-component tool consisting of a model training module
(Table 2) and a new data classification module (Table 3). The system is an ensemble of machine
learning models designed for automatic multiclass classification of Ukrainian text messages, taking
into account technical limitations (Table 4). Main goals:

1. Automatic classification of texts into three target categories: pro-Ukrainian, neutral, and
collaborationist.

2. Achieving high classification accuracy through the use of an ensemble architecture.

3. Processing large amounts of data (up to 400,000+ messages).
Providing a Confidence Score for each forecast.

Table 2
Model training module detail
Function Purpose Job Description Input/Output
load_and_ Loading, 1. Upload files A, B, C (with different Output: combined,
preprocess  processing and column names). 2. Standardisation of  cleaned dataset.
_datasets unifying columns to ["text", "label"]. 3. Combining
multiple into a single DataFrame. 4. Clearing of
training empty/incorrect entries. 5. Application of
datasets. pre-treatment.
preprocess Standardisation 1. Processing of NaN values. 2. Input: text string.
_text and purification Conversion to lowercase. 3. Removal of = Output: cleaned,
of a single text  extra characters/spaces. 4. Normalisation =~ normalised text.
string,. of spaces.
reate_ense Initialisation of 1. Creating a TfidfVectorizer =~ Output: A set of
mble_ ensemble (max_features=10000, n-gram=(1, 2)). 2.  non-configurable
model components Creating a CountVectorizer for the vectorizers and
(vectorizers and character level (analyzer='char, n- models.
classifiers). gram=(2, 4), max_features=5000). 3.
Initialisation of MultinomialNB
(alpha=1.0) and LogisticRegression (with
optimisation parameters).
train_ A complete 1. Label coding, data separation (80% Input: array of texts
ensemble cycle of Train, 20% Test) with stratification. 2. X, variety of labels.
ensemble Vectorisation of texts in two ways (TF- Output: trained
training and  IDF and symbolic). 3. Training of components,

quality individual models. 4. Creating an quality metrics.




assessment.

ensemble through averaging probabilities.
5. Calculation of quality metrics
(accuracy, F1, classification report).

save_ Serialisation of  Save the complete component dictionary = Output: Model file
model the trained (vectorizers, models, label encoder, on disk.
model for metrics) to a .pkl file using joblib.
permanent
storage.
predict_  Classification of 1. Pre-processing of the input text. 2.  Input: text, model
with_ a single text Double  vectorisation. 3.  Getting components.
ensemble using an probabilities from each model. 4. Output: predicted
ensemble. Averaging probabilities for the final label, confidence
forecast. 5. Decoding the label and level.
calculating the confidence level.
Table 3
Detailing the new data classification module (batch processing)
Function Purpose Job Description Input/output
(Program
Name)
load_model  Deserialization of Loading a dictionary of components Input: The path to
asaved model from a .pkl file using joblib, the model file.
from disk. checking for the existence of the Output: Model
file and handling errors. Component
Dictionary or None.
predict_batch Efficient batch 1. Splitting input data into packets Input: list of texts,

forecasting for
large amounts of

(default is 1000). 2. Pre-processing
and filtering of blank texts. 3.

model, packet size.

Exit: lists of

data. Parallel vectorisation and predicted labels and
forecasting to improve efficiency. 4. confidence.
Progress Display (tqdm).
load_and_ A complete cycle 1. Uploading an Excel file, Input includes the
predict_ of labelling a validating the structure. 2. Call input file, model, and
dataset large dataset (for batch prediction for all texts. 3. save path. Output is
example, 400,000 Adding results to the DataFrame. 4. a DataFrame with
messages). Saving the results to a new Excel forecasts.
file.
analyze_ Detailed 1. Categorisation of results by Input:  DataFrame
predictions statistical and confidence levels (Low: 0.0-0.5, with forecasts.
qualitative Medium: 0.5-0.7, High: 0.7-0.9, Very Output: text
analysis of High: 0.9-1.0). 2. Statistical analysis analytical report.
classification of the distribution. 3.
results. Demonstration of examples of the

most/least reliable forecasts.




Table 4
Technical limitations

Category Requirement/Restrictions
Hardware RAM minimum 8 GB for processing large datasets (400,000+). HDD with a
requirements minimum of 2 GB to store models and results. CPU — Recommended multi-

COre processor.

Software Python 3.7. Required libraries: pandas, numpy, scikit-learn, joblib, tqdm,

dependencies openpyxl (with eligible versions).

Data Limitations =~ Format Excel files only (.xlsx). UTF-8 encoding. Required columns: "message

text" (for classification), "text" and "label" (for learning). The text length is
optimally up to 1000 characters.

Functional Supported Operations: Multiclass Classification, Confidence Score, and
limitations Batch Processing. Does not support regression, clustering, or online
learning.

Model limitations  The type of training is exclusively Supervised Learning. Architecture - fixed

ensemble (Naive Bayes and Logistic Regression). Needs complete retraining.

Performance limitations and accuracy:

1.

4.

Processing speed, in particular, involves training for 10-30 minutes on datasets of up to
10,000 records, classification (batch) of approximately 1000-2000 texts per minute
(depending on equipment configuration), and a recommended batch size of roughly 500-
2000 records.

Memory limit, i.e. the maximum number of characters, is fixed (10,000 TF-IDF + 5,000
characters) and recommended maximum dataset size: up to 500,000 records.

Expected accuracy, in particular, optimal conditions: 80-95% accuracy, real conditions (non-
ideal data): 70-85% accuracy and minimum acceptable accuracy 60%.

The actual accuracy achieved (Accuracy) is 0,9438.

Successful operation of the system requires compliance with the following conditions:

1.

Preparation of the environment - complete installation of all software dependencies and
provision of the necessary hardware power.

Quality of instructional data — the use of high-quality, consistent, and correctly labelled
data, as well as the relative balance of classes to achieve the best results.

Deployment Procedure - Strict Sequence: Training — Verification — Classification of New
Data.

The Sphere2 system is a specialised machine learning tool designed to binary classify users of

social networks and messengers as "collaborators" or "non-collaborators". The classification is

based on a comprehensive analysis of text messages, as well as the author's behavioural and

temporal activity patterns. The goal is to integrate linguistic and metadata to build a robust user
profile. The Data Processing and Preparation Module is responsible for collecting, consolidating,
and initially cleaning the input data for further analysis (Table 5). A hybrid model integrating text
and numerical features is used to classify the user (Table 6—7). The model training and validation

module provides training and selection of the optimal classifier (Table 8).



Table 5

Data Processing and Preparation Module

Subfunction

Action

Description

Downloading
data

Consolidation and
validation of sources.

Support for .xlsx format. Automatic merging of
the primary and additional datasets. Mandatory
validation of the presence of key fields:
'marking’, 'author id', 'message text'.

Text cleaning
and

Noise removal and
standardisation of text.

Includes removing URLs, mentions
(@username), hashtags (#), normalising spaces,

normalisation and lowercase text, and handling of Missing
Values (NaN).
Dataset Preparation of data at Merge messages into an author's profile.
balancing the author level for Automatic labelling of authors based on a
training. configurable threshold. Duplicate deletion.
Table 6
Feature engineering module
Type of signs  Specification Parameters
Textual Vectorisation of the TF-IDF vectorisation at max. 10,000 signs. N-
features consolidated body of the grams (1, 2) (unigrams and bigrams). Term
author's messages. filtering: minDF = 5, maxDF = 0.70.
Numerical Behavioural and metadata ~ Quantitative: total number of messages; average
features of activity. message length; number of unique
groups/channels. Temporal: duration of activity
(in days); activity intensity (messages/day).
Normalisation  Standardisation of Applying StandardScaler to numeric features.
of signs numerical characteristics. ~ Saving scaler parameters.
Table 7

User retention and classification

Function

Description

Serialisation of
components

Save the trained model, TF-IDF vectorizer, and StandardScaler in .pkl
format to ensure reproducibility and fast deployment.

Batch classification

Handling multiple users. Grouping messages by 'author id', feature

extraction, binary classification with configurable threshold (default 0.5).

Confidence score

Calculation of the confidence level of the forecast based on the deviation
of the probability from the threshold of 0.5.




Table 8
Model Training and Validation Module

Function Detail
Algorithm Multi-algorithmic approach support: Logistic Regression, Random Forest,
support SVM. Automatic selection of the best model according to the AUC (Area Under

the Curve) metric.

Validation and  Using 5-fold cross-validation. Stratified division into training/test samples

evaluation (80/20). Calculation of AUC-ROC, Classification Report, and Confusion Matrix
metrics.

Class Using a built-in mechanism classweig = balanced, in models to compensate for

Imbalance potential class imbalances.

Handling

The system provides tools for visual and statistical analysis of data and modelling results
(see Table 9).

1. Visualisation: message distribution histograms, collaborative message fractions, class ratio
diagrams, ROC-curves, and error matrices.

2. Statistical Analysis: Analysis of the balance of the dataset, calculation of the class imbalance
coefficient, and statistics on data sources.

Table 9
Specification of input and output data
Data Type Format Required fields
Incoming (training) Excel (.xlsx) 'marking' (0/1), 'author id', 'message text'
Input (classification) pandas '‘Message Text'
DataFrame
Weekend Dictionary 'is_collaborator' (bool), 'probability’ (float),
(classification) 'confidence' (string)

Technical and Performance Limitations:

1. The minimum requirements are a minimum of 1 message for user classification and a
maximum number of TF-IDF traits of 10,000.

2. Language restrictions — support is optimised exclusively for the Ukrainian language.

3. Performance - recommended max. Number of authors for batch processing: 10,000.
Classification time per user: < 5 seconds.

To ensure the validity of the results, several conditions must be met, including the balance of
classes and the validity of the results, as well as the class ratio in the study sample. The minimum
number of samples for each class, < 1:10, is 100. The system does not guarantee 100% accuracy. The
results should be interpreted with consideration for the level of confidence. Regular expert and
methodological verification is necessary. The criteria for the successful functioning of the model
are the achievement of the following minimum metric values on the validation sample:
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"AUC-ROC" = 0.75.

"Precision" left (for the "collaborator” class right ) = 0.70.
"Recall" left (for the "collaborator" class right ) = 0.65.
F1-score= 0.67 (for both classes).

The leading actors for the first model (message classification, Fig. 1):

Y .

Data Scientist — develops and trains the model (the first script).
Data Analyst — uses the model to label large datasets (second script).
Developer - integrates the model into applications.

End User - uses to classify individual texts.

The two main processes for the first model (message classification, Figure 1):

1.

0

Model development (training pipeline): Loading training data from 3 Excel files; Pre-
processing and merging of datasets; Ensemble training (Naive Bayes and Logistic
Regression); Evaluation and preservation of the model.

Using the model (Inference Pipeline): Loading the trained model; Batch classification of
large datasets (400,000 records); Analysis of results and confidence statistics; Saving marked
datasets.

Developer Data Analyst End User New Data
< Autornation > Bala Anaiyé N
Eneehgiole Model : Review Review
i Reviews Information Ensemble Intermation
Payment & Classification Information Training
Authenilicate Ensemble Mode Systern
Classification Extend>
- Ensemble Model.
<<includas> <<include>f Ensemble i nformation 9 extensionpomts
Extends - Create
5 Classfication Encls
Testing paxk
Ersambe spid's <stagd>>
/ ™~ ]
3 Train NB
[/ <«<include>> <include>> SRRy
Recode /
Text . Reviewing information 5
‘ <<Stagd>>
/ Create
1z = Ensemble
Process
New Texts

<<include>> Vaiidate
Model
Resulis Display
=
@ PreTeain Processing
Confidence

[Zmniolit ¥ Putiion peercos 1

Clean Remove
Training Text Dad
Samples

<<include>>

Clean

Training Text

© <Automation — Reducringinform —> Reviewing Informration I:I Ensemble Data Downloading |:| Ensemble Data Develops D Recoverse

Figure 1: Use case diagram for the first model (message classification).

The main components for the first model (message classification, Fig. 2):

—_

N

TextPreprocessor — responsible for preprocessing the text (lowercase casting, removing
extra spaces).

DatasetLoader - loads and merges different datasets (ukr_messages mark.xlsx,
2000_messages_labeled_complete.xlsx, messages_noemoji.xlsx).

FeatureExtractor — creates features using TfidfVectorizer and CountVectorizer.
EnsembleClassifier — contains two models (Naive Bayes with Logistic Regression) and
performs ensemble prediction.
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DatasetLoader

<base_path : string
[+load_and_preprocess_datasets(): DataFrame
load_ukr_messages() : DataFrame
lload_labeled_messages() : DataFrama
load_noemoji_messages() . DataFrame
l-combine_datasets|df1, df2, df3): DataFrame
l-clean_data(df : DataFrame): DataFrame

ModelTrainer — coordinates the process of training models.
ModelPersistence — Responsible for saving and loading models.
PredictionEngine — performs predictions for new data.
ResultAnalyzer — analyses the results of forecasting.
MainApplication is the main class that coordinates all processes.

|+fidf_vectorizer : Tfidf\Vectorizer

TaxtP

+preprocess_text(text : string) : string
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Figure 2: Class diagram for the first model (message classification).
Key features of the architecture for the first model (message classification):

The ensemble approach combines two different models with distinct vectorizers.
Modularity — each component has a clearly defined responsibility.

Batch processing — support for efficient processing of large amounts of data.
Persistence — the ability to save and load trained models.
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Actors (system users) for the second model (account classification, Fig. 3):

1. The security analyst is the primary user for identifying potential collaborators.
Community moderator — a person who uses moderation tools to manage online
communities.

3. Researcher — works with model training and evaluation.
System administrator — manages the technical aspects of the system.

5. An API client is an automated system that uses a model.
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Figure 3: Use case diagram for the second model (account classification).
The main use cases for the second model (account classification):

1. Training and setup: Train the model on new data; Evaluate the quality of the model; Adjust
the classification threshold; Save/load the model.

2. Classification: Classify an individual user; Batch classification of multiple users; Analyse
user messages.

3. Analytics: Get classification statistics; Generate ROC curves and confusion matrices; Export
results.

4. Auxiliary functions: Cleaning text data; Extracting features from messages; Text
vectorization; Normalisation of numerical features.

The main classes of the class diagram for the second model (account classification, Fig. 4):

1. CollaboratorClassifier is the main class of the system responsible for classifying users as
collaborators. Contains loaded ML models, TF-IDF vectorizer, and scaler for feature
normalisation. Performs text cleaning, feature extraction from messages, and probability
prediction.

2. BaseClassifier is an abstract base class that defines a standard interface for all machine
learning models (fit, predict, predict_proba).

3. LogisticRegression, RandomForestClassifier, and SVC are specific machine learning models
that inherit from the BaseClassifier class. Each model has its own particular parameters
(random_state and class_weight) and implements both training and forecasting methods.

4. TfidfVectorizer — Responsible for converting text to numeric vector representations using
the TF-IDF method. Configured to work with the Ukrainian language with parameters for
n-grams and filtering rare/frequent terms.

5. Pipeline — creates sequential data processing pipelines that combine vectorisation and
classification steps into a single process.

Utility classes for the second model (account classification):



ModelTrainer coordinates the process of training models, performs cross-validation,
compares different algorithms, selects the best model, and stores it.

DataProcessor — is responsible for loading Excel files, cleaning text data (removing URLs,
mentions, hashtags), splitting into training/test samples, and vectorising text.
ResultsManager — manages classification results, saving them in Excel format, generating
classification reports, and building ROC curves and confusion matrices for visual analysis.
FileAnalyzer is a high-level class for analysing Excel files, which coordinates the entire
process: data upload, individual analysis of each user, and the formation of final results.

Key features of the architecture for the second model (account classification):

1.

Multi-model approach - the system supports three different ML algorithms (Logistic
Regression, Random Forest, SVM) with automatic selection of the best.

Combined features are a combination of text features (TF-IDF) with numerical metrics
(number of messages, average length, activity).

Modularity — a clear division of responsibility between components (data processing,
training, analysis of results).

Persistence — saving trained models and vectorizers for later use.

Batch processing is an effective method for analysing data from multiple users in a single
Excel file.

Reliability - error handling and test mode in the absence of trained models.

Multilingualism is an adaptation of the Ukrainian language with special rules for text
cleaning.

Terms of reference for model 1 (classification of messages):

L e

Accuracy = 94%.

F1-score for each class = 0.92.

Support for processing large amounts of data (100,000+ samples)
Ability to work with various data sources (.xIsx files).

Terms of reference for model 2 (classification of accounts):

1. AUC-ROC =0.97.

2. Precision for the "collaborator" class > 0.82.

3. Recall for the class "collaborator" = 0.97.

Architecture:

1. An ensemble approach, combining different algorithms.
2. Support for various text vectorisation methods.

3. Modular architecture for easy component upgrades.

Data processing:

1. Pre-processing of the Ukrainian text.

2. Removal of URLs, mentions, and extra characters.
3. Normalisation of case and spaces.

4. Vectorisation using TF-IDF and Count Vectorizer.
Algorithms:

1. Naive Bayes with TF-IDF vectorisation.



2. Logistic Regression with symbolic vectorisation.
3. Ensemble methods for combining results.
4. Support Vector Machine as an alternative algorithm.
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Figure 4: Class diagram for the second model (classification of accounts).

4. Selection of methods and means of the product being developed

This section presents a systematic analysis of experimental results obtained during training and a
comparison of models for the binary classification problem of social media accounts. The purpose
of this study is to determine the optimal model that achieves the highest accuracy in detecting
collaborationist accounts under conditions of limited labelled data availability, significant class
imbalance, and high text message noise levels. More than thirty combinations of vectorisation
methods and machine learning algorithms are considered, including various options for adjusting

sensitivity thresholds and class weighting factors.



The development of an information system for automatically detecting collaborationist
messages and classifying accounts in social networks requires the use of methods capable of
working with large arrays of short, noisy, and stylistically heterogeneous text data. As part of the
study, a unique multi-source corpus was formed, comprising a manually marked dataset of 12,893
examples, as well as two automatically labelled datasets with a volume exceeding 140,000
examples. And 400 thousand messages, respectively. Such data properties determine special
requirements for the choice of processing methods: support for multilingualism (Ukrainian and
Russian), resistance to spelling variations, the ability to capture signs of transliteration, distortions,
jargon, and short messages. With this in mind, the requirements for modelling have been formed:

High-quality classification on data of various natures.
Interpretation of results, necessary for analytical application.
Moderate computing costs.

Scalability to process hundreds of thousands of texts.

Gk W=

Resistance to class imbalances and to noisy data.

Taking into account these criteria, the study conducted a step-by-step comparative analysis of
vectorisation methods and classification algorithms, while also considering the potential use of
modern depth models.

In the educational data, the distribution of classes was uneven: class 0 (non-collaborators)
accounted for approximately 63,6%, while class 1 (collaborators) comprised 36,4%. Such an
imbalance is typical of the real online environment and requires the use of weighting strategies,
threshold correction, and specialised analysis of F1 metrics for each class. Accuracy indicators in
binary models under such conditions are insufficient to conclude; therefore, F1-macro (balanced
average) and F1 for class 1 were chosen as the key metrics, as the primary goal of the system is to
achieve a balanced average. Pre-processing included case normalisation, text cleaning of links,
mentions, and redundant characters, and tokenisation. As a result of the analysis, it was
determined that classical vectorisation methods — TF-IDF and symbolic n-grams — are best suited
for the corpus, where a significant portion of the content is represented by short and spelling-
erroneous messages (Table 10). TF-IDF (unigrams and bigrams) provided an effective capture of
general topics, keywords, and phrases characteristic of a collaborationist, neutral, or pro-Ukrainian
position. Instead, symbolic n-grams (2-4 characters) proved to be critical for identifying speech
patterns characteristic of Russian-language propaganda and content with intentional phonetic
distortions. They also made it possible to compensate for inaccuracies related to the use of surzhyk,
jargon and transliteration. A significant advantage of the combination of lexical and symbolic
vectorizers was the ability to cover both semantic and formal features of the text without losing
essential information. During the experiments, several algorithms were tested, including
Multinomial Naive Bayes, Logistic Regression, SVM, Random Forest, and deep neural models (as
part of the analogue analysis). The results demonstrated that:

1. Multinomial Naive Bayes performed best in combination with TF-IDF, as it is well-suited for
modelling the distribution of words in short messages.

2. Logistic Regression, in combination with symbolic n-grams, made it possible to most
accurately separate stylistically different types of speech.

3. Although SVM achieved high performance on valid data, it required significantly more
resources and exhibited poorer stability on significant cases.

4. Random Forest has proven to be less effective due to its weak ability to work with high-
dimensional feature spaces.

Ensembling two models achieved the best results — Naive Bayes (TF-IDF) and Logistic
Regression (char-based), which enabled the combination of their strengths. The ensemble
demonstrated the highest accuracy and stability in large enclosures, as well as the lowest rate of



misclassifications in critical classes, particularly in distinguishing between collaborationist and
non-collaborationist messages.

Within the framework of the comparative analysis, modern approaches described in the
literature were examined, including XLNet, BERT models, graph neural networks (GNN),
contextual autoencoders (VAE), and multimodal architectures. Despite their high performance in a
number of studies, these models have significant limitations for this task:

1. High computational complexity renders them impractical for widespread use in analysing
data arrays with volumes of hundreds of thousands of records.

2. There is a need for long-term, additional training on specialised data to achieve optimal
performance in low-resource languages (Ukrainian/Russian).

3. The complexity of interpretation is crucial for the application of the model in security and
government settings.

4. A tendency to contextual "smoothness", due to which models can miss local stylistic
markers important for detecting propaganda.

These factors determined the feasibility of using an ensemble of classical models that provide an
optimal balance between accuracy, stability and practical suitability.

Given the class imbalance in the initial dataset, augmentation techniques were applied,
including increasing the number of examples from the smaller class and using weighting factors
during training. The initial distribution of labels is Class 0 — 10829 and Class 1 — 2064. The final
distribution of labels after augmentation: 0 — 10829 and 1 - 6192. Additionally, a system of
categorising model confidence levels (low, medium, high, and very high) was implemented,
allowing for the use of a human-in-the-loop mechanism to enhance the accuracy of critical
decisions. Checking the quality of the model involved not only analysing metrics (accuracy, F1, and
ROC-AUC) but also a manual expert assessment of classification errors, which enabled the
identification of hidden patterns and optimisation of the ensemble.

Table 10
Comparison of methods based on actual experiments
Method/Model Dignity Flaws Need for
resource
s
TF-IDF and High speed; effectiveness on  Sensitivity to words that are not Low
Naive Bayes short texts; noise resistance; in the dictionary; Less depth of
Simple interpretation context
Char n-grams Perfectly captures High dimensionality of features; = Medium
and Logistic transliteration, jargon, needs regularisation
Regression spelling variations; high
accuracy; resistance to
distorted text.
SVM High accuracy on clean High computational complexity, High
data; Good work with poor scalability, and long training
difficult decision boundaries
Random Forest Works without Does not work well in high-sized = Medium/
normalisation requirements; spaces; Low accuracy in word High

Noise resistant problems




BERT / mBERT Deep understanding of The need for GPUs, long-term Very

(embeddings) context; Best Metrics in Big ~ additional training, and complex high
Problems interpretation can skip local
markers

XLNet / SOTA Maximum quality in large =~ Extremely high learning difficulty; Extremel

Transformers systems; good risk of overtraining; Resource y high
multilingualism consumption
GNN/VAE Work with user The need for graph data, the High
relationships, detecting not complexity of architecture, and
only textual but also the unsuitability for a simple text
behavioural patterns. pipeline

As a result of a comparative analysis of the methods, it was demonstrated that the ensemble of
Naive Bayes (TF-IDF) and Logistic Regression (char n-grams) offers the best balance of accuracy,
speed, practical stability, and interpretability of results. Unlike deep neural networks, this approach
does not require significant resources and demonstrates high efficiency on large text corpora,
making it optimal for the task of automatically detecting collaborationist content.

A comprehensive test of several machine learning classification algorithms was conducted to
assess their application in the binary detection of collaborationist activity (class 1: collaborator;
class 0: non-collaborator). Three variants of TF-IDF vectorisation were used:

1. tfidf word balanced (based on words).
2. tfidf char balanced (based on symbolic n-grams).
3. tfidf mixed (a combination of both approaches).

The Support Vector Machine (SVM), Logistic Regression, Random Forest, and Gradient Boosting
classifiers were tested, each in two configurations: with standard balancing (_balanced) and with
increased positive class sensitivity (_sensitive, with a dynamic threshold of 0.35). The educational
sample is characterised by a significant imbalance, where the share of the negative class (class 0) is
approximately 63.6% (8663 samples), and the share of the positive class (class 1) is approximately
36.4% (4953 samples).

Let's describe the results of model training for binary classification for ten models (Table 11): (1)
svm_balanced, (2) svm_balanced_sensitive, (3) svm_manual_weight, (4)
svm_manual_weight_sensitive, (5) logistic_balanced, (6) logistic_balanced_sensitive, (7)
random_forest_balanced, (8) random_forest_balanced_sensitive, (9) gradient_boosting, and (10)
gradient_boosting_sensitive. The top 10 combinations by Fl-macro are highlighted in bold. The
best combination for the corrected score is the wvectorizer tfidf char balanced - model
svm_manual_weight (model 3, highlighted in the table in italics).

Table 11
Evaluation of models for binary classification

Model 1 2 3 4 5 6 7 8 9 10

Dynamic 0.400 0.350 0.400 0.350 0.400 0.350 0.400 0.350 0.400 0.350
threshold
for 1

Class Distribution in Learning Data{1.0: 4953, 0.0: 8663}
Class percentages{np.float64(0.0): 0.6362367802585194, np.float64(1.0): 0.3637632197414806}
Vectorizer tfidf word_balanced




Accuracy 0.9333 0.9319 0.9815 0.9809 0.8990 0.8822 0.9786 0.9721 0.9195 0.9222
F1-macro 0.9281 0.9269 09801 09795 0.8932 0.8773 09770 09702 09113 0.9152
Fi1- 0.9334 09321 09815 0.9810 0.9000 0.8840 0.9786 0.9722 0.9187 0.9218
weighted

F1- 0.9087 0.9079 09749 09741 0.8685 0.8528 0.9710 0.9627 0.8844 0.8908
binary(1)

F1 Class 0 0.9475 0.9459 0.9854 0.9849 09180 0.9018 0.9830 0.9777 0.9383 0.9395
F1 Class 1 0.9087 0.9079 09749 09741 0.8685 0.8528 0.9710 0.9627 0.8844 0.8908
Prediction {2159, {2124, {2139, {2133, {2028, {1919, {2123, {2099, {2274, {2217,
distribution 1246} 1281} 1266} 1272} 1377} 1486} 1282} 1306} 1131} 1188}

{0:X, 1:Y}

Vectorizer tfidf char balanced

Accuracy 0.9430 0.9421 0.9862 0.9844 0.9292 0.9210 09715 09615 0.9633 0.9612
F1-macro 0.9390 0.9382 0.9852 0.9833 0.9250 0.9170 0.9696 0.9592 0.9608 0.9587
F1- 0.9432 0.9425 09862 0.9845 0.9298 0.9219 09717 09619 0.9635 0.9615
weighted

Fi1- 0.9232 0.9227 09813 0.9790 0.9071 0.8987 0.9620 0.9494 0.9509 0.9484
binary(1)

F1 Class 0 0.9547 09538 0.9891 09876 0.9429 09353 0.9772 0.9689 0.9707 0.9689
F1 Class 1 0.9232 0.9227 09813 09790 09071 0.8987 0.9620 0.9494 0.9509 0.9484
Prediction {2118, {2095, {2131, {2125, {2051, {1989, {2093, {2053, {2099, {2084,
distribution 1287} 1310} 1274} 1280} 1354} 1416} 1312} 1352} 1306} 1321}

{0:X, 1:Y}

Vectorizer: tfidf _mixed

Accuracy 0.9307 09248 09812 09786 0.8966 0.8816 0.9747 09671 0.9204 0.9213
F1-macro 0.9251 09192 09798 09770 0.8904 0.8766 0.9730 0.9649 09124 0.9139
F1- 0.9307 0.9250 09813 09786 0.8975 0.8834 0.9748 0.9673 0.9196 0.9208
weighted

F1- 0.9046 0.8979 09745 09710 0.8644 0.8516 0.9660 0.9562 0.8860 0.8886
binary(1)

F1 Class 0 0.9456 0.9405 09851 0.9830 0.9165 0.9016 0.9799 0.9737 0.9389 0.9391
F1 Class 1 0.9046 0.8979 09745 09710 0.8644 0.8516 0.9660 0.9562 0.8860 0.8886
Prediction {2170, {2136, {2136, {2125, {2048, {1929, {2114, {2088, {2267, {2238,
distribution 1235} 1269} 1269} 1280} 1357} 1476} 1291} 1317} 1138} 1167}

{0:X, 1:Y}




Word-based vectorisation (using unigrams and bigrams) yielded moderate results for most
models. Combinations with SVM yielded F1-macro ~ 0.93, while Logistic Regression yielded 0.88-
0.90. The highest results were achieved by SVM variants with manually tuned weights, which
reached an F1-macro score of approximately 0.9801. The addition of a sensitive threshold (0.35) had
almost no effect on the F1 value, but increased the proportion of Class 1 predictions. This effect is
expected: lowering the threshold increases recall for Class 1, but only slightly lowers the precision.
Random Forest in combination with TF-IDF word-based showed high results (up to Fl-macro
0.9770). However, models of this type are slower and more sensitive to a large number of features,
which makes them less suitable for operational analysis of arrays of hundreds of thousands of
texts. Gradient Boosting with verbal vectorisation yielded a significantly lower quality - the F1-
macro score did not exceed 0.92. It is because boosting algorithms work less efficiently in the high-
dimensional spaces formed by TF-IDF.

A significant improvement in quality was observed when transitioning to symbolic
vectorisation (char n-grams), which enables the consideration of morphological distortions,
transliteration, slang, propaganda, and toxic stylistic markers. This type of sign is critical for
analysing the content created by enemy accounts. SVM in combination with TF-IDF char-based
showed consistently high results:

Balanced F1-macro approximately 0.939.

Sensitive F1-macro approximately 0.938.

Manual weight F1-macro approximately 0.9852 (record).
Manual weight with sensitivity: F1-macro approximately 0.9833.
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It was the combination of tfidf char_balanced with svm_manual weight that performed the
best among all the models tested, yielding the following results: Accuracy 0.9862, F1-macro 0.9852,
Fl-class1 0.9813, and Fl-classO 0.9891. It is significantly higher than the results of Logistic
Regression and Random Forest with the same vectorizer. Logistic Regression in the char-based
variant yielded an F1-macro in the range of 0.92-0.93, which is lower than SVM due to LR's weaker
ability to model nonlinear boundaries between classes. Random Forest performed well (up to
F1-macro 0.97) but failed to outperform SVM. The main reason is that the random forest does not
scale well in high-dimensional TF-IDF spaces, where the number of features can reach thousands.
Gradient Boosting in the character-based variant showed an F1-macro score of around 0.96, but fell
short of the results achieved by SVM and Random Forest.

A vectorizer that combines verbal and symbolic features produced results between those of the
previous two methods. SVM achieved an Fl-macro score of approximately 0.93 for standard
parameters and up to approximately 0.98 in manual weight mode. Random Forest scored
0.9730-0.9747, which is close to its char-based variant, but still inferior to SVM. Gradient Boosting
again showed reduced efficiency (0.9124-0.9213 Fl-macro). The best mixed combination
(svm_manual_weight) achieved an F1-macro score of approximately 0.9798, which is a high score
but 0.005-0.006 lower than the char-based SVM.

Among the 30+ models tested, the best were:

tfidf_char_balanced and svm_manual_weight — F1-macro 0.9852.
tfidf_char_balanced and svm_manual_weight_sensitive — F1-macro 0.9833.
tfidf word_balanced and svm_manual_weight — F1-macro 0.9801.
tfidf_mixed and svm_manual_weight are F1-macro 0.9798.

tfidf word_balanced and random_forest balanced — 0.9770.

tfidf mixed and random_forest_balanced - 0.9730.

tfidf word_balanced and random_forest_balanced_sensitive — 0.9702.

tfidf char balanced and random_forest_balanced — 0.9696.
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All the best results are related to SVM (manual weight), which confirms the high efficiency of
this method in text spaces with a large number of features (Table 12).

Table 12
Comparison of models
Model Principle of Dignity Flaws Typical
operation results
SVM (balanced) Linear classifier Stability, high Less accurate F1~0.93
with automatic quality, and it without manual
class weights works well in weighing
large spaces
SVM Same + Greater Class 1 Slightly less F1~0.93
(balanced_sensitive) Lowered recall precision
Threshold
SVM SVM with Highest accuracy  Accurate selection F1 ~ 0.9852
(manual_weight) hand-picked of all methods of weights is
scales required
SVM Same but lower More Class 1 Easy drop-in F1 ~ 0.983
(manual_weight_sen threshold Detections accuracy
sitive)
Logistic Regression Linear model Quick, easy Weak in nonlinear ~ F1 »~ 0.89
(balanced) with scales problems
Logistic Regression Lowered More positive Lower precision F1~0.88
(sensitive) threshold ones
Random Forest Combination of ~ Strong classical Worse in high- F1~0.97
trees method sized spaces
Random Forest Lower Best recall Possible FPs F1=~
Sensitive threshold 0.96-0.97
Gradient Boosting ~ Successive trees ~ Good on tabular Weak in sparse F1=~
data TF-IDFs 0.91-0.92
Gradient Boosting Sensitive Increase recall Does not improve F1~0.91
Sensitive threshold overall quality

Symbolic TF-IDF (char-level) is the most efficient type of vectorisation for the task of detecting
collaborationist accounts. SVM with hand-picked class weights demonstrates the highest stability

and accuracy. Random Forest provides good results, but cannot outperform SVM in high-
dimensional spaces. Logistic Regression loses to SVM due to the limitations of the linear model.

Gradient Boosting is impractical for sparse high-dimensional text features. Lowering the
classification threshold (sensitive) increases the recall of class 1, but does not give a significant

improvement in F1-macro. The best model, after selection, was further trained on the entire dataset

to maximise its generalising ability. The analysis of experimental results demonstrated that the



optimal combination for the task of automatically detecting collaborationist accounts is the SVM
model with manual scales, in combination with TF-IDF symbolic vectorisation. This approach
provides the highest-quality metrics, scales perfectly, works quickly on large amounts of data, and
remains interpretable, making it the most suitable for practical application in information security
analysis systems. For the comparative analysis, the weighted F1-macro metric was used, which is
sensitive to performance on both classes (Table 13). Based on the obtained metrics, the following
combination demonstrates the best performance: a vectorizer (symbolic n-grams) and a model
(method of reference vectors with manually weighted factors). This configuration achieved the
highest scores: an overall accuracy of 0.9862, a weighted F1 measure (F1-macro) of 0.9852, and an
F1 measure for the positive class (Class 1 — collaborators) of 0.9813. The high Accuracy and F1-
macro scores, as well as the virtually identical F1 values for both classes (Class 0: 0.9891, Class 1:
0.9813), indicate the exceptional generalisation capacity of the model and the practical overcoming
of the problem of class imbalance.

Table 13

Comparison of models

Vectorizer Model Acc. F1-macro F1 Dynamic  Distributio

(Class 1)  Threshold nof

forecasts
(1/total)

tfidf char svm_manual_ 0.9862 0.9852 0.9813 0.400 1274/3405

balanced weight
tfidf char_ svm_manual_ 0.9844 0.9833 0.9790 0.350 1280/3405

balanced  weight_sensitive

tfidf word_ svm_manual_ 0.9815 0.9801 0.9749 0.400 1266/3405
balanced weight

tfidf mixed svm_manual_ 0.9812 0.9798 0.9745 0.400 1269/3405
weight

tfidf word_ svm_manual_ 0.9809 0.9795 0.9741 0.350 1272/3405

balanced  weight_sensitive

tfidf word ~ random forest 0.9786 0.9770 0.9710 0.400 1282/3405
balanced balanced

tfidf char ~ random_forest 0.9715 0.9696 0.9620 0.400 1312/3405
balanced balanced

tfidf char Gradient_ 0.9633 0.9608 0.9509 0.400 1306/3405
balanced boosting

tfidf word_  svm_balanced 0.9333 0.9281 0.9087 0.400 1246/3405
balanced

tfidf char logistic_balanced 0.9292 0.9250 0.9071 0.400 1354/3405
balanced

There is a clear advantage of vectorisation based on symbolic n-grams (tfidf char balanced) over
word-based vectorisation (tfidf word balance) and mixed approach (dtfidf mixed). For example, the
best model svm manual weight on tfidf char balance (F1-macro = 0.9852) outperforms the same



model on dtfidf word balanced (F_1-macro = 0.9801). It supports the hypothesis that using symbolic
n-grams is vital for accounting for slang, transliteration, and spelling variability in informal textual
data. The SVM (Manual Weight) classifier, optimised with manual or weighted parameters, yields
the best results in all vectorisation configurations, indicating its high efficiency in the TF-IDF
feature space. Although Random Forest showed high accuracy (up to 0.9786), it is inferior to
optimised SVM models. Gradient Boosting (up to 0.9222) and Logistic Regression (up to 0.8990)
performed lower. Lowering the dynamic threshold to 0.35 (sensitive models) generally resulted in a
slight decrease in F1-macro. However, these models are important for scenarios where the priority
is to maximise the completeness (Recall) of the positive class at the expense of a slight increase in
False Positives. It has been established that for the task of binary classification of users as potential
collaborators, the optimal combination of TF-IDF vectorisation based on symbolic n-grams and the
Support Vector Machine classifier with optimised weighting factors is the most effective approach.
The achieved Accuracy of 0.9862 and F1-macro 0.9852 confirm the high reliability of the developed
approach.

After identifying the best model at the validation stage (based on the Fl-macro and Accuracy

metrics), a predictive classification was carried out on an extensive array of unlabeled data.

1. Distribution of predictions: Class 0 (Non-Collaborator) 63.383 samples (71.3%) and Class 1
(Collaborator) 25.481 samples (28.7%).
2. Medium Confidence: Class 0 — 0.965 and Class 1 — 0.880.

A high average level of confidence for both classes indicated potentially high reliability of the
model. However, absolute performance metrics on a test sample do not always correlate with
satisfying specific classification requirements in sensitive domains.

Despite the high quantitative metrics, further qualitative verification of labelling revealed a
significant issue related to the system's ethical and functional requirements: incorrect classification
of pro-Ukrainian content. It turned out that the leader model, optimised for the F1 metric, is prone
to mistakenly classify pro-Ukrainian messages explicitly as Class 1 (Collaborationist). It is a critical
False\ Positive error that contradicts the main goals of the project and carries high risks during
operation. It is because pro-Ukrainian content, like collaborationist content, can contain a high
proportion of aggressive language or specific terms, which confuses linear models that use TF-IDF.

Due to the identified discrepancy, the model selection process was changed: the priority was not
to maximise the overall F1 measure, but to minimise False\ Positive errors for pro-Ukrainian
content. Iterative testing of various models for quality markings was carried out. The
naive\_bayes\_strict model showed the best results in terms of distinction: pro-Ukrainian messages
were correctly classified as Class 0 (Neutral/Non-Collaborative). A new problem arose: a significant
number of neutral messages began to be mistakenly classified as Class 1 (Collaborationist). This
result highlighted the need to strike a balance between sensitivity to pro-Ukrainian content and the
accuracy of categorising neutral and collaborationist messages.

To achieve the necessary balance, it was decided to use the Ensemble of Classifiers. The
ensemble approach allows you to combine the advantages of different models:

P (C=1)=Average(Pyg, Py ).

Ensemble

where Pyg is the probability from Naive Bayes, and P is from Logistic Regression.

The optimal ensemble consists of Naive Bayes (with TfidfVectorizer) and Logistic Regression
(with CountVectorizer, character-level). The Naive Bayes classifier (with TfidfVectorizer) is
effective for working with lexical features and demonstrating high resistance to the erroneous
classification of pro-Ukrainian content as a positive class. The Logistic Regression classifier (with
CountVectorizer, char-level) adds linear discriminant power by using symbolic n-grams to increase
sensitivity to stylistic and spelling patterns (which is vital for identifying the specific vocabulary of
collaborators). This combination ensured the simultaneous achievement of three critical criteria:

1. Correct classification of collaborationist messages.
2. Minimising the erroneous classification of pro-Ukrainian content as collaborationist.



3. Reducing the level of misclassification of neutral messages as collaborationist.

For further optimisation, several meta-models were tested (Stacking Ensemble), where the

predictions of the base classifiers were used as features for the final classifier (e.g. Naive Bayes,
Logistic Regression or Gradient Boosting). For further labelling and operation, the Naive Bayes
Ensemble (TfidfVectorizer) and Logistic Regression (CountVectorizer, char-level) were selected as
the most balanced solution that meets both quantitative and critical qualitative classification

requirements in the sensitive domain.

5. Software development and description of its structure

The developed software is designed for the automated processing of large amounts of text data
from social networks and the further classification of messages and accounts based on the level of

activity of collaborationists. Since the analysis is carried out on real Telegram cases, which can
contain hundreds of thousands of records, the key requirements for the system are scalability,

modularity, resistance to noisy data, model interpretation, and the possibility of batch processing.

The software architecture is modular and consists of several logically isolated subsystems:
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Text preprocessing module.
Data vectorisation modules.

Batch forecasting module.
Subsystem of analysis and generalisation of results.

Modules for training and saving models.
Ensemble classifier.

Each component is designed to be autonomously tested, replaced, or supplemented without
interfering with other parts of the system. It ensures scalability and the ability to further expand
the system. At the conceptual level, the system implements the classic machine pipeline (Table 14):
data loading — purification — vectorisation — model training — ensemble — forecasting —

analysis of results.

Table 14
Comparison of system components
Component Dignity Flaws Limitations Recommendations
TextPreproc  Unification of data Does not work Sensitivity to Add
essor structures; noise with multimodality =~ rare symbols morphological
cleaning; analysis,
Standardisation stemming
TF-IDF Interpretation; Miss the context; it Needs large Use subword
Vectorizer speed; Stability does not work with  dictionaries models
transliteration
Char n- Resistance to Less semantics High Optimise n-grams,
grams distortion, bot style, dimensionality add hashing
and transliteration of space
Naive Bayes  Fast, interpreted; Linearity of Poor work Use anti-aliasing
great for short texts  decisions; weak on with trait and class weights
complex semantics correlations
Logistic More flexible Sensitive to class Needs Use balanced class




Regression ~ boundaries; Stable imbalances normalization weights
results
Ensemble Increases accuracy; Complicates Dependence Add a weight
classifier unites the strengths interpretation on basic ensemble
of the models models
Batch Scalability; stability; Requires more Latency on Add Asynchrony
Prediction fault-tolerant memory large files
Engine
Result In-depth analytics; Does not give a Varies by Integrate
Analyzer confidence-groups; legal assessment model explainability
Examples (SHAP)
Model Reproducibility, Dependency on Requires Add MLflow or
Persistence portability library versions versioning DVC

The Word Preprocessing Module is responsible for standardising data, including:

Removal of HTML artefacts, emojis, character repetitions.
Normalisation of the register.

Cleaning URLs, mentions, hashtags.

Combining different column formats into standard text and labels.
Extraction of empty strings and duplicate entries.
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Since the corpora are collected from various sources (Telegram groups, moderator tables, and
manually labelled samples), each input file may have a different column format. Therefore, the
module automatically maps the names to standard ones, ensuring the uniformity of the input set.

Initially, a model was created to mark 8,864 messages, based on 2,000 manually marked
messages from a collaborationist group, 2,000 messages from a pro-Ukrainian group, and 10,861
manually marked messages from one collaborator. In total, three datasets with 9,0896, 10,861, and
2,000 records were collected, respectively. Total number of records after merging: 14835. Label
distribution: {'0.0:10762, '1.0":2061, '-1.0":2012}. The training sample consists of 11,868 records, and
the test sample comprises 2,967 records. Evaluation of the Initiated Models:

1. Naive Bayes (Weighted Count) Accuracy: 0.8891.
2. Logistic Regression (Count Char) Accuracy: 0.9269.
3. Ensemble Accuracy: 0.9178.

To build a model in the feature vectorisation and extraction module, two types of features are
used:

1. Verbal (TF-IDF, word n-grams) — to display semantics.
2. Symbolic (char n-grams) — for working with transliteration, distortion, jargon, and false
spaces.

This combination allows the model to both "understand the content" and "understand the form".
Vectorizers are trained only on the training sample and are stored in the model file along with the
statistical parameters.

The developed product uses two different models in the basic model training module.
Multinomial Naive Bayes is optimal for TF-IDF representations of short texts, as it is both fast and



interpretable. Logistic Regression - it better models symbolic features and provides more flexible
boundaries for decision-making. For each model, the following is carried out:

1. Learning about the appropriate vectorization.
2. Evaluation on a test sample.
3. And saving metrics (Confusion matrix, Precision, Recall, F1).

It provides transparency and the ability to audit each model separately.
The ensemble of classifiers combines the probabilistic outputs of both models by averaging their
results. Advantages of ensemble:

1. Reduction of model errors due to different types of features.
2. More stable forecasts on non-standard texts.
3. Increased interpretation (you can see which model gave the weaker signal).

The ensemble also generates a confidence score (confidence level) and models agreement (the
degree of agreement between the models themselves). These values are used in the analysis module
and in the definition of risk forecasts.

Given that the volume of real data can exceed hundreds of thousands of rows, forecasting is
carried out in batches (batch inference) in the batch forecasting module. Module functionality:

Automatic determination of the optimal package size.
Error handling inside packages.

Return of standard values for incorrect records.
Progress bar and logging.
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Saving the results to Excel or a DataFrame.

Batch ownership increases reliability and allows you to restore the process after failures.
The module for analysis and generalisation of results generates analytical reports, including:

Distribution of forecasts between classes.

Analysis of confidence levels by groups: low/mid/high/very high.
Calculation of average and median confidence.

Examples of the most and least reliable forecasts.

Assessment of model consistency.
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This module plays a crucial role in the practical application of the results, as it enables manual
analysis experts to identify which data requires additional revision.
The logic of the system and integration mechanisms, in particular, the Training pipeline:

Loading enclosures of various structures.

Normalisation of columns, cleaning, and filtering by text length.
Division into training and test samples with stratification.
TF-IDF vectorizer training — Naive Bayes training.
Char-n-grams training — Logistic Regression training.
Generation of metrics; selection of optimal parameters.
Building an ensemble.

Saving the model, vectorizers and encoders.
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Inference pipeline:

1. Reading the input Excel file.
2. Validation of the table structure.



Text pre-processing.

Batch separation.

Getting predictions from both models.
Averaging probabilities.

Calculation of confidence and model agreement.
Write the results to a file.

Generation of a report and statistics.
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Let's outline the primary technical limitations and associated risks. The model depends on the
quality of Telegram cases. There may be a "drift" of content, which reduces efficiency over time.
The system does not take into account multimodal data (images, videos). The model does not
moderate or determine the legal assessment of the collaboration — only the text classification.
Recommendations:

Regular retraining every 3-6 months.

Introduction of the human-in-the-loop method.

Expansion of the case on TikTok, Instagram, and YouTube comments.
LLM integration for semantic message reformulation.
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6. Iterative development and validation of models for the
classification of textual content and identification of authors in
social networks

At the first stage, an ensemble classifier was developed for automatic labelling of a large data array
(88,864 messages), which was critically necessary for further training of the model at the author
level. The study sample is compiled from three sources: 2,000 messages from a collaborationist
group, 2,000 messages from a pro-Ukrainian group, and 10,861 labelled messages from a single
collaborator. The total amount of data after cleaning and merging was 14,835 unique records. The
classification is multi-class (-1.0: pro-Ukrainian, 0.0: neutral, 1.0: collaborationist). Ensemble (Soft
Voting):

1. Model 1 - Multinomial Naive Bayes (MNB) with TfidfVectorizer (based on words and
bigrams).
2. Model 2 - Logistic Regression (LR) with CountVectorizer (based on symbolic n-grams).

An estimate on the test sample (2,967 samples) confirmed the effectiveness of the hybrid
approach (Table 15). Despite the high overall accuracy (» 92%), the relatively low Recall for Class
1.0 (collaborationist) at 0.65, and the relatively low F1-score (0.76) indicate the model's moderate
ability to detect a positive class.

Table 15
Ensemble evaluation results
Model Accuracy F1-macro F1 (Class -1.0) F1 (Class 1.0)
Naive Bayes (Word) 0.8891 - - -
Logistic Regression (Char) 0.9269 - - -

Ensemble (Final) 0.9178 0.86 0.88 0.76




At the second stage, the developed Ensemble was used for automatic labelling of a large array of
data from 88,864 previously unlabeled messages. Distribution of predicted labels: 0.0 (neutral) -
68.4%; 1.0 (collaborationist): 30.5%; -1.0 (pro-Ukrainian) — 1.1%. Confidence Stats: Average Trust —
0.834, and in High Trust (>0.8): 66.8% of records. Accordingly, 82.9% of cases had full agreement
(All_Agree) between the MNB, LR and the Ensemble, confirming the consistency of the classifiers.
Examples with the lowest confidence (e.g., 0.345) and prediction discrepancy (Partial Agree,
Disagree) were identified as samples on the verge of decisions that require potential manual
verification, e.g., the text: 'psh6l nahuy pos abossannyi...' Prediction: -1.0 (Confidence: 0.345,
NB:-1.0, LR: 1.0). This indicates the difficulty of classifying aggressive but ambiguous vocabulary.

The third stage aimed to train the advanced message classification ensemble on a combined,
qualitatively and auto-labelled dataset to ensure maximum accuracy before proceeding to author
classification. The total volume of the auto-labelled dataset is 141,357 entries (including 88,864
auto-labelled ones). The label distribution is as follows: 0.0 — 50.6%, -1.0 — 28.7%, and 1.0 — 20.7%,
respectively. On the test sample (28,272 samples), the new Ensemble (Naive Bayes with
TfidfVectorizer and Logistic Regression with CountVectorizer) demonstrated a significant
improvement in metrics, especially for less represented classes (Table 16). Through the expansion
of the data corpus and the improvement of the ensemble, the model achieved an F1-score of 0.92
for the critically important class 1.0 (Collaborative), while maintaining a high Precision of 0.95,
which minimises false positives. In the fourth phase of the study, the final message classification
model was applied to label an array of 372,940 messages, forming the basis for the next author-level
model. Distribution of forecasts respectively for 0.0 — 93.4%; 1.0 - 5.6%; -1.0 — 1.0%. Confidence
Distribution - 58.2% of predictions have very high confidence (>0.9), and the average confidence is
0.8672. Low confidence - only 0.8% of records are classified with low confidence (0.0-0.5),
confirming the model's reliability.

Table 16
Ensemble evaluation results
Class (Label) Precision Recall Fl-score Support
-1.0 (pro-Ukrainian) 0.98 0.93 0.96 8116
0.0 (Neutral) 0.92 0.98 0.95 14317
1.0 (Collaborative) 0.95 0.88 0.92 5839
Accuracy 0.9438 28272
F1-macro 0.94
Table 17
Results of the evaluation of the authors' classification model (assessment on a test of 366 samples)
Model Test AUC Accuracy F1(Class1) Precision (1)  Recall (Class 1)
SVM 0.9770 0.92 0.90 0.83 0.99
Random Forest 0.9769 0.91 0.90 0.83 0.99

Logistic Regression 0.9769 0.91 0.89 0.82 0.97




At the fifth stage, based on the labelled corpus, an educational sample was formed for author
classification, which combined 372,940 bulleted messages with an additional body. An author is
classified as a collaborator (Class 1) if the proportion of his collaborationist messages in the total
activity (Collab Ratio) is 0,006 (empirically determined optimal threshold). Authors from the
supplementary corpus are considered Class 0 (non-collaborators). Distribution of authors (1,827 in
total): collaborators (Class 1) — 717, non-collaborators (Class 0) — 1,110. The ratio (balance) of Class
1 to Class 0 is 0.646, which is a significant improvement in balance over the original sample of
messages. Comparative training of models at the author level was conducted using TF-IDF traits
(aggregated text of the author, Table 17). Vectorisation is based on TF-IDF on words and bigrams
(10,000 characters). SVM is chosen as the best model (AUC = 0.9770). The model exhibits a very
high Recall (0.99) for detecting collaborators, although this results in a moderate decrease in
Precision (0.83). To assess the impact of metadata, a combined model (Logistic Regression on TF-
IDF and numerical characteristics, including the number of messages, average length, and activity
intensity) was tested. The combo model exhibited a slightly lower AUC (0.9697) compared to the
pure SVM on text features (0.9770). It indicates that linguistic features (aggregated text) are the
most significant predictor of collaborationist activity.

7. User Classification Model Validation: Benchmark Examples and
Performance Analysis

An analysis of the classifier's quality at the message level was conducted at the previous stages of
iterative development. Here is an evaluation and analysis of control examples of
CollaboratorClassifier, a model designed to binary classify user accounts as "Collaborator” or "Non-
Collaborator". The model used for validation (collaborator_classifier_combined.pkl) is a combined
classifier (Logistic Regression) that operates on both textual features (TF-IDF from the author's
aggregated text) and numerical features (metadata normalised using StandardScaler). Input data for
author classification (aggregated):

1. Text features are the combined and cleaned text of all user messages.
Numerical features — the total number of messages, the average length of the message, the
number of unique groups, the duration of activity (in days), and the intensity of activity
(messages per day).

To verify the minimisation of False Positive errors, a user profile with typical neutral activity
was simulated (Tables 18-19).

Table 18
Input (neutrality scenario)
Field Meaning Description
Message Text Hello everyone!, How are you?, Good Typical neutral/social content.

weather today

Date 2024-01-01, 2024-01-03 Activity for 3 days.
Group name Group 1, Group 1, Group 2 Activity in 2 unique groups.
Extracted Total Msgs: 3; Avg Msg Length: moderate; Unique Groups: 2; Activity Span:
features 3 days.

(extrapolation):




The model correctly classified the user as a non-collaborator (Probability = 0.123, which is well
below the threshold value of 0.5). The classification confidence is defined as High
(10.123 - 0.5| = 0.377 > 0.3). This result confirms that the model effectively identifies typical neutral
activity and, due to the weighting of linguistic features, is not prone to erroneously classifying
neutral profiles as positive of the predicted probability from the binary threshold of 0.5:

High,if|P—0.5/>0.3,
Confidence ={ Medium, if 0.15<|P—0.5|<0.3,
Low,if|P—0.5|<0.15.

Table 19
Classification results
Metric Meaning
Is_Collaborator No (False)
Probability (Class 1) 0.123
Confidence High
Message The probability of a collaborator is 0.123

In the control example, the probability of 0.123 is at a considerable distance from the 0.5
threshold (in favour of Class 0), which logically leads to high confidence. Since the control on
neutral data was successful, the following validation should be aimed at verifying:

1. Will the model be able to correctly classify the example of a collaborator with a minimum
number of messages?

2. How will the model behave in the absence of some metadata (for example, data on the date
of activity)?

Preliminary validation confirmed the model's reliability using a neutral example. At this stage,
the focus is on testing the Cross-Domain Robustness of the model. Although the model was trained
on Telegram data, its performance is evaluated on samples from Twitter, another social media
platform. It is critical because changes in format and language patterns between domains often lead
to degradation of classifier quality. Here and in the following examples, I will check whether the
model correctly classifies users' accounts from Twitter, although the model learned from users'
messages from Telegram, since in many studies related to this topic, models are poorly classified
when they receive data from social networks other than those on which they were trained. Let's
first check the accounts of two Twitter users: one with a pro-Russian stance and the other with a
pro-Ukrainian stance, on an ensemble of models (Table 20). A combined model for author
classification is used, which operates on aggregated text and metadata.

Table 20
Analysis of accounts of different authors
Eoristor @mezyukho @Valerii_Markus
Examples of https://t.co/iXy3mP5f9U, https://t.co/uf]2kU47Y],
messages https://t.co/cJEz3CKa8z, https://t.co/ZrthRwyMcXK,
https://t.co/m7rFOb8moy, https://t.co/KIdAThmt51

https://t.co/yF8z8Fhbew




Quantity 50 50
Collaborator Yes Yes
Probability 0.937 0.058
Confidence high high
Medium 236,9 characters 150,6 characters
length
Incoming The messages contain direct support The messages contain patriotic
Content for aggression (#KH/IP, special language, calls for meetings (e.g.,

military operation, EU military
assistance to Ukraine). Specific
terminology is used, which is a strong
feature of Class 1.

"Glory to Ukraine!", "Markus
Foundation", drones). The presence of
strong signs of the
Pro-Ukrainian/Neutral class.

Conclusion The model correctly classified the
account of a collaborator, a traitor to
Ukraine, as a collaborationist and did
so with high confidence.

The model correctly classified Valery
Marcus' account as non-
collaborationist, and also with high
confidence.

The model successfully classified the @mezyukho account as collaborative with high confidence
(0,937). It confirms the effectiveness of TF-IDF and aggregated text in detecting content signs of a
positive class, even when the domain is changed from Telegram to Twitter. The account
@Valerii_Markus was correctly classified as non-collaborationist with high confidence (0,058). It
suggests that the model can reliably distinguish between patriotic and collaborationist narratives,
thereby avoiding the critical False Positive errors that were previously a problem in the message

classification phase.

Let's conduct another analysis — specifically, examining the extreme cases (Table 21). Two
contrasting profiles were used to evaluate the model's discriminatory ability.

Table 21
Analysis of accounts of different authors
User @elonmusk @pasha4dmmm
Examples of https://t.co/9hjQINNASC, https://t.co/KEUx]JtimY?7,
messages https://t.co/xVjXBJ97nU, https://t.co/I5fwP4lfgx,

https://t.co/Z6kf6sj2mS

https://t.co/3w4SXTWFkS

Quantity 49 50
Collaborator Yes Yes
Probability 0.211 0.779
Confidence medium medium

Medium 64.3 characters

89.1 characters




length

Incoming English-language content Mostly neutral content (In the village for

Content (technology, US politics). now, and soon in Moscow..., Good village
Language outside the learning morning). The possibility of "masking"

sample. through social topics that do not contain

direct political signs.

Conclusion The model, of course, correctly The model correctly classified this user's
identified the account as non- account as collaborative. Medium
collaborationist. Still, you confidence due to the small sample (50
should not expect high messages) and due to the fact that this user
confidence from it, as it writes a lot of messages about nothing.

happened, the model has
average confidence about this
user.

The model correctly classified two collaborators as collaborators and one patriot as a non-
collaborator with high confidence. Additionally, the model correctly classified even an English-
speaking user as a non-collaborator, despite not having been trained on English-language data. As
expected, the model classified the account as non-collaborationist, as it does not contain any
linguistic features related to the Ukrainian-Russian conflict. However, confidence has dropped to
"Medium" (0.15 < [0.211 — 0.5| = 0.289 0.3). It confirms the model's sensitivity to unknown language
spaces. Although the classification is correct, the absence of relevant features in the TF-IDF space
prevents the highest level of confidence from being achieved. The model also correctly classified
the account as collaborative (Probability = 0.779). The decrease in confidence to "Medium" (0.779 is
closer to the threshold of 0.5 than 0.937) is due to the low informative content of the content
(random household messages), which leads to weaker activation of the most significant signs in the
TF-IDF space. It demonstrates that the quality of the content and its political focus directly affect
the confidence level of the classifier. The cross-domain validation carried out on Twitter control
examples confirmed the high stability and discriminatory ability of the CollaboratorClassifier
model, including its cross-domain efficiency, sensitivity to traits, and linguistic limitations. The
model trained on Telegram functions successfully on Twitter data, correctly classifying both
opposing classes (collaborator and patriot) with high confidence. The high confidence of the
forecast directly correlates with the presence of strong, politically colored features in the text. The
model predicts an expected decrease in confidence in language processing that is not observed in
the training sample (English), confirming the need for specialisation of NLP models.

8. Comprehensive analysis of the results of message classification and
author identification

The presented analysis covers the evolution and final evaluation of two key models: the multiclass
message classifier and the binary classifier of user accounts.

The purpose of the first model (Fig. 5 and Table 22) is to classify text messages into three
categories: pro-Ukrainian (-1.0), neutral (0.0), and collaborationist (1.0). The F1-score for Class 1.0
(collaborationist) was only 0.76, with Recall = 0.65. A low Recall (35% of collaborationist messages
missed) indicated mediocre performance for a critical class, which was a consequence of a small
and non-representative training sample. The model was retrained on a significantly extended



corpus that included automatically labelled data, which enabled it to overcome the problem of
training sample deficit (Fig. 6 and Tables 22-23).

Table 22
Model analysis
Parameter Version 1,0 (Limited Sampling) Version 2,0 (Advanced Sampling)
Scope of study 14,835 samples 141,357 samples
Distribution of 0.0: 72.5%, 1.0: 13.9%, -1.0: 13.6% 0.0: 50.6%, -1.0: 28.7%, 1.0: 20.7%
classes
Architecture Ensemble (MNB on TF-IDF Word + LR on Count Char)
General Accuracy 0.9178 0.9438
ROC AUC (OvR) - 0.9908
Log Loss - 0.1960

TekcT: ‘lle gyxe MOSMTUBHE MOBLAOMIEHHA"
NporHoz: -1.@
ﬁMGBipHGCT': .98772981 0.0090864 ©.00318378

Detailed Classification Report (Ensemble):
precision recall f1-score

-1.0 . . 0.
0.0 =20 - 0.
1.0 - - 0.

TekcT: "MeHi He nopgobaeTkca ue'
NporHoz: -1.@
ﬁMGBipHGCTi: [9.9894297? 0.01494006 0.00463916

accuracy
flacro ave TekcT: 'HelTpanbHWi KoMmeHTap npo norogy’
weighted avg : p B Ay

Nporxo3: -1.0

TekcT: "MeHi He nomobaeTbca ue’
NporHo3: -1.0
ﬁMOBipHOCTi: [8.9894297? 0.01494006 0.00463914

TekcT: "HeWTpanbHWiA KOMeHTap mpo noropy’
MporHo3: -1.0
ﬁMOBipHOCTi: [0.54960733 ©.42942473 0.0209679

Figure 5: Evaluation of models and example of using the first model.
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weighted avg . 9.9 c 28272 BneBHeHicTb: ©.9962

Figure 6: Evaluation of models and example of using the second model.



The model exhibits excellent discriminating ability (ROC AUC = 0.9908) and balanced accuracy
(Balanced Accuracy = 0.9294). A high Precision (0.95) for a positive class is critical to minimising
false positives before being applied at the account level. The model achieves excellent results, with
an accuracy of 94.38% on a test set of 28.272 samples (Table 24, Figs. 7-9). It is a high indicator for
the problem of three-class text classification. The balanced accuracy (92.94%) indicates that the
model performs well, even with class imbalances. Cohen's Kappa (0.9079) and MCC (0.9091)
confirm the high quality of the classification, excluding randomness. The ROC AUC (0.9908)
indicates the model's excellent ability to distinguish between classes.

Table 23
Model Analysis — Detailed Class 1.0 (Collaborative) Metrics on a Test Sample (28,272 Samples)
Metric Meaning  Analysis Explanation
Precision 0.9538 High If the model is classified as a "collaborator", the
accuracy probability of correctness is » 95%.
Recall 0.8808 Improved The model identifies ~ 88% of genuine collaborationist
Search: messages.
F1-Score 0.9159 A significant improvement over version 1.0 (0.76).
Table 24
Detailed evaluation of model metrics
Metrics F1-Score Precision Recall Supp FP FN TP TN Value
Macro 0.9400 0.9527 0.9294
Micro 0.9438 0.9438 0.9438
Weighted  0.9436 0.9454 0.9438
Class -1,0 0.9567 0.9849 0.9300 8116 116 568 7548 20040

(0.41%)  (2.01%)

Class 0,0  0.9476  0.919 09773 14317 1224 325 13992 12731
(433%)  (1.15%)

Class 1,0 0.9159  0.9538 0.8808 5839 249 696 5143 22184
(0.88%)  (2.46%)

Accuracy 0.9438

Balanced Accuracy 0.9294

Cohen's Kappa 0.9079

Matthews Correlation Coefficient 0.9091

ROC AUC (One-vs-Rest):  0.9908

Log Loss  0.1960

Hamming Loss  0.0562

Analysis by classes (from the error matrix):



1. For the "-1.0" (negative) class, the model achieves the best precision (98.49%), rarely
misclassifying texts as negative. Recall (93.00%) - misses 7% of truly negative texts, the most
stable class for a model.

2. For the class "0.0" (neutral), the model achieves the highest recall (97.73%), indicating that it
finds neutral texts well. Precision (91.96%) is lower due to some confusion with other
classes, the largest class in the dataset (14,317 samples).

3. For the "1.0" (positive) class, the lowest recall (88.08%) is the most difficult to recognise.
Precision (95.38%) is high — when a model says "positive", it is usually right for the smallest
class in the dataset (5.839 samples).

The model makes relatively few mistakes:

1. The overall margin of error is only 5.62% (Hamming Loss).

2. Most recall issues for a positive class (11.92% False Negatives).

3. The Negative Class has the fewest False Positives (0.41%).

The model demonstrates stable performance across all classes, yielding powerful results for

negative texts. The Log Loss (0,1960) indicates good probability calibration, which is crucial for
practical applications.
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Figure 7: Confusion matrix, where on the left is the real class, and on the bottom is the predicted
class.

Let's describe the stage of training the user account classification model. The purpose of the
second model is to perform a binary classification of accounts into 0 (non-collaborator) and 1
(collaborator) based on aggregated content and metadata. Dataset size (372940, 7).
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Figure 8: Model Metrics Comparison.
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Figure 9: Detailed classification report.

Data preparation and balance sheet (Fig. 10):

recall f1-score

support

8116
14317
5839

28272
28272
28272

1. The volume of samples (authors) is 1,827 unique authors (combined data from the
collaborationist and pro-Ukrainian groups).
2. Threshold definition: The author is classified as class 1 if the share of their collaborationist

messages is 0.6% (threshold_ratio = 0.006).

3. Final class balance (authors): 1 (collaborators) 39.24% (717 authors); 0 (non-collaborators)

60.76% (1,110 contributors).

4. The class ratio is 1:1.55 (well-balanced dataset).

Example of a part of a dataset:

predicted_label Confidence

Link to the author's ID group Date
0 https://t.me/kherson_talk 1140052638 2025-05-02 20:49:23 0.0
1 https://t.me/kherson_talk 1140052638 2025-05-02 20:48:12 0.0
2 https://t. me/kherson_talk 1140052638 2025-05-02 20:46:07 0.0
3 https://t.me/kherson_talk 1140052638 2025-05-02 20:42:06 0.0
4 https://t.me/kherson_talk 1140052638 2025-05-02 20:37:10 0.0

0.957116
0.788618
0.966518
0.906539
0.900246

Class distribution for 0.0 — 348299, 1.0 - 20746 and -1.0 - 3895. The percentage of
collaborationist messages is 4.52%. The total number of authors is 927. Authors with at least one
collaborationist message 735. Classification of authors (threshold 0.6%): collaborators 717 and non-

collaborators 210.
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Figure 10: a) Distribution of messages by authors, where x is the number of messages per author
and y is the number of authors; b) Distribution of the share of collaborative messages, where x is
the share of such messages and y is the number of authors (threshold = 0.006); c) Distribution of
author classes (0.6% threshold), where x is the author class and y is the number of authors, the first
column is not a collaborator, the second is a collaborator.

After clearing the dataset of noise, new input data for training were obtained. The ratio of
collaborators / non-collaborators is 0.646 (Fig. 11-14). Data for training: number of samples 1827,
distribution of classes [1110 717], percentage of collaborators 39,24%. Detailed statistics on sources
for the MAIN dataset: the number of authors is 927, collaborators 717, their collaborators 210 and
the average share of collaborators. Messages 0.0646. Detailed statistics on sources for the
ADDITIONAL dataset: number of authors 900, collaborators 0, non-collaborators: 900, average
share of collaborators. Messages -1,0000. Dataset Balance Score: Class Ratio: 1:1.55, Dataset Well
Balanced. The primary dataset is 372,940 messages from 927 authors. After merging with the pro-
Ukrainian group, 412,531 messages from 1,827 authors. The minimum number of duplicates (9)
indicates the quality of data collection. Only 4.52% of reports are classified as collaborationist
(20,746 out of 372,940). It shows that open collaborationist rhetoric is a minority, even within the
respective groups. Statistics on authors: 735 out of 927 authors (79%) have at least one
collaborationist message. At a threshold of 0.6%, 717 authors are classified as collaborators (77.3%).
Using the 0.6% threshold of collaborationist messages to classify the author. It is a conservative
approach that allows you to take into account even minimal collaborationist activity towards
unification, characterised by a strong imbalance: 77.3% of collaborators versus 22.7% of non-
collaborators.
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Figure 11: a) Distribution of messages by authors, where x is the number of messages per author
and y is the number of authors; b) Distribution of the share of collaborative messages (primary
dataset), where x is the share of such messages, and y is the number of authors (threshold = 0.006).
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Figure 12: a) Distribution of classes of authors, where x is class and y is number, the first column
is not a collaborator, the second is a collaborator; b) distribution of messages into classes, where
green is 0, blue is -1 and yellow is 1.
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Figure 13: a) Distribution of authors into classes, where blue is not a collaborator, red is a
collaborator; b) distribution of classes by sources, where x is the source and y is the number of
authors.
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Figure 14: a) Comparison of the balance, where x is the class, and y is the proportion of the
positive class, the first column is the message, the second is the authors; b) analysis by datasets,

where x is the class and y is the number of messages, the first column is the base, the second is
additional.



JAfter merging with the pro-Ukrainian dataset, the improved balance is 39.2% of collaborators vs.
60.8% of non-collaborators. A ratio of 1:1,55 is an acceptable level for machine learning.

Most authors have low activity (fewer than 1000 posts). A small number of hyperactive users.
Typical power distribution for social networks. Precise bimodal distribution: authors either have a
tiny proportion (about 0) or a significant one. It confirms the correctness of the threshold approach.
The primary dataset from collaborationist groups may have bias. An additional pro-Ukrainian
dataset helps, but does not eliminate the problem. The data is dated 2025, which may not reflect the
evolution of views. Lack of temporal analysis of changes in the behaviour of the authors.
Geographical reference: The data were collected from the collaborationist group in the Kherson
region, which may not accurately represent the overall situation. Self-censorship or tactical
behaviour of users is possible.

The models were trained on the TF-IDF matrix representing the authors' aggregated text
(Tables 25-26, Figs. 15-16). The training sample consists of 1,461 samples, and the test sample
comprises 366 samples. The distribution of classes in the educational sample is [888, 573]. The size
of the TF-IDF matrix is (1461, 10000). All models (especially SVM and RF) demonstrated a Recall of
0.99 (99% detection of collaborators), which is a priority for security systems. The models are
trained to aggressively detect Class 1, resulting in a relatively lower Precision (0.82-0.83) and,
accordingly, a greater number of False Positives (falsely identified collaborators) — 29 out of 366 of
test samples.

Table 25
Classification Report
Metric Precision  Recall  F1-score Support
Logistic Regression
0 0.98 0.86 0.92 222
1 0.82 0.97 0.89 144
macro avg 0.90 0.92 0.91 366
weighted avg 0.92 0.91 0.91 366
Random Forest
0 0.99 0.86 0.92 222
1 0.83 0.99 0.90 144
macro avg 0.91 0.93 0.91 366
weighted avg 0.93 0.91 0.91 366
SVM
0 0.99 0.87 0.93 222
1 0.83 0.99 0.90 144
macro avg 0.91 0.93 0.91 366

weighted avg 0.93 0.92 0.92 366




Table 26
Comparison and selection of the algorithm (text features)

Model Test AUC  Accuracy Precision (Class 1) Recall (Class 1) CV AUC
SVM 0.9770 0.92 0.83 0.99 0.9839 (+/- 0.0061)
Random
0.9769 0.91 0.83 0.99 0.9812 (+/- 0.0102)
Forest
Logistic
. 0.9769 0.91 0.82 0.97 0.9809 (+/- 0.0101
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Figure 15: ROC curves.

The inclusion of numerical characteristics (activity, duration, and uniqueness of groups) in TF-
IDF traits resulted in a slight decrease in performance. The combined model is AUC 0.9697. Textual
features (TF-IDF) are the most dominant and informative for author classification. The SVM is
chosen as the best model (AUC = 0.9770) due to its highest AUC and reliability, as confirmed by its
low variability (CV AUC = 0.0061).

All three algorithms yield virtually identical results (AUC ~ 0.977). SVM is marginally better in
accuracy (92% vs 91%). ROC curves show excellent discriminating ability — all models are far from a
random line. Class 0 (non-collaborators) — very high precision (98-99%) - few false positives.
Lower recall (86-87%) — 13-14% of real non-collaborators are missed. The model is conservative in
its definition of non-collaborators. Class 1 (collaborators) — lower precision (82-83%) — 17-18% of
false positives. High recall (97-99%) - finds almost all collaborators. The model is aggressive in
finding collaborators. The model is configured for maximum detection of collaborators (high recall
for class 1) and is ready to sacrifice precision in order not to miss potentially dangerous users.
Error structure:

1. True Negatives 193 (correctly identified non-collaborators).



2. False Positives 29 (mistakenly labelled as collaborators).
3. False Negatives 2 (missed collaborators).
4. True Positives 142 (correctly found collaborators).
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Figure 16: Confusion matrix for SVM.

Critical errors — only two missed collaborators (this is an excellent result for security) and 29
false positives (an acceptable level for further verification). The combined model has a slight
deterioration:

1. The AUC decreased from 0.977 to 0.970.
2. It may indicate that additional signs do not provide significant improvement.
3. TF-IDF textual features are already informative enough.

Adequate size: 1,461 samples for training, 366 for testing. The training/testing ratio of ~80/20 is
standard. The balance of classes in the test sample, with 222 and 144 participants (60.7% and 39.3%,
respectively), is acceptable. A low standard deviation of the AUC (~0.01) indicates stability. SVM
shows the least variability (£0.0061). The second model demonstrates excellent quality for practical
applications. The high recall for collaborators (97-99%) makes it an effective tool for screening
suspicious accounts. A small number of false negatives (2 out of 366) are critical for security tasks.

The high Accuracy (0.9438) and high precision (0.9538) for the positive grade provide quality
input marking for the second model. The extremely high Recall (0.99) at an AUC of 0.9770 makes
the model a highly effective tool for screening suspicious accounts while minimising the risk of
False Negatives (collaborator omission). Based on the results obtained, both models demonstrate
excellent quality and readiness for practical application, considering the Bias found in favour of
Recall in the account classification model. Based on the training results of the SVM model (or
Logistic Regression for the combined model), which demonstrated the highest discriminatory



ability (AUC 0.9770), an analysis of trait coefficients (weights) (TF-IDF terms) was carried out to
determine their influence on the binary classification of the authors. Since the author classification
model uses aggregated message text, these features reflect a stable lexical profile of the user.

The terms listed below in Table 27 received the highest positive coefficients (weights), making
them key predictors of a user's belonging to Class 1 (Collaborator). Generally, this is propaganda
vocabulary specific to Russian military and political rhetoric. The presence of these lexical units in
the aggregated corpus of user messages is highly likely to indicate the acceptance or dissemination
of propaganda narratives.

Table 27
Strong signs of collaborationist affiliation (Class 1)
Term/Phrase Purpose
Khokhly A derogatory name for Ukrainians (present in Russian
propaganda).

The Armed Forces of Ukraine It is often used to refer to the Armed Forces of Ukraine, but in
a negative or derogatory context.

Putin Political commentary centred around the Russian leader.

Svo The abbreviation "Special Military Operation" is a key pro-
Russian propaganda name for aggression.

Denazification A key propaganda narrative justifying the invasion.

Crest A singular version of the derogatory term.

Fascists False accusation of aggression by the Ukrainian side.
Russia Frequent mention of Russia in the context of its support or

justification of actions.

NATO Terms related to geopolitical conspiracy theories and
justification for war.

American References to the United States or the Western world as
"aggressors".

The terms listed below in Table 28 received the most significant negative coefficients, indicating
that they are key predictors of class 0 (non-collaborationist). These phrases often reflect patriotic,
social, or neutral topics that are not related to pro-Russian rhetoric. These signs serve as a defence
mechanism against false positives (False Positive, since their presence in the user's profile
significantly reduces the likelihood of classification as a collaborator, than most common words.
The model effectively utilises symbolic features (Counting n-grams in the first model) to capture
variations in the spelling of these terms, ensuring the system's resistance to linguistic
manipulation. The fact that the combined model (text with metadata) did not show a significant
improvement compared to the model using text-only features indicates that the content of
messages is more important than behavioural patterns (for example, the number of posts or the
duration of activity).



Table 28

Strong signs of non-collaborationist affiliation (class 0)

Term/Phrase Purpose
Glory to Ukraine A direct patriotic slogan (a strong opposite sign).
Hello A typical Ukrainian greeting that is absent in Russian-speaking

collaborationist communities.

How are you

Neutral social phrases.

Money

Messages related to fundraising, financial assistance, and donations.

Help

Topics related to volunteering and social support.

The Armed Forces of
Ukraine

The correct abbreviation of the Armed Forces of Ukraine (used in a
positive/neutral context).

I High frequency of using first-person singular pronouns in everyday,
non-conflict contexts.

Thank you Gratitude, which usually accompanies volunteer or social activity.

Weather A typical example of neutral, social and household content.

Our The use of the term "ours" in the context of the Ukrainian army or

citizens.

To ensure complete transparency and identification of the limitations of the final account

classification model (SVM on TF-IDF features), it is necessary to analyse examples of false positives
(False Positives) and missed true cases (False Negatives) on the test sample (Table 29).

Recall that the final model was set to high Recall (detection of 99% of collaborators), which
inevitably leads to an increase in False Positives. The system mistakenly classified the author as 1

(collaborator) when in fact he is 0 (non-collaborator).

Table 29

False Positive Error Analysis

Characteristics Cause of occurrence

Quantity in the test ~ ~ 29 samples

Purpose of the error ~ Minimise False Negatives.

Main reason High content of negative language/slang. An author who is a patriot may
have used aggressive or obscene language to describe an enemy or

situation. This vocabulary presumably coincides with the lexical patterns

that the model associates with propaganda rhetoric (e.g., derogatory

names for the opposite side).

Weaknesses of the The model relies on lexical coincidence without fully considering the
model context and position (Stance), which is opposite.




Hypothetical examples of aggregated text (False Positive): the author (patriot) who is marked as
a Collaborator: "What an abomination this is, these [derogatory name], how dare they come to our
land! Why the mistake: The terms "abomination" and "derogatory name" carry high weights in
Class 1 due to their association with conflicting rhetoric, despite the overall patriotic context.

The system mistakenly classified the author as 0 (non-collaborator) when, in fact, it should have
classified the author as 1 (collaborator). It is the most critical error for the security system
(Table 30).

Table 30
False Negative Error Analysis

Characteristics Cause of occurrence

Quantity in the =~ 2 samples (Lowest error rate!)
test

Purpose of the Identification of "disguised" collaborators.
error

Main reason Mascuring tactics — the collaborator deliberately avoids using direct
propaganda terms (e.g., svo, khokhly) in their messages, instead focusing on
neutral, everyday, or highly contextual topics (e.g., weather, news).

Weaknesses of The low frequency of key propaganda features in the aggregated text results
the model in the total weight of the cumulative text falling below the threshold value,
despite the text belonging to the positive class.

Hypothetical examples of aggregated text (False Negative): Author (collaborator) who is marked
as Non-Collaborator: "Hey, how are you? It was quiet in our city [city name] today. Why the error:
the text contains mostly neutral signs (hello, how are you, silent), which have a high weight in
Class 0. There are no critical signs of Class 1.

The analysis of the error structure confirms that the model has successfully achieved its security
goal:

1. Minimisation of critical errors — the number of False Negatives (missed collaborators) is
only 2 out of 366 test samples. It confirms the high Recall (99%) and makes the system
reliable for primary screening.

2. Tolerance to False Positive — the number of False Positives (29 samples) is acceptable, as
these cases can be referred for manual expert verification (if P_Collaborator > 0.5 but
P_Collaborator < 0.8, i.e. average confidence).

In general, the error structure of the model is consistent with its setting for maximum detection
of a positive class (safety priority).

The use of traditional machine learning models (e.g. SVM on TF-IDF) to classify accounts, as we
have seen, leads to high Recall (detection of collaborators) but has limitations in accuracy
(Precision) due to insufficient understanding of the context. The integration of transformer models
(e.g., BERT - Bidirectional Encoder Representations from Transformers) can significantly alter the
error structure, particularly in the False Positive part. The main advantage of BERT is its ability to
provide semantic and contextual representation (Semantic and Contextual Embeddings), as
opposed to lexical weighting (TF-IDF):



Table 31

Mechanism for improving contextual understanding

Characteristics TF-IDF/SVM BERT

Understanding Lexical coincidence: takes into Semantic connections: understands that

the signs account the frequency and weight "abomination" can refer to both the
of individual words (for example, enemy (Patriot) and the authorities
"abomination" or "ours"). (Collaborator).

Problem Polysemy/aggression, ie. Contextual differentiation distinguishes

aggressive language of patriots, is
mistakenly associated  with

propaganda — False Positive.

between the tone and purpose of the
message (e.g., anger directed at the enemy
versus rage directed at one's authority).

If you replace the SVM/TF-IDF classifier with a BERT-based model, the following changes can

be expected:

Table 32

Expected change in the error structure

Error

TF-IDF/SVM
(Current Result)

BERT model forecast

False Positive

29 samples (caused
by aggression, not

A significant reduction - understanding the context
will allow you to correctly classify aggressive but

related to patriotic texts as Class 0 (non-collaborationist). It will
collaboration). increase the Precision for Class 1.
False Negative 2 samples (caused Reduction/no change possible — while BERT picks up
(missed by masking/neutral hints better if the collaborator writes completely
collaborators) content). neutral text, BERT can also skip it. However, BERT
can pick up on subtle stylistic cues that camouflage
betrayal.
Table 33

Impact on key metrics

Metric Current  Value Expected change from BERT
(SVM)
Precision 0.83 Magnification (cl 0.90+) — fewer False Positives.
(Class 1)
Recall 0.99 Maintaining a high level (target 0.95+) —to continue
(Class 1) minimising False Negatives.
AUC 0.9770 Increase (target 0.98+) — better discriminatory ability.

Despite the advantages, the use of BERT imposes significant limitations that are especially

important for practical deployment: computational costs and input length. Training and using



BERT requires significantly more GPU resources and time compared to SVM on TF-IDF. Standard
BERT models have input sequence length limits (e.g., 512 tokens). Since the account classification
model utilises aggregated text (which can be very long), specialised techniques must be employed
(such as averaging, hierarchical models, or models with a larger context window, like LongFormer),
which complicates the architecture. The introduction of BERT may be the next step in improving
the quality and ethics of the classifier, particularly by reducing False Positives caused by the
erroneous interpretation of aggressive pro-Ukrainian vocabulary. However, this will require
significant investments in computational resources and further engineering optimisation of the
model to work effectively with very long, aggregated texts.

9. Conclusions

Within the framework of this scientific project, a complete cycle of system development, from
conceptualisation to experimental validation, has been implemented. The need to create a system
for automated classification of collaborationist content in social networks, particularly Telegram,
has been substantiated in response to the insufficient automation of monitoring information threats
in groups associated with occupied territories. The scientific novelty, due to the lack of open,
specialised datasets, has been emphasised, as well as systems for classifying collaborative content
in the Ukrainian information space. The practical value lies in providing tools for security analysts,
law enforcement agencies and social media moderators. Key problems have been identified,
including the lack of specialised research on collaborators, the scarcity of training data in such
projects, the ethical risks of false classifications, and the issue of ignoring/misclassifying pro-
Ukrainian messages. Functional and non-functional requirements for both components of the
system (classification of messages and accounts) are formulated, including hardware, software, and
quality limitations.

Generated an initial dataset by collecting and manually labelling 10,861+ messages. Selected the
TfidfVectorizer Ensemble Approach from Naive Bayes and CountVectorizer (char-level) from
Logistic Regression for message classification. Automatic labelling of more than 88,864 messages
was performed. The final model, trained on 141,357 messages, achieved an accuracy of 0.9438 and
an F1-score of 0.92 for the critical collaborationist class.

Based on the labelled body of 400,000 entries, a training sample was formed at the author's level.
The optimal threshold for the author's classification was established: threshold ratio = 0.006.
Comparative training of Logistic Regression, Random Forest, and SVM with class weighting was
conducted. The best SVM model achieved an AUC of approximately 0.977 and a Recall of roughly
0.99. A Classification Report revealed a strong bias in favour of Recall to ensure security.

The structure of errors (False Positives and False Negatives) is investigated, and the influence of
linguistic features on the correctness of classification is analysed. Successful completion of control
examples, including cross-domain persistence (e.g., Telegram, Twitter) and accurate distinction
between patriotic and collaborationist content, is demonstrated. Recommendations for further
improvement are formulated, including the use of SMOTE, further fine-tuning of thresholds, and
collection of more data.

The control case in the study was used to independently verify the quality of the built system of
automatic binary classification of user accounts based on their text messages. Its purpose was not
only to assess the accuracy of the models but also to analyse the behaviour of classifiers in realistic
conditions, closely approximating practical use. The control example, according to the
methodology of the system, included:

1. Individual user messages processed using various TF-IDF vectorizers (word, char and
mixed).

2. Generated model forecasts from a wide variety of classifiers: SVM (balanced, sensitive,
manual weight), Logistic Regression (balanced, sensitive), Random Forest (balanced,
sensitive), Gradient Boosting (standard and "sensitive" variant).



3. A set of metrics was used to compare models in the control example: accuracy, F1-macro,
F1-weighted, F1-binary for class 1, F1 separately for classes 0 and 1, the number of positive
predictions during testing, and the influence of the dynamic classification threshold.

Since identical data from the control set were used for each model, it became possible to
objectively compare the quality of the algorithms, assess the stability of the models, and determine
the best configuration for further use in the product.

The control example was formed in accordance with the general pipeline of the system:

1. Collection of texts from users who were not included in the training dataset.

Pre-linguistic processing, including tokenisation, noise cleaning, normalisation, and
bringing to a single format.

3. Construction of three independent vector representations: TF-IDF word-level (unigrams and
bigrams), TF-IDF char-level (3-5 characters in n-grams), TF-IDF mixed (combined use of
word and char n-grams).

Passing control texts through all models trained in experiments.

5. Recording the results for each model, including the impact of sensitive thresholds (0.35 and
0.40).

6. Construction of summary tables of results, in particular, the top 10 models by F1-macro.

Thus, the control case functioned as a "final sanity check” - an independent test to test the
model's ability to generalise data.
The analysis of the results showed a clear pattern:

1. SVM models with manual weights consistently demonstrate the highest quality on various
vectorizers. Best Model: SVM and TF-IDF char with manual weight F1-macro = 0.9852,
Accuracy = 0.9862.

2. Char-level vectorisation significantly improves results compared to word-level and mixed
approaches, indicating resistance to spelling errors, the model's ability to capture stylistic
patterns, and increased efficiency for short and informal messages.

3. Random Forest also performs well (F1-macro ~ 0.97), but is inferior to SVM in terms of
stability and accuracy.

Gradient Boosting consistently performs significantly worse than SVM and RF.

5. Logistic Regression gave the lowest quality, especially in sensitive mode.

The use of two thresholds (0.35 and 0.40) made it possible to assess how sensitive the model is to
changes in the decision boundary:

1. A threshold of 0.40 — is more conservative, increasing precision class 1.
2. A threshold of 0.35 — is more aggressive, increasing the recall of class 1.

In general, changing the threshold has almost no effect on the best models (SVM/manual),
which indicates their stability. All the best models predicted around 1270-1280 positive classes,
which is consistent with the real balance of the data and suggests that:

1. Models are not subject to displacement.
2. Do not overestimate the dangerous class 1.
3. Do not demonstrate a "cautious" or "overstated" strategy.

It is vital for practical applications, such as identifying potentially dangerous accounts.
According to all the metrics of the control example, the best model is SVM with manual class
weight and char-level TF-IDF vectorisation. Fl-macro = 0.9852; Accuracy = 0.9862;



F1 class 1 = 0.9813. It makes the model optimal for tasks such as account detection, risk assessment,
and the detection of collaborationist patterns. Advantages of char-TF-IDF:

1. Symbols naturally model specific language constructions.
2. Work well in the Telegram environment (slang, errors, dialects).
3. Resistant to specially modified words (manual censorship).

Table 34
Comparison table of control case results
Control Result / Dignity Flaws Limitations Recommendati
Model ons
SVM and char Highest accuracy High data Dependence on  Use as the main
TF-IDF with (Accuracy 0.9862),  dimensionality, the quality of model in the
manual weight best F1-macro, slower inference text cleaning product
(best resistance to on large
combination) threshold changes, enclosures
and no
overtraining
SVM and char High quality, Slightly lower Easily Use as an
TF-IDF with recognises Class 1 macro-F1 noticeable alternative
sensitive well threshold
sensitivity
SVM with word Works well with Worse results in Less error- Not
TF-IDF standard text slang resistant recommended
for Telegram
Random Forest  High accuracy (F1- Exceeded Poorly scalable  Can be used as

(balanced)

macro ~ 0.97),
stability

inference time on
large sets

a fallback
model

Random Forest Boosts Class 1 May overestimate Instability in Use in systems
(sensitive) recall positive short texts with high
predictions sensitivity
Gradient Stable model, Significantly Needs Not
Boosting moderate lower metrics regularization recommended
inference time (around 0.91- as the main
0.92)
Logistic The fastest, easiest Worst quality Linearity of the Can work in
Regression (F1-macro < 0.90) model — weak lightweight
generalizability modes

Advantages of SVM (manual weight):

1. SVM works optimally in high-dimensional spaces.
2. Hand scales allow you to accurately adjust the penalty for class 1 errors.



Stable optimisation without strong overtraining. The control case confirmed the effectiveness of
the proposed methodology for building a classification system for text accounts. The analysis of
independent test results showed that the best models demonstrate high resistance to changes in
input data, and are also able to maintain high classification accuracy even under challenging
conditions (noise, slang, atypical vocabulary, short messages). The most effective configuration was
the SVM model with hand scales combined with TF-IDF symbolic vectorisation, which yielded a
significant performance increase compared to other approaches.

The work performed laid a solid scientific and technical foundation. Further development of the
"Sphere" system provides for the expansion of its functionality and the integration of advanced
methodologies:

1. Multilingual and cross-platform expansion, in particular, expanding support for other
languages (English, Polish) and social networks (Twitter, VKontakte, Instagram) by
adapting NLP pipelines to specific platform formats (length, media format, metadata).

2. Deep Learning/Transformers: Application of modern language models (BERT-based, XLM-
R) to improve contextual understanding, which is critical for reducing False Positives caused
by aggressive language; Research on the representation of messages in the form of graphs
and the use of Graph Neural Networks to analyse the spread of misinformation and
connections between accounts.

3. Improvements to the dataset and balancing, including the expansion of the manual labelling
corpus through crowdsourcing or semi-automatic learning methods (Active Learning) and
the use of generative models to synthesise new, representative examples for
underrepresented classes.

4. Real-time operation and deployment: Development of a real-time monitoring system with
integration of streaming APIs (Kafka) for prompt detection of "hot" topics; Creating a user
interface (Dashboard) to visualise trends, indicators, and classification results.

5. Ethics and Interpretability (Explainable AI): Implementing XAI techniques to ensure
transparency in decision-making and providing analysts with explanations as to why a
particular profile was classified as a collaborator; Development of an MLOps pipeline for
automatic retraining and monitoring of model quality degradation in a dynamic information
environment.

The completed research provides a solid foundation for the transition to large-scale and high-
precision solutions in the field of information security. Thus, the work performed has laid a solid
foundation: from concept and analysis to the development, testing and statistical evaluation of
models. Further work is aimed at expanding language and platform support, integrating modern
DL-architectures, building real-time solutions, and ensuring the ethics and interpretation of the
system.
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