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Abstract
The construction industry’s reliance on fixed, calendar-based inspections is inefficient and often misses 
gradual  infrastructure  degradation,  causing  costly  reactive  repairs.  This  paper  presents  a  six-step 
framework  combining  a  contextual  graph  model,  real-time  IoT  data,  and  a  hybrid  physics–machine 
learning  pipeline  for  predictive  inspection  scheduling.  A  physics-based  degradation  model  simulates  
corrosion, fatigue, and stress to create a synthetic dataset for training. A Random Forest model achieved  
accuracy in detecting at-risk states and a forecasting algorithm predicting inspection needs. Applied to a  
static plan, the framework detects new high-risk periods, validates or adjusts scheduled inspections, and 
defers  low-risk  ones.  By  updating  maintenance  plans  with  data-driven insights,  it  enables  proactive, 
condition-based asset management that improves safety and reduces costs.
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1. Introduction

Construction industry standards: DSTU 29481-1:2022, DSTU 29481-2:2023 specifies fourteen types 
of data for construction projects: Project, BIM Model, BIM Element, Construction Site, GIS Layer, 
Document,  Multimedia,  Telemetry,  Event/Incident,  Task,  Financial  Transaction, 
Resource/Contractor, Inspection (Operational), Provenance/Lineage.

Modern construction standards, such as DSTU 9243.4:2023, mandate robust asset monitoring 
throughout a project's lifecycle. However, conventional monitoring often fails to detect the slow, 
insidious degradation of critical components. Consequently, the industry predominantly relies on a 
reactive, calendar-based inspection process (Figure 1), which is often inefficient and poorly timed 
[1]. A compelling example is the slow water ingress in a concrete foundation, which can lead to 
rebar corrosion. This degradation process may proceed undetected for years, and by the time a 
scheduled inspection occurs, the structural damage may be severe and prohibitively expensive to 
repair. This gap highlights the urgent need to transition from rigid, calendar-based schedules to 
intelligent, predictive maintenance methodologies.

Figure 1: A calendar-based Inspection process.

⋆AIT&AIS’2025:  International Scientific Workshop on Applied Information Technologies and Artificial Intelligence Systems, 
December 18–19 2025, Chernivtsi, Ukraine
1∗ Corresponding author.
† These authors contributed equally.

 iust511@ukr.net (T. Honcharenko); solovey.ol@knuba.edu.ua (O. Solovei)
 0000-0003-2577-6916 (T. Honcharenko); 0000-0001-8774-7243 (O. Solovei)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:iust511@ukr.net


The convergence of Digital Twin, the Internet of Things (IoT), and machine learning (ML) offers 
a solution to address this challenge. Yet, as identified in a comprehensive literature review [2], the 
field still requires more practical, implementable frameworks and advanced algorithms to realize its 
full potential.

This paper directly answers that call. We propose a novel framework for predictive inspection 
scheduling designed to preempt costly failures by detecting the degradation.  Our methodology 
leverages a hybrid approach: it integrates real-time data from embedded sensors with the static, 
contextual knowledge of an asset, such as material specifications and structural load models. A 
machine learning model trained on this combined data forecasts the future need for an inspection. 
Upon a  positive  prediction,  our  framework automatically  generates  a  targeted inspection task, 
transforming  the  maintenance  process  from  a  reactive,  time-based  cycle  into  a  proactive,
data-driven, and condition-based workflow.

2. Research Objectives

The  goal  of  this  research  is  to  design  and  validate  a  framework  that  facilitates  a  shift  from 
calendar-based inspection schedules to a predictive maintenance strategy for civil infrastructure.

To achieve this objective, this study will resolve the tasks:

1. Develop a physical degradation model of a specific BIM element by translating sensor data 
into physical metrics.

2. Design an algorithm for forecasting Inspection Timeline.
3. Define a method to train and evaluate machine learning classification model.

The  scope of  this  initial  study is  focused  on  demonstrating  the  methodology's  viability  by 
developing and applying the physical degradation model to a single, asset type: a structural steel  
beam.

3. Literature Review

The  research  in  [3]  proposes  a  Digital  Twin  framework  for  railway  turnouts,  with  a  core 
contribution centered on Explainable AI (XAI). By modeling the system with a Bayesian Network 
structured by expert engineering knowledge, their approach delivers not just predictions but also 
probabilistic explanations for impending failures. While this 'white-box' model is highly valuable, 
its reliance on pre-defined causal structures can be challenging to scale across the diverse and often 
less-understood failure modes of heterogeneous building assets. Our framework complements this  
by proposing a hybrid approach that leverages both physics-based models and data-driven machine 
learning, offering adaptability where a single, explicit causal model may be insufficient.

The framework developed in [4] for wind turbines focuses on real-time prognostics and active 
control.  Their Digital Twin not only forecasts failures but also tests control strategies to bring 
deviating parameters back within operational thresholds,  creating a self-regulating system. Our 
perspective  is  that  this  self-regulation  addresses  the  symptom,  it  cannot  replace  physical 
intervention  to  resolve  the  root  cause  of  degradation.  Therefore,  we  treat  the  frequency  and 
magnitude of such control actions as a primary input signal for our inspection prediction model.

The work in [5]  addresses  the pre-deployment problem of optimal  sensor placement.  Their 
results  prove  that  a  well-designed  sensor  network,  derived  from  physics-based  simulations, 
maximizes  the  signal-to-noise  ratio  for  damage detection.  Our research is  complementary  and 
focuses on the subsequent operational phase. Assuming such a well-placed network is providing 
data, our framework answers the question of how to integrate this live sensor data with the rich 
contextual information from BIM models to drive a predictive workflow. While simulation-based 
design is essential, it is insufficient on its own, as it operates under idealized conditions and cannot 
account for the operational complexities our framework is designed to handle.



The study in [6] successfully validates a real-time infrastructure monitoring system for a "Noise 
Barrier Tunnel", integrating a high-resolution BIM model with live IoT data. The system proved 
effective  through a  dual-layer  anomaly detection strategy combining real-time hardware alerts 
with offline analysis of subtle irregularities. A key limitation, stated by the authors, is that these 
advanced data-driven analytics are not part of the real-time system. Our research addresses this 
exact  gap  by  automating  and  integrating  the  predictive  analytics  layer  into  the  operational 
workflow. We achieve this by adding a machine learning classifier to forecast inspection needs in 
real-time, transforming the system from a reactive monitoring platform into a proactive one.

The research in [7] presents a comprehensive, six-layer data-driven Digital Twin framework 
designed to improve Facility Management for tunnels. A limitation of this otherwise holistic study 
lies in its treatment of the predictive analytics layer as a generic "data-driven" module, which may 
lack the specificity and interpretability required for the diverse and physically distinct assets found 
in a BIM model. Our research addresses this limitation by proposing a hybrid physical-ML pipeline. 
Instead of a single black-box model, we first use domain-specific engineering principles to compute 
explicit degradation metrics, which then serve as robust features for a data-driven classification 
model.  This  provides  a  more  transparent,  adaptable,  and  physically  grounded  approach  to 
prediction.

4. Materials and methods

4.1. A  design  of  framework  to  enable  predictive  inspections  for  construction 
project asset

This paper proposes six-process framework designed to enable predictive inspections for building 
assets  by  integrating  heterogeneous  data  sources  through  a  hybrid  physical-machine  learning 
pipeline (Figure 2).

Figure 2: Six-process framework designed to enable predictive inspections for construction project  
assets.



At  the  core  of  our  framework  is  a  formal  representation  of  the  construction  project  as  a 
heterogeneous property graph, denoted as G = (V, E). Here, V represents the set of all project object 
types O = {o1,  …, on}, where n is the number of object types, and E represents the multi-relational 
connections between them. This contextual graph is managed within a native graph database to 
ensure high-performance traversal and querying, in line with modern data management principles.

Since each object o ∈ O is defined by different data types, the database for each must be selected 
as a "best-in-class" solution for that specific data type. For example, real-time time-series data from 
IoT sensors is best stored in a specialized database like InfluxDB [8].

Therefore,  the framework includes processes to collect  data about objects  o ∈  O from their 
respective databases and storage systems. The process "Fetch Civil Building Construction Graph" 
retrieves  the  contextual  graph  G.  The  "Fetch  Time-Series  Data"  process  retrieves  sensor 
measurements for specific BIM elements over a defined time window. In the "Combine Static and 
Dynamic Data" process, static metadata from the project graph G is merged with dynamic sensor 
measurements to form a dataset suitable for training a machine learning classification model. The 
"Create  Physical  Degradation  Model  of  BIM  Element"  process  defines  functions  to  compute 
degradation metrics.

The  "Design  Binary  Classification  Model  to  Forecast  Inspection  Need"  process  involves 
designing and building a machine learning model to predict whether an inspection is  required 
within  a  specified  future  time  horizon.  The  "Integrate  Predictions  into  the  Graph"  process 
dynamically updates the graph model G with inspection predictions by creating new nodes and 
relationships to represent forecasted risks and inspection schedules.

4.2. Beam element Physical degradation model

Corrosion reduction factor [9]:

CF=1.0+ D
3650

⋅ H
100

⋅k c ,                                                        (1)

where D – days in service, H – humidity, kc ∈ [0.05, 0.15] corrosion effect range.
The section modulus of a rectangular beam, adjusted for corrosion:

S= bh2

6⋅CF
,                                                                     (2)

where b – beam width, m; h – beam height, m.
Maximum bending moment for a centrally loaded beam:

M= PL
4
,                                                                      (3)

where L – beam span length, m; P – weight of a single central load, kN.
Bending stress is calculated as the maximum bending moment divided by the section modulus:

σ =M
S
.                                                                      (4)

Temperature-adjusted  Yield  Strength  σy  based  on  temperature  T,  assuming  a  reduction  of 
approximately 0.02% per °C above 20°C [10]:

σ y ,eff=σ y⋅(1−0.0002⋅(T−20)) .                                                 (5)

Safety factor is calculated by dividing the effective yield strength by the bending stress:

SF=
σ y ,eff
σ .                                                                  (6)

Initial Stress Intensity Factor to measure the intensity of stress near a crack tip [11]:

K I=σ √π α 0 ,                                                               (7)

where α0 is an initial crack length, m.
Fatigue crack propagation over time in materials under cyclic loading, using Paris Law [12]:



dα
d N

=C (K I)
m ,                                                              (8)

where /  is a crack growth rate; c, m are material-dependent constants; 𝑑𝛼 𝑑𝑁 N – a total number 
of loading cycles over the time period, calculated as:

N total=nc⋅D ,                                                                  (9)

where  nc – number  of  cycles  loadings  the  component  per  day,  D – number  of  days  the 
component has been in service.

Total crack length after N cycles starting from initial crack length α0 [13]:

α final=α 0+
dα
d N

⋅N .                                                            (10)

A final stress Intensity Factor at the final crack length 𝛼final:

K I , final=σ √π α final .                                                           (11)

The binary rule to identify when inspection is needed consists of 3 conditions, which are joined 
by logical “or” operations: a final crack length αfinal exceeds 15 mm; safety factor SF is less than 2.0 
indicating that the material is closed to failure under the given conditions; the final stress intensity  
factor  KI,final exceeds  90%  of  the  material's  fracture  toughness  90%  of  the  material's  fracture 
toughness KIC [14]:

Inspection={1 ,α final>0.015∨SV <2.0∨K I , final≥0.9K IC

0 , otherwise
.                          (12)

4.3. Algorithm for Forecasting Inspections Timeline

To identify when a beam requires inspection, this paper proposes an algorithm that integrates 
physical  degradation  modeling  with  predictive  machine  learning  techniques.  For  the  defined 
forecast period the algorithm identifies the number of periods denoted as nsteps, and for each period 
calculates  the  future  date,  denoted  as  tfuture.  It  updates  the  beam's  parameters  using  a
time-dependent  degradation  model,  denoted  as  Xfuture,  using  function  f(∙) which  performs 
calculations according to equations (1–12).  A trained binary classification model  M, is  used to 
predict probability of inspection needs at time  tfuture. The algorithm’s output is a dataframe with 
forecasted beams inspection timeline, denoted as df.

Algorithm 1. Algorithm for forecasting Beam Inspection Timeline:

1. Input: A trained binary classification model  M,  dataset  D at moment  t = 0, total days to 
forecast Tforecast, time interval between forecast steps Tinterval.

2. Output: dataframe with forecasted beams inspection timeline df.
3. Initialization: Tcurrent ← SystemDate(); nsteps = Tforecast / Tinterval; timeline ← []
4. FOR step in range(nsteps):

1. Δt = step × Tinterval

2. tfuture = tcurrent + Δt.
3. Xfuture= f (tfuture)
4. X'future = StandardScaler(Xfuture)
5. Pinspection = M.predict(X'future)
6. timeline.append([tfuture, Δt, Pinspection, Xfuture]
EndFor
7. Return df = DataFrame(timeline)



4.4. Method to train and evaluate machine learning classification algorithms

Random Forest Classifier is trained with 200 trees, a learning rate is set to 0.1 and a maximum tree 
depth limited to 15. Additionally, 10 samples are required to form a node. Gini Impurity is used as  
the splitting criteria:

G (t )=1−∑
i=1

k

( pi)
2 ,                                                          (13)

where pi is the proportion of samples belonging to class i at node t.
The XGBoost classifier is trained with 300 trees, a learning rate of 0.1, and a maximum tree  

depth limited to 7. The objective function to be minimized is Binary Log Loss:

L=− 1
N
∑
i=1

N

[ y i log ( pi)+(1− y i) log (1−pi)] .                                    (14)

The  hyperparameters  for  Random  Forest  Classifier  and  XGBoost  were  selected  based  on 
established best practices and findings from preliminary experiments. A standard scaling method is  
used to normalize feature values with the same scale.

The  performance  of  each  model  is  evaluated  using  the  5-fold  cross-validation  method  and 
includes the following metrics:

The proportion of correctly classified samples among all samples:

Accuracy= TP+TN
TP+FP+TN+FN

.                                               (15)

The harmonic mean of precision and recall, balancing the tradeoff between false positives and 
false negatives:

F1=
2⋅Precision⋅Recall
Precision+Recall

.                                                     (16)

Additionally, a comprehensive visualization of where errors occur in "No Inspection Required" 
vs. "Inspection Required" predictions is provided through a confusion matrix.

5. Experiments Preparation

5.1. Proposed Operational Data Integration Framework

To  enable  predictive  inspections  for  construction  project  assets,  we  propose  an  operational 
framework that integrates data from multiple specialized databases.

A comprehensive civil construction project model, represented as a graph G = (V, E), is stored in 
a Neo4j database (see Figure 3). The process of identifying data for a specific asset—in the scope of 
this paper, a construction beam—begins by querying this graph. A Cypher query, such as MATCH 
(s:Sensor)-[:ATTACHED_TO]->(e:Element {elementID: $target_id}) RETURN s.deviceID, is used to 
traverse  the graph from a target  :Element  node to  its  associated :Sensor nodes,  retrieving the  
unique deviceID for each sensor. 

Static parameters required for the physical degradation model would then be retrieved from 
their respective sources. For this study, we assume these parameters are stored as properties on the  
:Element nodes within the Neo4j graph. For each structural beam asset (elementID) the parameters 
include:  Geometric  Properties:  beam.width  (b),  beam.height  (h),  beam.spanLength  (L).  Material 
Properties:  beam.yieldStrength  (σy),  beam.fractureToughness  (KIC),  beam.paris_C,  beam.paris_m. 
Operational Parameters:  beam.initialCrackLength (α0),  beam.cyclesPerDay (nc).  Provenance Data: 
beam.installationDate, from which "Days in Service" (D) is calculated.

Using the retrieved deviceIDs, queries would be sent to a time-series database (InfluxDB) to 
fetch dynamic measurements such as Humidity (H), Temperature (T), and Load (P) over a given 
time window. The combination of this static and dynamic data forms the complete feature vector 
required for real-time prediction.



Figure 3: Civil construction project graph model.

5.2. Methodology for Synthetic Data Generation and Model Training

This study validates the proposed predictive models using a synthetically generated dataset. This  
approach allows for the creation of a balanced and comprehensive dataset to rigorously train and 
test the machine learning algorithms.

A dataset of 2000 observations was generated. A subset of parameters (Table 1) were sampled 
from uniform distributions and the remaining parameters were derived according to Equations
(1–11). Two distinct ranges were used to create a class-imbalanced scenario reflective of reality:

1. Range 1 (Inspection = 0): These parameters were chosen to simulate beams operating under  
normal, healthy conditions where an inspection is not required.

2. Range 2 (Inspection = 1): These parameters were chosen to simulate beams under higher 
stress or with more advanced degradation, representing conditions where an inspection is 
required according to the binary rule in Equation (12).

To address  the class  imbalance  inherent  in  generated datasets  (where  non-failure  cases  far 
outnumber failure cases), the SMOTE (Synthetic Minority Over-sampling Technique) was applied 
to  the  training  data.  The  default  sampling_strategy='auto'  was  used,  which  oversamples  the 
minority  class  until  it  has  the  same number  of  instances  as  the majority  class,  resulting  in  a  
balanced 1:1  class  ratio.  The number of  nearest  neighbors used to generate synthetic  samples,  
k_neighbors, was also kept at its default value of 5. This balancing technique helps prevent the 
machine learning models from being biased towards the majority class and improves their ability 
to detect the rare "inspection required" events [15].



Table 1
Data ranges to sample from Uniform distribution to generate dataset

Parameter name Parameter description Range 1 Range 2

b Beam width, m [0,2 … 0,5] [0,05 … 0,3]

h Beam height, m [0,3 … 0,8] [0,05 … 0,4]

L Beam Length, m [0,5 … 8,0] [0,5 … 8,0]

yield_strength
stress before plastic 

deformation, Pa [250e6 ... 450e6] [250e6 ... 450e6]

KIC Fracture toughness, Pa/m [100e6 … 300e6] 100e6 … 300e6]

α0 Initial crack length, m [1e-5… 1e-3] [5e-4 … 5e-3]

P Load, kH [100… 50e3] [3×104
 … 10e4]

cycles_per_day Cycles per day [100 … 20e3] [100 … 20e3]

The  balanced  dataset  was  then used  to  train  two machine  learning  classifier  algorithms:  a 
Random Forest Classifier (RF) and an Extreme Gradient Boosting Classifier (XGBoost), with the 
goal of predicting the binary outcome defined in Equation (12).

5.3. Experiment setup

The models were developed and trained using the Python programming language in the following 
software environment: PyTorch (version 2.7.0 + cpu), NumPy (version 2.2.4), Pandas (version 2.2.3),  
Scikit-learn (version 1.6.1), Matplotlib (version 3.10.1). Construction graph model was developed 
and stored in Neo4j desktop (version 2.0.3). Time series data loaded from InfluxDb.

6. Results and discussion

Figure 4 presents the generated dataset characteristics. In Figure 4(a), 4,324 beams are classified as 
No Inspection Required and 676 as Requires Inspection based on safety thresholds.  Figure 4(b) 
shows the safety factor (SF) distribution,  with the dashed line at  SF = 2.0 marking the failure 
threshold (SF < 2.0 is inspection required). Figure 4(c) tracks final crack length (afinal) over time,  
revealing degradation after ~2000 days.

Figure 4: Dataset class, safety factor distributions and crack growth over time.

Figure 5 visualizes physical relationships in the dataset. Red points denote “Need Inspection” 
and green “No Inspection.” Figure 5(a) shows applied load (P) vs. bending stress (σ): loads < 30 kN  
are mostly safe; > 60 kN correlate with inspection need. Figure 5(b) shows crack growth rate vs.  
daily cycles  –  low cycles (< 5,000/day) show low growth, while > 15,000/day strongly increase 
da/dN. Figure 5(c) links corrosion to humidity—low humidity (10–40 %) causes minor corrosion; 
high humidity (70–95 %) accelerates it.



Figure 5: Physical analysis of the relationships in the generated dataset.

Figure 6 confirms the dataset’s suitability for ML training. The XGBoost classifier misclassified 
two “Needs Inspection” cases (recall  = 0.9901),  while the Random Forest  (RF)  achieved perfect  
accuracy (Accuracy = 1.0, F1 = 1.0). Hence, Algorithm 1 was executed using the RF model.

Figure 6: Confusion matrix: (a) RF classifier; (b) XGBoost classifier.

Table  2  records  less  Accuracy  of  XGBoost  classifier  caused  by  two  missed  cased  as  was 
illustrated on Figure 6.

Table 2
Evaluation results for trained machine learner classifiers

Metric Random Forest XGBoost

Accuracy 1 0,9987

F1 1 1

Therefore, Algorithm 1 is executed with the trained Random Forest model.
The forecasted with Algorithm1 inspections requirements are illustrated on Figure 7. Figure 7 

(a) depicts the probability of the beam requiring an inspection over the forecasted time horizon. 
The  red  dashed  horizontal  line  indicates  the  decision  threshold  (0.5);  when the  probability  of 
requiring inspection exceeds this threshold, an inspection is recommended. There are three peaks 
exceeding the threshold, each lasting for a short period before the probability drops: Early in the  



timeline (near t = 0). At approximately Year 2 and Year 4. On Figure 7 (b) the plot shows the change 
in the safety factor (SF) over time, with the red dashed line denoting the minimum safety factor 
threshold (SF = 2.0). When t = 2 years, 4 years SF approaches dips below the critical threshold  
coinciding with the inspected probability of the beam requiring an inspection peaks in Fig 7. (a) 
chart. Crack propagation has a spike near the start of the graph (Figure 7 (c)). The crack length 
grows beyond 10mm, crossing into the critical failure zone early in the forecast. After this initial  
crack growth, no further crack propagation is observed until Year 4, where another spike is visible.  
This second spike also crosses into the Critical  Zone.  Most of  the time horizon sees stable or  
negligible crack growth—suggesting limited degradation during those intervals.

Figure  7: Framework  forecasts:  (a)  5  years  inspections  probability  forecast;  (b)  safety  factor 
degradation forecast; (c) crack propagation forecast.

The results of the integration of the predictions for planned inspection are illustrated on Figure 
8 (b) and include the following:

1. The static plan's first inspection is a routine visual check on March 2025. However, our 
predictive model (Figure 7.a) shows a high probability (>0.5) of inspection need starting 
earlier, driven by a significant initial crack propagation event (Figure 7.c). The framework 
automatically generates a task for a new, unscheduled "Detailed Inspection" in March 2025,  
specifically focused on crack assessment.

2. The static plan calls for a 'Detailed Inspection' on November 2026. Our model confirms the  
need  for  an  inspection  around  this  time,  with  the  probability  peaking  in  late  2026 
(approximately Year 2). However, our framework provides additional insight: the driver for 
this inspection is the Safety Factor (SF) below the critical threshold of 2.0 (Figure 7.b). The 
scheduled 'Detailed Inspection' for November 2026 is validated and confirmed as necessary. 



The framework will update the description, specifying to focus on the factors affecting the 
safety factor.

3. The static plan includes a 'Routine Visual' inspection on June 2027. Our predictive model 
shows a very low probability of inspection need throughout 2027. The safety factor is above 
the threshold, and crack growth during this period. The framework updates the inspection's 
description recommending that the inspection scheduled for June 2027 is unnecessary and 
can be safely deferred.

4. The static plan schedules a 'Detailed Inspection' for November 2028. Our model concurs, 
showing  a  sharp  spike  in  inspection  probability  around  Year  4  (~  October  2028).  The 
underlying  drivers  are  identified  as  another  significant  crack  propagation  event  and  a 
corresponding dip in the safety factor. The framework updates the inspection's description 
by setting a high-priority.

Figure 8: Inspections plan: (a) calendar-based; (b) updated with forecasted inspection needs.

7. Conclusions

This research developed and validated a novel framework for predictive inspection scheduling in 
construction  projects.  The  core  contribution  is  a  hybrid  physics-machine  learning  (ML) 
methodology, where a physics-based degradation model of a structural beam generated a high-
fidelity synthetic dataset for training ML classifiers.

Applying the forecasting algorithm to a real-world,  static  inspection plan demonstrated the 
framework’s practical value. It dynamically identified a new high-risk period requiring an added 
inspection, validated necessary scheduled inspections with causal insights, and flagged a low-risk 
period where an inspection could be safely deferred-optimizing resources while enhancing safety 
and efficiency.

The main limitation is that the ML models were trained on synthetic data derived from physical  
models, which cannot fully represent real-world noise, sensor errors, or operational variability. The 
study was limited to one asset type (a structural beam) and specific degradation modes (corrosion 
and fatigue), excluding others such as fire or impact damage.

Future work will expand the framework’s scope by developing a library of degradation models 
for various asset types and incorporating explainable AI (XAI) methods, such as SHAP, to increase 
transparency and user trust in predictive decisions.

Declaration on Generative AI

The authors has not employed any Generative AI tools.
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