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Abstract
This article  delves into a fresh,  innovative strategy for allocating human resources during IT project 
execution.  We  introduce  a  groundbreaking  algorithm leveraging  Stochastic  Gradient  Descent  (SGD), 
which allows for the effective and continuous optimization of task assignment across development teams.  
We place particular focus on the distinct challenges of the IT ecosystem: the wide array of technologies 
and skill sets that demand precise matching, the rapid and ever-changing nature of project requirements, 
and the need for adaptive team leadership that carefully balances the specific qualifications and current  
workload of every specialist (be they a developer, tester, or designer). Our proposed algorithm is designed 
to aggressively minimize overall project costs and completion time. It achieves this by factoring in more  
than just individual output;  it  also considers the synergistic  benefits between team members and the 
opportunity for skill enhancement. In stark contrast to older, often inflexible, static methodologies, this 
new approach is iterative and highly scalable, making it an ideal fit for the fast-paced environment of  
Agile  projects.  We  thoroughly  evaluated  the  algorithm's  performance  by  conducting  a  detailed 
comparative  analysis  against  established  heuristic  methods  using  simulated  data  sets.  The  findings 
conclusively show a substantial uplift in critical performance metrics, solidifying the case for using SGD 
as a powerful tool for labor resource management in IT. This capability not only ensures peak operational  
effectiveness for the team but also actively cultivates motivation and professional advancement among its 
members.
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1. Introduction

The rapid advancement of information technologies and the continuous increase in the IT-projects  
complexity demand from managers not only technical expertise but also effective tools for resource 
management [1]. One of the most critical and, at the same time, the most challenging tasks is the 
optimal allocation of labor resources [2, 3]. The success and the economic viability of a project 
largely depend on how efficiently tasks are distributed among team members. Improper allocation 
may lead to a range of adverse consequences, including missed deadlines, budget overruns, reduced 
quality of products [4], and no less importantly, emotional burnout and team demotivation.

Traditional management methods, such as the Gantt chart and the Critical Path Method (CPM), 
have  proven  effective  for  projects  with  fixed  requirements  and  predictable  processes  [6,  7]. 
However, within the context of contemporary agile methodologies and the high dynamism of the 
IT environment – where project requirements may change during implementation – these methods 
often lack sufficient flexibility [8, 9]. They fail to account for key factors such as the unique skill of 
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each  developer,  tester,  or  designer;  the  synergy  within  team;  the  potential  for  learning  and 
professional development; and the necessity of maintaining balanced workload to prevent project 
“bottlenecks” [10, 11].

The answer to this tricky problem needs new ideas that can change with the conditions.
This piece of writing suggests a fresh method called Stochastic Gradient Descent (SGD) – a way 

often used in learning machines – which helps find the best match by making a tough loss, time 
spent, and team tasks more even [12].

The suggested method is easy to grow, it makes it good for small-startups or big company plans. 
The goal of this study is to create and support a plan for using work resources in IT tasks based on  
SGD.

The new idea here is using machine learning ways to solve an old project m͏anagement issue, 
which makes things more effective and adaptable [13]. To check if the plan works well, a test study 
was done where the suggested method was looked at against other methods on made-up data sets.

2. Problem statement

Labor  resources  management  in  IT  projects  represents  one  of  the  most  complex  challenges, 
requiring a delicate balance among numerous interdependent factors [14]. Traditional approaches, 
which often rely on static models, prove to be ineffective within the context of the modern IT 
environment [15]. The core issue lies in the inability of these methods to adequately account for  
the unique characteristics inherent to IT projects (Table 1).

Table 1
Unique characteristics of IT projects

Characteristic Description

Dynamism and Uncertainty Project  requirements  may  change  at  any  time, 
necessitating  continuous  adaptation  and  task 
reallocation – something that static models struggle 
to handle effectively

Competencies Specificity Each  team  member  (devProgram  Evaluation  and 
Review  Technique,  PERT  eloper,  tester,  devops-
engineer) has a unique skill set and varying levels of 
qualifications. Improper task assignment may lead to 
reduced quality or significant increases in execution 
time

Task interdependence Many tasks in IT projects  are either sequential  or 
parallel  in  nature,  forming  a  complex  web  of 
dependencies

Multi-criteria optimization There is a need to simultaneously minimize project 
cost, total execution time, and workload imbalance 
within the team. Such criteria often conflict with one 
another

Thus,  there  emerges  a  pressing need for  the  development of  a  novel,  flexible,  and scalable 
algorithm  capable  of  addressing  this  multifactor  optimization  problem,  adapting  to  changing 
conditions,  and  ensuring  the  most  efficient  allocation  of  labor  resources  within  dynamic  IT 
environment circumstances. The absence of such a tool results in significant financial and temporal  
losses, while also exerting a detrimental effect on team morale and overall productivity [6, 16].



3. Literature review and analysis of existing approaches

Resource management in projects is a long-standing problem, with its origins tracing back to the 
era of the Industrial Revolution. Over time, numerous approaches have been developed, which can 
be broadly categorized into classical and modern methods.

Classical  methods  primarily  focus  on  the  sequential  execution  of  tasks  and  rigid  planning 
structures. These approaches are well-suited for projects with clearly defined requirements and 
predictable  processes,  where  the  environment  remains  relatively  stable  throughout  the  project 
lifecycle [17, 18] (Table 2).

Table 2
Classical methods

Method name Description

Gantt Chart This tool visualizes the project plan by displaying tasks 
along a timeline. While it assists in tracking progress, it 
does  not  account  for  task  dependencies,  resource 
workload,  or  potential  risks  associated  with  resource 
reallocation.

Critical Path Method This method identifies the longest path within a network 
of  dependent  tasks,  which  determines  the  minimum 
project duration. The Critical Path Method (CPM) aids in 
focusing  on  key  tasks;  however,  it  does  not  consider 
resource constraints and lacks flexibility in response to 
changes.

Program Evaluation and Review 
Technique, PERT

Unlike  CPM,  the  Program  Evaluation  and  Review 
Technique  (PERT)  accounts  for  uncertainty  in  task 
durations  by  incorporating  three  estimates:  optimistic, 
pessimistic,  and  most  likely.  This  allows  for  a  more 
realistic assessment of project timelines. However, similar 
to CPM, PERT does not address the issue of optimizing 
resource allocation.

These methods are foundational.  However,  their inherent static nature renders them poorly 
suited to the dynamic IT environment, where change is the norm rather than the exception. The 
main gap is that classical methods only provide high-level time planning, but do not offer a detailed 
mechanism for micro-task assignment taking into account multi-factor criteria such as qualification 
matching and total cost optimization.

Contemporary  methodologies  seek  to  overcome  the  limitations  of  classical  approaches  by 
employing more flexible and computationally advanced tools [16, 19] (Table 3).

Although SGD is not a traditional project management tool, it is particularly well-suited for  
addressing the resource allocation problem. SGD operates with a loss function that measures the 
“suboptimality” of the current solution. It iteratively adjusts model parameters (in this case—the 
task distribution), moving in the direction that minimizes this function [20].

In contrast to full gradient descent, SGD updates parameters after processing only a single data 
point (or a small batch), making it computationally efficient and enabling adaptation to project  
changes without requiring a complete recalculation. This property is especially valuable in agile 
environments, where new tasks and shifting priorities arise continuously [21].

Based on the analysis of existing approaches, it becomes evident that traditional methods are 
outdated for the dynamic IT environment. While modern heuristic and genetic algorithms can be 
effective, they are often complex to configure [22]. The application of SGD, by contrast, enables the  



development  of  a  flexible  and  scalable  system capable  of  adapting  efficiently  to  changes  and 
optimizing resource allocation in real time.

Table 3
Contemporary approaches

Method name Description

Linear programming This mathematical approach makes it possible to determine 
the  optimal  solution  for  a  problem  with  multiple 
constraints. It can be applied to minimize cost or execution 
time;  however,  its  efficiency  decreases  significantly  as 
complexity  and  the  number  of  variables  increase—a 
common feature of large-scale IT projects.

Heuristic algorithms These methods aim to find a "good enough" solution rather 
than  a  perfect  one.  Examples  include  ant  colony 
optimization  and  simulated  annealing.  They  are  fast  and 
capable of handling large datasets, yet their performance is 
highly task-dependent,  and they do not always guarantee 
optimality.

Genetic algorithms This evolutionary approach simulates the process of natural 
selection.  It  generates  random  solutions,  evaluates  their 
effectiveness,  and “crosses” the best ones to create a new 
generation.  While  this  is  a  powerful  tool  for  solving 
complex optimization problems, it can be computationally 
expensive and requires careful parameter tuning.

Machine learning methods The application of machine learning to project management 
represents a relatively new research direction. Algorithms 
such as neural networks and support vector machines can 
analyze  historical  data  to  forecast  timelines  and  costs. 
Stochastic  Gradient  Descent  (SGD)  is  one  of  the  key 
optimization algorithms underlying many modern machine 
learning  models.  Its  main  advantage  lies  in  the  iterative 
approach  to  finding  an  optimum,  making  it  particularly 
effective for large-scale and dynamic systems.

4. Mathematical model of the resource allocation problem

To formalize the problem of labor resource allocation in IT projects, we define the key components  
and the interrelationships among them. The model is oriented toward minimizing an objective  
function that simultaneously incorporates multiple criteria [14].

4.1. Problem formalization

Let us consider a set of tasks in the project:

T={t1 , ... , t i , ... , tn},                                                            (1)

where n denotes the total number of tasks in the project.
Each task 𝑡𝑖 is characterized by the following attributes:

1. Estimate duration 𝑑𝑖 (in hours or person-days).
2. Required  qualification  level  Sreqi (represented  as  a  skill  vector  that  specifies  the 

competencies necessary for the executor) [1, 11].



3. Dependencies: a set of predecessor tasks 𝑃𝑖. Task 𝑡𝑖 cannot begin until all tasks in 𝑃𝑖 are 
completed.

The set of executors involved in project task implementation can be represented as [4]:

E={e1 , ... , e j , ... , em},                                                          (2)

where m denotes the total number of team members.
Each executor 𝑒𝑗 is characterized by:

1. Skill set  Se j (a vector analogous to  Sreqi, describing the list of skills and qualifications of 

each project team member).
2. Work cost 𝑐𝑗 of a labor resource per unit of time (e.g., per hour).

The allocation of  resources  to project  tasks can be represented by a  matrix  X,  where each 
element 𝑋𝑖𝑗 is a binary variable defined as:

1. 𝑋𝑖𝑗 = 1, if task 𝑡𝑖 is assigned to executor 𝑒𝑗.
2. 𝑋𝑖𝑗 = 0 otherwise.

4.2. Constraints

For the solution to be valid, it must satisfy the key conditions imposed on project tasks [23, 24]:
Each task must be assigned to exactly one executor:

∑
j=1

m

X ij=1 ,    ∀ i∈{1 , ... , n }.                                                      (3)

The executor 𝑒𝑗 can be assigned a task 𝑡𝑖 only if their skills meet the minimum requirements of 
that task:

X ij=1⇒ Se j≥Sreqi ,    ∀ i∈{1 , ... , n } ,    ∀ j∈{1 , ... ,m }                                (4)

(Here, the ≥ is understood element-wise, meaning that each component of the executor’s skill 
vector Se j must be greater than or equal to the corresponding requirement for the task Sreqi).

The start time of task 𝑡𝑖 (denoted as 𝑆𝑖) must not be earlier than the completion times of all its 
predecessor tasks:

Si≥max
t k∈Pi

(Sk+Dk) ,    ∀ i∈{1 , ... , n } ,                                                  (5)

where 𝐷𝑘 – real execution time of task 𝑡𝑘.

4.3. Loss Function

Our objective is to find an allocation matrix  that minimizes the composite objective function 𝑋 𝐿 
( ). This function is the sum of three components representing the principal optimization criteria:𝑋

L(X )=α∗Lcost (X )+β∗Ltime(X )+γ∗Lload (X ) ,                                        (6)

where   ,  ,  are  weighting  coefficients  that  determine  the  priority  of  each  criterion  (for𝛼 𝛽 𝛾  
example, if cost is more important than time,  will be greater).𝛼

The cost component 𝐿𝑐𝑜𝑠𝑡 is calculated as the total project cost:

Lcost (X )=∑
i=1

n

∑
j=1

m

X ij∗c j∗d i .                                                     (7)

This is the total sum of the costs of executing all assigned tasks.
The time component 𝐿𝑡𝑖𝑚𝑒 is defined as the overall project duration, which corresponds to the 

completion time of the last task:



Lload (X )=max
i∈n

(Si+Di) .                                                         (8)

Time  starts  𝑆𝑖 and  duration  𝐷𝑖 are  computed  based  on  the  allocartion  matrix   and  the𝑋  
precedence constraints of the tasks. The critical path forms the basis for determining the overall 
project duration.

The load component 𝐿𝑙𝑜𝑎𝑑 reflects the imbalance of team workload. This criterion helps prevent 
situations where one executor is  overloaded while others remain underutilized. We define this 
measue as the variance of workload distribution:

Lload (X )= 1
m
∑
j=1

m

(TotalLoad j− 1m∑
k=1

m

TotalLoadk),                                (9)

where TotalLoad j=∑
i=1

n

X ij∗d i is the total amount of workload assigned to executor 𝑒𝑗.

Thus, the problem reduces to finding the allocation matrix , which minimizes the objective𝑋  
( )  subject  to  all  specified  constraints.  This  model  provides  flexibility  in  adjusting  priorities𝐿 𝑋  

(through  the  weighting  coefficients)  and  serves  as  the  foundation  for  applying  the  stochastic 
gradient descent.

Thanks  to  its  structure,  which  is  geared  toward  processing  small  data  packets,  the  SGD 
algorithm demonstrates high computational efficiency and is a scalable solution that allows you to 
quickly  find  an  effective  distribution  of  resources  even  for  projects  with  a  large  number  of 
variables.

5. Resource allocation algorithm based on stochastic gradient descent

Building on  the  developed mathematical  formulations,  we propose  an algorithm based on the 
principles  of  stochastic  gradient  descent  (SGD)  [13]  for  the  iterative  search  of  an  optimal 
distribution  of  tasks  among  project  team  members.  The  algorithm  accounts  for  competence 
indicators, task prioritization, and the workload of each executor, with the goal of minimizing the 
composite objective function ( ).  The primary advantage of SGD lies in its  efficiency and its𝐿 𝑋  
capacity to handle large-scale data, enabling dynamic adaptation to project changes.

Unlike classical gradient descent, which computes the gradient (the direction of steepest ascent 
of the function) for the entire dataset, SGD estimates it using a small random subset of data (the so-
called  mini-batch).  This  considerably  accelerates  the  optimization  process,  as  each  iteration  is 
computationally less expensive [25, 26]. In our case, the "data" correspond to project tasks, while 
the "parameters" are represented by the allocation matrix .𝑋

5.1. Algorithm steps

The algorithm is executed iteratively and consists of successive steps (see Fig. 1).
At the initialization stage, an initial allocation matrix (0) is generated. This can be a random𝑋  

assignment of tasks to executors who satisfy the minimum qualification requirements.
Next, the hyperparameters are defined:

1. Learning rate η, which controls the step size at each iteration.
2. Number of iterations .𝐾
3. Mini-batch size  (the number of tasks processed in each iteration).𝐵

The iterative process then proceeds as follows. For k = 1, ..., K:

1. The mini-batch selection is a random subset  of tasks is drawn from the overall task set .𝐵 𝑇  
This constitutes the “stochastic” element of the algorithm.

2. For  each  task  𝑡𝑖 in  the  selected  mini-batch,  the  local  gradient  of  the  loss  function  is 
calculated. The gradient indicates how the assignement (i.e.,  the values in the allocation 



matrix ) should be adjusted to locally decrease the objective function. Mathematically, ∇𝑋 𝐿 
( ) is computed for the current mini-batch. In practice, this corresponds to analyzing how𝑋  
reassigning task 𝑡𝑖 from executor 𝑒𝑗 to executor 𝑒𝑘 would affect cost, duration and workload 
balance.

3. The allocation matrix ( ) is updated based on the computed gradient and the learning rate.𝑋 𝑘

X (k+1)=X (k )−η∗∇ L(X (k )) .                                                     (10)

Since  is a binary matrix, the update process is nonlinear. In practice, the values of 𝑋 𝑋𝑖𝑗 are not 
modified fractionally; instead, tasks are reassigned if such a reassignment leads to a reduction in 
the loss function. For example, if the gradient indicates that reassigning task 𝑡𝑖 from executor 𝑒𝑗 to 
executor 𝑒𝑘 decreases ( ), then this reassignment is performed.𝐿 𝑋

The stopping criteria for the algorithm are defined as follows:

1. The maximum number of iterations  is reached.𝐾
2. The value of the objective function ( ) stabilizes, meaning that further updates no longer𝐿 𝑋  

yield significant improvements.

Figure 1: Main algorithm steps.

5.2. Algorithm implementation

In the general case, the implementation of the proposed algorithm can be illustrated as follows.  
Suppose the task is to select an executor for project work between two developers: Dev1, who has 
higher  qualifications  but  also  higher  cost,  and  Dev2,  who  has  lower  cost  but  also  lower 



qualification. The decision concerns the assignment of task T10 (mini-batch with size=1). At the 
current iteration, the algorithm evaluates the following.

1. The task T10 is initially assigned to Dev1. The cost is high, but the execution time is short.
2. The  algorithm  computes  the  gradient  by  analyzing  the  potential  outcome  if  T10  were 

reassigned to Dev2.
3. Reassignment to Dev2 would reduce cost (lower hourly rate) but increase execution time 

(due to lower qualification).
4. If the overall loss function L(X) considering the weighting coefficients α, β, γ decreases after 

the reassignment, the algorithm performs the change.

Through  this  iterative  process,  the  algorithm gradually  “learns”  and  discovers  increasingly 
effective allocation strategies, efficiently balancing cost, execution time, and workload distribution 
within the team.

6. Experimental studies and results

To validate  the  effectiveness  of  the  proposed algorithm based on  Stochastic  Gradient  Descent 
(SGD), a series of experiments were conducted on simulated datasets. The aim was to compare our 
approach against two widely used methods:

1. Heuristic algorithm based on a greedy strategy (Greedy Algorithm): this method assigns 
each task to the executor with the highest qualification and the lowest current workload.

2. Exhaustive search method: suitable for small projects as a benchmark to achieve the ideal  
solution, although computationally infeasible for large-scale projects due to its exponential 
complexity.

For the experiment,  three datasets  were generated to simulate IT projects  of  different sizes 
(Table 4).

Table 4
Experimental data for validation

Project type Number of tasks Number of executors

Small project 20 5

Medium project 50 10

Large project 150 25

Each task was characterized by its duration, the required skill level, and dependency constraints. 
Executors were assigned different costs, unique skill sets, and varying initial workloads.

For each dataset, the three algorithms were applied, and the following performance indicators 
were measured:

1. Total project cost — the aggregate labor expenses.
2. Total project duration — the completion time of the last task.
3. Team workload imbalance — measured as the standard deviation from the mean workload 

of all executors. The lower this value, the more evenly the tasks are distributed.

For the SGD-based algorithm, 100 iterations were carried out with a mini-batch size equal to  
10% of the total number of tasks and a learning rate of η = 0.01.

The experimental results are summarized in Table 5.



Table 5
Experimental results for resource allocation algorithms

Project type Algorithm Cost ($) Duration (days)
Workload 

imbalance (days)

Small SGD 28 500 35 4,2

Heuristic 30 100 41 6,5

Exhaustive 27 900 34 3,9

Medium SGD 67 200 78 9,1

Heuristic 73 800 89 15,3

Large SGD 215 000 185 18,7

Heuristic 240 500 210 29,8

As the results indicate, the SGD-based algorithm demonstrates significantly better efficiency 
compared to the greedy heuristic approach:

1. In small projects, the results obtained with SGD were very close to the optimal solution 
derived from exhaustive search, which confirms the high accuracy of the algorithm.

2. In medium and large projects, the advantage of SGD becomes even more pronounced. On 
average,  cost  and  time  savings  reached  10–15%,  a  factor  of  critical  importance  for  the 
success of large-scale projects.

3. Particularly  noteworthy  is  the  improvement  in  workload  imbalance.  The  SGD-based 
approach enabled a 30–40% more balanced distribution of tasks, preventing the overloading 
of individual executors and thereby enhancing overall productivity and the team's morale.

The experiments demonstrated that the iterative and adaptive nature of SGD makes it more 
effective than greedy heuristics. The heuristic algorithm, by assigning tasks locally, often fails to 
account for the overall  project  landscape,  which leads to suboptimal long-term outcomes (e.g., 
overloading the most qualified specialists). As the size of the project increases, the computational  
efficiency  and  low  time  complexity  of  SGD  becomes  a  decisive  advantage.  In  contrast,  SGD 
continuously evaluates the impact of each decision on the global loss function, thereby enabling a  
more balanced allocation of resources.

As project size increases, the computational efficiency of SGD becomes decisive. Although the 
heuristic  algorithm  is  computationally  fast,  its  solutions  become  progressively  less  optimal. 
Exhaustive  search,  on  the  other  hand,  is  computationally  infeasible  for  large  projects,  which 
underscores the necessity of employing modern, scalable optimization methods such as SGD.

7. Conclusion

The  article  proposes  and  substantiates  an  innovative  approach  to  optimizing  labor  resource 
allocation in IT projects based on the Stochastic Gradient Descent (SGD) algorithm. The developed 
mathematical  model  makes  it  possible  to  formalize  a  multifactor  optimization  problem  while 
accounting for the specific requirements of the modern IT environment, such as unique skill sets,  
task dependencies, and the necessity of balancing cost, time, and team workload [27, 28].

Experimental studies conducted on simulated projects of different scales confirmed the high 
effectiveness of the proposed approach. Compared to traditional heuristic methods, the SGD-based 
algorithm demonstrated significant advantages:

1. Reduction of overall project cost and duration by an average of 10–15%.



2. Improved team workload balance, which is critically important for preventing burnout and 
maintaining high productivity.

3. The ability to efficiently handle large projects, where computationally intensive methods 
often fail.

Thus, the proposed algorithm represents a powerful tool for project managers, allowing not 
only  the  achievement  of  target  performance  indicators  but  also  the  optimization  of  the  most 
valuable resource—human capital. The flexibility of SGD enables it to adapt to constant changes, 
making it an ideal solution for modern agile projects.

Despite these promising results, several directions for further improvement of the model remain 
[29, 30]:

1. Integration of dynamic learning, through mechanisms that enable the algorithm to learn 
from data generated in real time, thereby improving predictive accuracy.

2. Consideration of team synergy, by incorporating parameters that capture how productivity 
depends on the interaction of specific team members.

3. Inclusion  of  risk-related  factors  in  the  objective  function  to  account  for  uncertainties 
associated with task assignment.

4. Extension of the model and adaptation of the algorithm to other domains beyond IT, where  
efficient resource allocation is equally critical.

The application of  machine learning methods such as SGD opens new horizons for project 
management, making it more intelligent, flexible, and efficient [31, 32].
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