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Abstract
Recent  advances  in  singing  voice  synthesis  (SVS)  have  achieved  high  perceptual  quality  through 
variational and diffusion-based generative frameworks. However, diffusion models require many iterative 
steps for inference, while variational approaches may suffer from a mismatch between prior and posterior  
distributions,  affecting  pitch  accuracy  and  pronunciation.  We  propose  a  flow matching-based  latent 
generative  model  that  integrates  a  DDSP  autoencoder  with  a  latent  flow predictor  for  efficient  and 
expressive singing voice synthesis.  By combining spectral parameter modeling with continuous latent 
flow transformation, the system achieves high-fidelity waveform generation with reduced computational  
cost. Experimental results demonstrate that the proposed model attains comparable perceptual quality to 
state-of-the-art baselines while using fewer parameters and achieving faster inference.
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1. Introduction

Singing Voice Synthesis (SVS) aims to generate expressive singing from musical scores and lyrics.  
Unlike Text-to-Speech, SVS must precisely reproduce pitch, rhythm, and expressive nuances such 
as vibrato and legato.

Despite their conceptual similarity, SVS presents a set of challenges that are substantially more 
complex than those in TTS. First, the pitch contour in singing spans a much wider dynamic range  
and requires frame-level accuracy: even small deviations in fundamental frequency 0 can lead to𝐹  
perceptually unnatural or dissonant results. Second, the temporal structure of singing is governed 
by musical rhythm and note duration rather than by natural speech prosody. This introduces a 
strong dependency between phoneme alignment and musical timing, where mismatched durations 
or onsets can severely distort lyrical intelligibility. Third, expressive performance characteristics 
such as vibrato, portamento, and dynamic loudness variation are essential for naturalness, yet are  
difficult  to  model  using  standard  text-to-speech  architectures.  Moreover,  singing  datasets  are 
typically smaller  and less diverse than speech corpora,  limiting the robustness  of  purely data-
driven approaches.

Over the past two decades, singing voice synthesis has evolved from concatenative to neural  
generative  paradigms.  Early  systems  such  as  Vocaloid  [1]  and  UTAU relied  on  concatenative 
playback of  recorded phonemes,  offering manual  control  but  limited  expressiveness.  Statistical 
models like Sinsy [2] introduced hidden Markov modeling for note durations and pitch, enabling 
automation  at  the  cost  of  oversmoothed  timbre.  With  deep  learning,  architectures  such  as 
XiaoiceSing [3] and DeepSinger [4] adopted transformer-based encoders for non-autoregressive 
prediction, improving pitch and rhythm stability.
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Recent neural SVS systems address these issues through variational, diffusion, or flow-based 
generative  modeling.  While  architectures,  such  as  VISinger  [5],  achieve  high  quality  and  can 
generalize  with  limited  data,  they  often  suffer  from  training-inference  mismatch  between  the 
posterior (audio) and prior (musical score) distributions, which can lead to inaccurate pitch and 
mispronunciations [6].  Diffusion models,  including HiddenSinger [6] and DiffSinger [7],  deliver 
state-of-the-art fidelity but require iterative denoising in high-dimensional acoustic space, leading 
to slow inference and high computational cost.

2. Related Works

2.1. Singing voice synthesis models

Recent research in SVS has progressed through the integration of  deep learning,  neural  audio 
codecs, diffusion processes, flow-based methods, and digital signal processing (DSP) techniques.  
The  evolution  of  SVS  models  reflects  a  shift  from  deterministic  acoustic  modeling  toward 
probabilistic and latent generative paradigms.

One of the systems of this generation, XiaoiceSing [3], employs a FastSpeech-style architecture 
that combines phoneme, positional, and musical features to predict phoneme durations and the  
fundamental  frequency  𝐹0.  The  model  performs  non-autoregressive  acoustic  prediction  while 
incorporating rhythmic and melodic conditioning.

The  VISinger  series  [5,  8]  is  built  upon  the  VITS  architecture  (Variational  Inference  with 
adversarial learning for end-to-end Text-to-Speech). It integrates variational latent modeling, flow 
transformations,  and  adversarial  training  to  jointly  model  acoustic  features  and  waveform 
reconstruction.  VISinger  2  extends  this  framework  by  introducing  differentiable  digital  signal 
processing  (DDSP)  blocks  and  a  HiFi-GAN vocoder,  explicitly  separating  harmonic  and  noise 
components. The system operates in an end-to-end manner, synthesizing 44.1 kHz audio, and was 
trained for 500 k steps on 5 hours of data.

DiffSinger  [7]  adopts  diffusion  probabilistic  modeling  for  generating  mel-spectrograms.  The 
model transforms Gaussian noise into target spectrograms through a conditional diffusion process,  
and its shallow diffusion mechanism reduces the number of denoising steps to improve generation 
efficiency.

HiddenSinger [6] combines a neural  audio codec with a latent diffusion model.  The system 
encodes singing audio into a low-dimensional latent space, performs generation within this space,  
and reconstructs full-band audio through a neural decoder. It was trained on 150 hours of data for 3 
million  steps  with  a  batch  size  of  32.  The  variant  HiddenSinger-U  supports  semi-supervised 
training on unpaired singing data.

Multilingual and zero-shot adaptation is explored in TCSinger 2 [9], which enables cross-lingual 
and cross-singer synthesis without additional fine-tuning. Meanwhile, TechSinger [10] employs the 
flow matching paradigm for controllable SVS, allowing explicit manipulation of vocal techniques 
such as vibrato and breathiness across multiple languages.

Overall,  contemporary  SVS  systems  encompass  a  wide  spectrum  of  architectures—from 
nonautoregressive  models  (XiaoiceSing)  and  VITS-based  variational  frameworks  (VISinger, 
VISinger  2)  to  diffusion-based  (DiffSinger),  latent-diffusion  (HiddenSinger),  and  flow-based 
(TechSinger)  approaches  —  advancing  toward  multilinguality,  controllability,  and  expressive 
singing synthesis.

2.2. Recent flow matching based TTS models

Recent  advances  in  text-to-speech  (TTS)  modeling  demonstrate  a  steady  transition  from 
autoregressive architectures to flow-based and latent generative approaches aimed at improving 
synthesis  efficiency,  prosodic  coherence,  and  controllability.  Several  works  explore  different 
formulations of flow matching and diffusion processes for speech generation.



MetaTTS [11] integrates pre-training strategies into TTS and examines how large-scale flow 
matching  can  enhance  generalization  and  naturalness.  This  study  represents  one  of  the  first  
attempts to apply flow matching at the scale of foundation speech models, bridging pre-trained 
acoustic representations with generative modeling.

Building  upon  this  line,  F5-TTS  [12]  investigates  long-form  speech  synthesis,  emphasizing 
textspeech alignment and temporal consistency. Using the flow matching framework, it maintains 
coherent prosody across extended utterances, highlighting the suitability of flow-based methods 
for narrative and expressive speech generation.

Matcha-TTS [13] proposes a streamlined conditional flow matching architecture optimized for 
lowlatency  synthesis.  The  model  reduces  inference  time  while  preserving  competitive  audio 
quality, indicating its potential for real-time applications.

A complementary direction is  explored in  LatentSpeech [14],  which applies  latent  diffusion 
modeling to TTS. Speech is generated within a compact latent space rather than directly in the 
spectral or temporal domain, reducing computational requirements while retaining acoustic detail.  
This approach demonstrates the efficiency gains achievable through latent-space diffusion.

VoiceFlow  [15]  extends  the  flow-based  paradigm  by  employing  rectified  flow  matching, 
reformulating  the  underlying  dynamics  to  minimize  integration  steps  and  inference  cost.  The 
resulting model achieves comparable perceptual quality with improved computational efficiency.

Finally,  ProsodyFlow  [16]  integrates  conditional  flow  matching  with  prosody  modeling 
informed by large speech language models. This combination allows explicit control over high-
level  prosodic  dimensions  such  as  intonation,  rhythm,  and  stress,  illustrating  how  linguistic 
conditioning can enhance expressiveness in neural TTS.

3. Proposed method

This  section  presents  the  proposed latent-conditioned  architecture  for  singing  voice  synthesis, 
which  combines  a  flow-based  latent  predictor  with  a  DDSP-based  autoencoder  for  waveform 
reconstruction, as illustrated in Figure 1.

Figure 1: Overview of the proposed architecture.

3.1. Autoencoder

Architecture adopts a differential DSP based autoencoder. Following the approach of HiddenSinger 
[6], we integrate Residual Vector Quantization (RVQ) blocks into the bottleneck to enable compact  
latent representation of input features.

3.1.1. Encoder

Given an input waveform  ∈ 𝑥 ℝ𝐿, where  is the number of audio samples, the encoder (·) extracts𝑁 𝐸
a latent feature sequence:



z=E (x)∈ℝd×T .                                                                  (1)

where  denotes the feature dimension and  is the number of encoded frames.𝑑 𝑇
The  encoder  transforms  the  raw  waveform  into  a  time-aligned  latent  representation  that 

summarizes its relevant acoustic structure. This representation retains information about spectral 
shape, energy, and temporal evolution while discarding fine-grained sample-level details that are 
unnecessary for higher-level modeling.

3.1.2. Residual Vector Quantization

RVQ approximates a signal  ∈ 𝑧 ℝd as the sum of  quantized vectors, each selected from a codebook𝐿  
𝐶( )𝑖 ,  = 1, 2, … , , of fixed size 𝑖 𝐿 𝑀𝑖:

q(z)=∑
i=1

L

qi(r i) ,                                                                 (2)

where 𝑞𝑖 : ℝd → 𝐶( )𝑖  is the quantization function for the -th codebook 𝑖 𝐶( )𝑖 , and 𝑟𝑖 is the residual 
vector at the -th quantization step:𝑖

r1=z ,    r i=z−∑
j=1

i−1

q j(r j) .                                                        (3)

This  structure  enables  high-fidelity  reconstruction  with  compact  codebooks,  establishes  a 
discrete prior over the latent space, and imposes structural constraints on the latent manifold.

3.1.3. Decoder and vocoder

The decoder is adapted from the architecture proposed in [17], adopting a Emformer-blocks [18].  
The vocoder follows the design principles of [17,  19],  combining differentiable signal synthesis  
with  spectral  parameter  decoding.  It  operates  on  three  feature  components:  the  fundamental 
frequency 𝐹0, the spectral envelope , and the aperiodicity .𝑆 𝐴

The excitation signal for the harmonic component is defined as the sum of sawtooth-like signals 
[20]:

eh(t )=∑
k=1

K
1
k
sin (φ k (t )) ,                                                          (4)

where  is the number of harmonics and 𝐾 𝜑𝑘( ) is the instantaneous phase of the -th harmonic,𝑡 𝑘  
given by:

φ k (t )=2π k∫
0

t

F0( τ )d τ .                                                        (5)

The excitation signal is then passed through a frequency-domain filter to generate the harmonic 
signal:

xh=ℱ −1((1−A )Sℱ (eh)) ,                                                      (6)

where  and ℱ ℱ−1 denote the forward and inverse short-time Fourier transforms (STFT) with a 
window length of 2048 samples and 75% overlap,  is the aperiodicity coefficient, and  is the𝐴 𝑆  
spectral shaping filter.

The initial excitation for the noise component is defined as Gaussian white noise:

en(t )∼ N (0 ,1) .                                                                (7)

The noise signal is then generated by applying the same spectral filter with the aperiodicity 
weighting:

xn=ℱ −1(ASℱ (en)) .                                                           (8)

Finally, the synthesized singing voice signal is obtained as a weighted sum of the harmonic and 
noise components:



x̂=λ h xh+λ n xn ,                                                                (9)

where 𝜆ℎ and 𝜆𝑛 are coefficients that control the relative contribution and amplitude of the 
harmonic and noise components, respectively.

Following [19] we adopt compression/decompression for  and .𝑆 𝐴
The linear spectral envelope  is mapped to the log-mel domain using a mel filterbank :𝑆 𝑀

Sc=log10(MS+ε ) ,                                                           (10)

and reconstructed during synthesis as:

S=M 010
Sc−ε ,                                                              (11)

where 𝑀0 = max(𝑀−1, 0) is a non-negative pseudo-inverse of  applied elementwise to avoid𝑀  
negative reconstruction artifacts.

For aperiodicity, the decoder predicts a compressed representation 𝐴𝑐 with 16 channels, which is 
linearly interpolated along the frequency axis to obtain the full 513-dimensional aperiodicity 𝐴 
used by the differentiable signal synthesis module.

3.1.4. Training criteria

The  autoencoder  model  is  optimized  using  a  combination  of  spectral  reconstruction,  vector 
quantization, and adversarial objectives. Each term contributes to different aspects of perceptual 
and structural fidelity in the generated waveform.

Reconstruction loss. To ensure accurate waveform reconstruction, we adopt a multi-resolution 
STFT loss:

ℒ STFT=E∑
i=1

6

‖Si(x)−Si( x̂i)‖2
2+‖log Si(x)−log Si( x̂i)‖2

2
,                           (12)

where S𝑖 represents normalized STFT with size of FFT and window size 25+𝑖 and hop lenght 25%.
Vector quantization commitment loss. For residual vector quantization, the commitment objective 

encourages stable codebook utilization [21]:

ℒ RVQ=E∑
i=1

L

‖r i−qi(r i)‖2
2
.                                                       (13)

Discriminative loss.  Following [22], we adopt both a multi-period discriminator (MPD) and a 
multiscale discriminator (MSD) to enhance the perceptual quality of the generated waveform. The 
MPD  is  designed  to  capture  pitch-synchronous  periodic  structures  across  multiple  temporal 
periods, while the MSD operates on differently scaled versions of the waveform to assess spectral 
consistency and long-term coherence. Both discriminators are jointly trained with the generator 
using least-squares adversarial objectives and a feature-matching term.

The generator  and discriminators  𝐺 {DMPD(i) }i=1
N p , {DMSD( j) }j=1

N s , are optimized using least-squares 

adversarial  losses  [23].  For  a  target  waveform   and  its  generated  counterpart  𝑥 x̂=G (⋅) , the 
objectives are defined as follows.

The generator loss is expressed as:

ℒG=E x̂[∑
i=1

N p

(DMPD(i) ( x̂)−1)2+∑
j=1

N s

(DMSD( j) ( x̂)−1)2].                            (14)

The discriminator loss is defined symmetrically as:

ℒD=Ex , x̂[∑
i=1

N p

((DMPD(i) (x)−1)2+(DMPD(i) ( x̂))2)+∑
j=1

N s

((DMSD( j) (x)−1)2+(DMSD( j) ( x̂))2)].  (15)



3.2. Flow matching

Flow matching [24] is an approach for learning a direct deterministic mapping from a simple prior  
distribution to a complex target data distribution using a vector field.  Unlike diffusion models, 
where the transformation process is  governed by stochastic differential  equations (SDEs),  Flow 
matching relies on a deterministic ordinary differential equation (ODE) that defines a continuous 
trajectory between distributions.

We adopts flow matching to predict latent embeddings  by modeling a time-dependent vector𝑧  
field 𝑣𝑡( | ), which describes the transformation of the base distribution 𝑧 𝜇 𝑝0 = (0, 1) into a target𝒩  
distribution 𝑝1 that approximates the latent data manifold:

d ψ t (z∣μ )
dt

=v t ( ψ t (z∣μ )) ,                                                      (16)

where  : [0, 1] × 𝜓 ℝ ×𝑑 𝑇 → ℝ ×𝑑 𝑇 is a time-dependent flow function defined as:

ψ t (z∣μ )=(1−t ) z+tz1 .                                                          (17)

Here, 𝑧1 denotes a sample from the data distribution in latent space, and  ∈ [0, 1] parameterizes𝑡  
the transformation path from the prior to the target distribution.

Model is training using reparametrized optimal-transport conditional flow matching [25]:

ℒCFM=Et∼U [0 ,1 ] , z1∼ q

1
1−t‖z1−v t (zt∣μ )‖2

2
.                                         (18)

To couple the conditioning pathway with the latent target, we also align encoder features  to𝜇  
the target latent 𝑧1 via an auxiliary MSE:

ℒ feature=E‖μ −z1‖2
2
.                                                           (19)

This auxiliary coupling encourages the encoder features to carry predictive information about 
the target latent while preserving the flow-matching dynamics.

3.3. Time lag and note duration

In singing voice synthesis, the temporal alignment between musical notes and phonemes plays a 
critical  role  in  maintaining  the  naturalness  and  intelligibility  of  the  generated  performance. 
Following the approach proposed in [26], we model the time-lag and note duration as two separate 
prediction tasks.

3.3.1. Time-lag model

The time-lag represents the offset between the onset of a musical note in the score and the actual  
beginning of the corresponding phoneme in the singing performance. This offset primarily arises  
because consonants often precede the note onset, while vowels align more closely with the note 
boundary. Let gn denote the reference time-lag for the -th note and 𝑛 ĝn the predicted value. The 

model is trained to minimize the mean squared error between predicted and reference lags:

ℒ lag=E‖g− ĝ‖2
2
.                                                               (20)

During synthesis, the predicted lag shifts the onset of each note, providing a corrected effective 
duration L̂n for subsequent phoneme allocation.

3.3.2. Duration model

The duration model predicts the length of each phoneme within a note, given musical and phonetic  
features.  For the -th note containing 𝑛 𝐾𝑛 phonemes, the model outputs the expected phoneme 
durations ^dnk under the constraint that their total sum equals the adjusted note length L̂n :



∑
k=1

K n

d̂nk= L̂n .                                                                     (21)

The duration network is trained with a mean squared error criterion between predicted and 
reference phoneme durations:

ℒ dur=E‖d−d̂‖2
2
.                                                               (22)

This objective encourages accurate phoneme-level  timing,  ensuring that  predicted durations 
remain consistent with the musical score.

4. Experiment

4.1. Datasets

For  training,  we  used  the  Tohoku  Kiritan  dataset  [27],  which  contains  50  songs  with  a  total  
duration of approximately 3.5 hours. The first three songs were used for testing, the next three for  
validation, and the remaining 44 for training.

All  audio signals were downsampled to 24 kHz and normalized to -26 dB.  The dataset was 
segmented into 4 second samples, with segmentation boundaries aligned to word-level timing and 
natural pauses to preserve linguistic and prosodic coherence.

4.2. Training

We trained the model using the Adam optimizer [28] with a learning rate of 10−5, 𝛽1 = 0.8, and
𝛽2 = 0.999 for 250k steps. All experiments were conducted on a single NVIDIA RTX 4060 GPU with 
a batch size of 16 and fp16.

All  components  of  the proposed system are  optimized jointly  to  achieve accurate  temporal 
alignment, spectral reconstruction, and perceptual fidelity. The overall training objective integrates 
the  note-  and  phoneme-level  temporal  models  with  the  latent  and  waveform  reconstruction 
modules.  To  ensure  stable  convergence,  the  discriminators  are  introduced  after  20k  steps  of  
autoencoder  pretraining,  allowing  the  generator  to  learn  coarse  spectral  structures  before 
adversarial feedback is applied. Full joint optimization of the encoder, decoder, flow predictor, and 
discriminators begins after 200k steps, enabling coordinated fine-tuning of all modules under both  
reconstruction and adversarial losses.

The total loss function is defined as

ℒ total=λ lagℒ lag+λ dur ℒ dur+λ STFT ℒ STFT+λ RVQ ℒ RVQ + 

+ λ GAN ℒGAN+λ FM ℒ FM+λ feature ℒ feature ,                                        (23)

where  each   denotes  a  weighting  coefficient  that  balances  the  contribution  of  the𝜆  
corresponding term.

The  loss  weights  are  empirically  set  to  𝜆lag =  0.02,  𝜆dur =  0.02,  𝜆STFT =  1.0,
𝜆RVQ = 0.5,  𝜆GAN = 0.5,  𝜆FM = 1.0,  and 𝜆feature = 0.1  with the values selected based on validation 
performance across objective metrics (detailed in Section 5).

4.3. Implementation details

4.3.1. Autoencoder

Following the design of the DDSP architecture [29], we reuse their 𝐹0- and z-encoder components, 
while omitting the loudness encoder,  as  our model  does not  rely on loudness features.  In our  
formulation,  overall  signal  amplitude  and  perceived  loudness  are  expected  to  be  implicitly 
represented  within  the  latent  variable  .  The  𝑧 𝐹0 encoder  employs  a  pretrained  CREPE  pitch 
estimator [30]. For the z-encoder, we adopt the same feature extraction and network structure as 
DDSP, which maps MFCC-based representations to a compact latent embedding ( ) through a𝑧 𝑡  
GRU layer.



The RVQ module is implemented with 8 quantizers, each comprising a codebook of 1024 entries 
with dimension 128.

4.3.2. Latent Generator

Following the architecture of Matcha-TTS [13], the latent generator predicts the denoised latent 
sequence conditioned on time  and features . It consists of six convolutional-attention blocks𝑡 𝜇  
with residual connections and explicit time conditioning at each layer.

Each block combines a residual 1D convolution (kernel size 7) for local context modeling and an 
Emformer [18] layer for efficient long-range temporal attention. In contrast to Matcha-TTS, which 
adopts Transformer blocks from BigVGAN [31], we replace them with Emformer layers to improve 
efficiency and support streaming inference.  A sinusoidal time embedding with dimension 64 is  
concatenated to the input of each block, allowing the model to represent the continuous diffusion 
or flow-matching timestep. Skip connections between early and deep layers facilitate information 
flow.  The output  features  are  projected  by a  multilayer  perceptron to  match the  target  latent 
dimensionality  of  129  channels  per  frame,  where  128  dimensions  correspond  to  the  latent 
representation  and one additional channel represents the fundamental frequency 𝑧 𝐹0.

Following Matcha-TTS [13] the conditioning features are first processed by an encoder that 
maps linguistic and prosodic inputs into a continuous representation . This representation serves𝜇  
as the conditioning variable for the latent generator, providing frame-level context about phonetic  
content, duration, and pitch.

For inference, the final latent trajectory is obtained by numerically integrating 𝑣𝑡(𝑥𝑡) using the 
first-order Euler method.

4.4. Baselines

We used two singing voice synthesis systems for comparison: HiddenSinger and ViSinger2. For 
ViSinger2, we adopted the official implementation provided in the ESPNet toolkit [32], following 
the default configuration released by the authors. The HiddenSinger model was reimplemented 
according to the architecture and training setup described in the original paper to ensure consistent 
preprocessing  and  evaluation  conditions.  For  inference,  50  denoising  steps  were  employed  to 
generate the final outputs.

Table 1
Experimental results on the test dataset. Mean Opinion Score (MOS) and Real-Time Factor (RTF)  
are reported with 95% confidence intervals, while other metrics are presented as point estimates.  
Objective metrics include Mel-Cepstral Distortion (MCD), 𝐹0 Root Mean Square Error (𝐹0-RMSE), 
voicing/unvoicing accuracy (V/UV 𝐹1), and computational efficiency indicators such as model size 
and peak memory usage

Model Params.

Peak 
memory 

usage 
(GB)

RTF MOS
MCD 
(dB)

𝐹0-RMSE V/UV 𝐹1

Ground 
Truth

— — — 4,51 ± 0,07 0,00 0,00 1,000

Autoencoder 
(recon.)

3,2M 0,29 0,010 ± 0,002 4,25 ± 0,10 1,47 15,03 0,968

ViSinger2 25,7M 4,07 0,021 ± 0,004 3,81 ± 0,08 2,71 19,74 0,951

HiddenSinger 27,2M 3,82 0,784 ± 0,017 3,49 ± 0,11 2,81 23,14 0,948

Ours (1 Step) 18,6M 1,94 0,016 ± 0,003 3,56 ± 0,07 2,92 23,52 0,937

Ours (8 Steps) 18,6M 1,94 0,063 ± 0,003 3,76 ± 0,13 2,78 22,89 0,949



Both baselines were trained and evaluated on the same dataset splits as our proposed model for 
a fair comparison.

5. Results

To evaluate the proposed model, we conducted both subjective and objective assessments on a held  
out test set of the singing voice dataset. The comparison includes two baseline systems, ViSinger2 
and  HiddenSinger,  along  with  an  autoencoder  reconstruction  reference  and  the  ground-truth 
recordings. For our model,  we report performance under two inference configurations: a single 
flow-matching step (1 Step) and with eight steps (8 Steps).

5.1. Subjective Evaluation

Subjective quality was evaluated on a subset of 80 synthesized samples using five independent 
listeners. Each participant rated the perceptual quality on a five-point Mean Opinion Score (MOS)  
scale, where higher scores indicate more natural and pleasant sound.

5.2. Objective Evaluation

Objective  evaluation  was  performed  to  assess  spectral  and  prosodic  accuracy.  Mel-cepstral  
distortion  (MCD,  in  dB)  quantifies  spectral  deviation  between  the  synthesized  and  reference 
signals. The 𝐹0 root mean square error (𝐹0-RMSE) measures the pitch contour deviation, and the 
voiced/unvoiced ( / ) 𝑉 𝑈𝑉 𝐹1-score reflects the accuracy of voicing decisions. As reference 𝐹0 and 

/  features, we used those extracted from the target recordings with the WORLD vocoder [33].𝑉 𝑈𝑉

5.3. Computational Efficiency

To evaluate computational efficiency, we also report peak memory usage during inference and the 
real-time  factor  (RTF).  Peak  memory  usage  (in  GB)  indicates  the  maximum  GPU  memory 
consumption per  sample  generation,  while  RTF measures  the  ratio  of  synthesis  time to  audio 
duration.

Table 1 summarizes the quantitative and perceptual results across all compared systems.
Figure 2 presents a direct comparison between the target and predicted mel-spectrograms. This 

visualization highlights  howclosely  the  synthesized  output  follows the  temporal  and harmonic 
structures of the reference recording. We include this figure to qualitatively illustrate the model’s 
ability to reconstruct pitch contours, note onsets, and harmonic formant structures that are not 
fully captured by objective metrics alone.

Figure 2: Comparison between target and predicted mel-spectrograms. The top panel shows the 
ground-truth mel-spectrogram extracted from the reference audio, while the bottom panel depicts 
the mel-spectrogram generated by the proposed model.



Table 2
Ablation results based on MOS with 95% confidence intervals

Model MOS

Flow Matching (8 Step) 3,76 ± 0,13
Diffusion (50 Steps) 3,32 ± 0,16

DDSP Decoder 3,76 ± 0,13
SiFiGAN 3,73 ± 0,15
HiFiGAN 3,57 ± 0,09

5.4. Ablation study

To  evaluate  the  contribution  of  the  main  architectural  components,  we  design  two  ablation 
comparisons  aligned with widely used alternatives  in  neural  singing voice  synthesis.  The first 
compares  our  8-step  flow  matching  generator  with  a  diffusion-based  decoder  trained  under 
identical data and conditioning settings.  The second replaces our DDSP-based acoustic decoder 
with commonly used GAN vocoders, including SiFiGAN [34] and HiFiGAN [22].

All ablation systems are trained using the same dataset, optimization schedule, and text–pitch 
conditioning to ensure comparability. Evaluation is performed on the same held-out test subset as 
the main experiments.

Table 2 reports subjective evaluation results for the ablation settings.

6. Discussion

The results in Table 1 demonstrate that the proposed model achieves a favorable trade-off between 
quality and efficiency. Compared to ViSinger2 and HiddenSinger, our approach requires 28% fewer 
parameters  and  less  than  half  of  the  peak  GPU memory  during  inference,  while  maintaining 
comparable  perceptual  quality.  In  particular,  the  8-step  configuration  attains  a  MOS  of  3.76, 
approaching ViSinger2 (3.81), yet operates with nearly twice the speed, as indicated by the lower 
RTF.  The 1-step version achieves  real-time generation (RTF < 0.02),  confirming that  the flow-
matching formulation enables efficient synthesis with only a few iterative updates of the velocity 
field 𝑣𝑡, rather than hundreds of stochastic denoising steps required by diffusion models.

Objective metrics further show consistent spectral and prosodic accuracy. The slight increase 
in 𝐹0-RMSE and V/UV 𝐹1 compared to the baselines suggests minor pitch and voicing deviations, 
which may stem from the reduced latent dimensionality. However, the lower MCD for the 8-step 
configuration  indicates  improved  spectral  coherence  and  harmonic  balance,  particularly  under 
multi-step refinement that progressively aligns the predicted latent with the target manifold.

While diffusion and flow-based generative models both rely on stochastic sampling, excessive 
stochasticity can sometimes introduce pitch or timing variability across runs, slightly degrading 
consistency.  Our  method  mitigates  this  by  learning  smoother  velocity  fields  through  flow 
matching,  requiring  far  fewer  steps  than  diffusion-based  denoising  while  retaining  stochastic 
flexibility for expressive control. It is also important to note that the original HiddenSinger [6] was  
trained  on  a  substantially  larger  dataset  (approximately  150  hours  of  recording),  whereas  our 
evaluation  targets  smaller  datasets  to  assess  generalization  in  low-resource  scenarios.  This 
difference in data scale likely contributes to the observed gap in subjective quality.

The faster and competitive performance of our system stems from three main design factors. 
First, the DDSP-based decoder operates directly on compact spectral parameters – the envelope 𝑆𝑐 
and aperiodicity 𝐴𝑐 – rather than full-resolution spectrograms, reducing computational cost while 
preserving  perceptual  detail.  Second,  modeling  in  the  latent  space  substantially  lowers  the 
prediction dimensionality, allowing the flow-matching network to learn smoother dynamics with 
fewer  parameters.  Third,  the  flow-matching  objective  enables  efficient  iterative  generation  by 
estimating  continuous  velocity  fields  instead  of  performing  high-step  stochastic  denoising. 
Although  the  individual  contribution  of  each  factor  has  not  been  explicitly  analyzed,  their  



combined effect enables the proposed system to achieve near state-of-the-art quality with faster 
synthesis and significantly reduced memory usage.

In  addition,  Figure  2  qualitatively  supports  these  findings  by  showing  that  the  predicted 
melspectrogram  closely  matches  the  reference  in  both  temporal  and  spectral  structure.  The 
alignment  of  formants  and harmonic  trajectories  indicates  that  the proposed model  effectively 
captures the finegrained frequency evolution of the singing voice, complementing the quantitative 
metrics in Table 1.

The ablation results show that the flow matching generator achieves higher perceptual quality 
than the diffusion-based alternative under identical training conditions, while avoiding the latency 
overhead  associated  with  multi-step  sampling.  Furthermore,  the  DDSP-based  autoencoder 
demonstrates perceptual performance comparable to SiFiGAN and superior to HiFiGAN.

7. Conclusions

In this paper, we presented a singing voice synthesis model architecture that integrates a DDSP-
based autoencoder with a flow-matching latent predictor. The proposed model effectively combines 
explicit signal decomposition with continuous latent flow modeling, enabling expressive and high-
fidelity  singing  voice  generation.  Experimental  results  demonstrate  that  our  system  achieves 
comparable perceptual quality to state-of-the-art approaches while requiring significantly fewer 
parameters. These results suggest that incorporating flow-based latent modeling within a DDSP 
framework provides an efficient and interpretable alternative for neural singing synthesis. Future 
work  will  focus  on  extending  the  proposed  method  toward  multi-singer  and  cross-lingual 
scenarios,  as  well  as  exploring  finer  control  over  expressive  parameters  such  as  vibrato  and 
dynamics.

Declaration on Generative AI

During the preparation of this work, the authors used GPT and Gemini in order to: Grammar and  
spelling check. After using these tools/services, the authors reviewed and edited the content as 
needed and take full responsibility for the publication’s content.
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