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Abstract
Telemedicine systems are revolutionizing healthcare by enabling remote diagnostics, consultations, and 
monitoring, particularly in regions with limited access to medical services. In low-resource rural areas, 
where  infrastructure  is  weak  and  network  bandwidth  often  does  not  exceed  20  kbps,  telemedicine 
becomes a key tool to address healthcare inequalities. However, challenges such as data vulnerability to 
cyberattacks, low bandwidth, and high power consumption of wearable devices hinder its progress. This 
article proposes a hybrid model that integrates permissioned blockchain (Hyperledger Fabric) for secure 
medical  data  management,  adaptive compression based on a convolutional  neural  network (CNN) to 
optimize  bandwidth  usage,  and  the  LoRa  protocol  for  energy-efficient  long-range  communication. 
Simulations conducted in MATLAB and NS-3 demonstrate a 25% reduction in data transmission latency, 
30%  lower  energy  consumption,  and  100%  resilience  against  cyberattacks  compared  to  traditional  
methods. The model was tested on synthetic datasets (ECG, video streams, text reports) and demonstrated 
scalability for up to 500 devices within the network. The results are particularly relevant for low-resource  
regions where access to healthcare is limited due to poor infrastructure. The proposed solution offers a 
cost-effective and scalable platform for global telemedicine systems, contributing to the digitalization of 
healthcare.
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1. Introduction

Telemedicine  has  emerged  as  a  transformative  tool  in  modern  healthcare,  enabling  remote 
consultations, diagnostics, and monitoring through information and communication technologies 
(ICT) [1]. According to the World Health Organization (WHO), the adoption of telemedicine has 
reduced  healthcare  costs  by  15–20%  and  significantly  improved  access  to  medical  services  in 
remote areas [2]. In low-resource rural regions, where network bandwidth often does not exceed 20 
kbps and the nearest hospital may be tens of kilometers away, telemedicine plays a critical role in  
reducing disparities in access to healthcare services [3].

However,  the implementation of  telemedicine faces three major challenges that the authors 
have  analyzed  in  their  previous  work  [4].  First,  medical  data  transmitted  over  networks  is 
vulnerable  to  cyberattacks,  such as  data  breaches  and ransomware,  posing a  serious  threat  to 
patient privacy [5]. Second, low bandwidth in rural areas hinders the transmission of large data 
volumes, including video streams and high-quality biosignals [6]. Third, battery-powered wearable 
devices  used  for  monitoring  have  limited  autonomy,  especially  in  regions  with  unreliable 
electricity, which restricts continuous operation [7]. These challenges are particularly critical in 
emergency scenarios, where delays or data loss can have life-threatening consequences.

Traditional telemedicine systems rely on centralized architectures, where data is stored on a 
single  server,  creating  a  single  point  of  failure  and  increasing  vulnerability  to  attacks.  Static 
compression methods such as Huffman coding or JPEG do not adapt to heterogeneous medical data 
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(biosignals, video, text) or variable network conditions, leading to increased latency and loss of  
quality [8]. Energy efficiency remains a concern, as wearable devices are expected to operate up to  
24 hours without recharging in infrastructure-limited environments.

Recent studies propose partial solutions to these challenges. Blockchain technology, particularly 
Hyperledger Fabric,  offers decentralized and tamper-resistant data storage, reducing the risk of 
attacks [9]. Machine learning algorithms, such as convolutional neural networks (CNNs), are used 
to optimize data processing and compression, adapting to both data types and network conditions 
[10].  Low-power  wide-area  network  (LPWAN)  protocols  like  LoRa  provide  long-range 
communication  with  minimal  power  consumption,  making  them  suitable  for  remote  regions.  
However, integrated models that combine these technologies remain rare.

This paper proposes a hybrid data transmission model that integrates:

1. A permissioned blockchain (Hyperledger Fabric) to ensure data security and integrity.
2. Adaptive CNN-based compression for dynamic bandwidth optimization depending on data 

type and network conditions.
3. The LoRa protocol for energy-efficient communication in constrained environments.

The novelty of this model lies in the holistic integration of these technologies to address the 
unique challenges  of  telemedicine  in  low-resource  settings.  The  model  was  evaluated  through 
simulations in MATLAB and NS-3,  demonstrating substantial  improvements in latency,  energy 
consumption, data security, and cost efficiency. The results suggest a scalable solution for next-
generation  telemedicine  systems  capable  of  supporting  global  health  initiatives,  especially  in 
regions with weak infrastructure.

2. Literature review

2.1. Data Transmission in Telemedicine

Telemedicine systems handle diverse data types, such as biosignals (e.g., ECG, EEG), video streams 
for remote consultations, and textual reports, each with specific demands for bandwidth, latency,  
and quality. Traditional compression methods like JPEG for images and H.264 for video are widely 
used  but  struggle  to  adapt  to  fluctuating  network  conditions,  especially  in  rural  areas  with 
bandwidth below 20 kbps [11]. Aguiar et al reviewed blockchain-based strategies for healthcare, 
including secure medical data compression and sharing, but these approaches often do not address  
data heterogeneity or real-time telemedicine needs [12]. Wavelet transforms have been shown to 
effectively  compress  biosignals,  achieving  30–50%  data  reduction  without  significant  loss  of 
diagnostic  quality,  yet  they  lack  adaptiveness  for  dynamic  networks  [13,  14].  Recent  studies 
indicate that dynamic compression can reduce latency in IoT systems, but these solutions often 
overlook  integration  with  blockchain  or  energy-efficient  protocols,  as  well  as  the  specific 
requirements of telemedicine,  such as preserving ECG quality in remote regions [15,  16].  This  
underscores the need for adaptive compression solutions that  account for both data types and 
network variability.

2.2. Security in Telemedicine

The sensitive nature of medical data makes security a primary concern in telemedicine. Centralized 
systems are prone to cyberattacks, such as data tampering and ransomware, which threaten data  
confidentiality and integrity [17]. Blockchain technology, particularly Hyperledger Fabric, offers 
decentralized storage and validation mechanisms that significantly mitigate data breach risks [18]. 
However,  some  blockchain-based  security  models  for  medical  data  do  not  support  real-time 
transmission,  which  is  critical  for  emergency  care.  Decentralized  EMR  networks  have  been 
proposed for secure data storage, but they often lack energy-efficient protocols or compression, 
limiting their use in rural settings [19]. Blockchain can reduce attack risks substantially, though its 



effective use in telemedicine requires integration with complementary technologies [20].  Smart 
contracts  and  consensus  mechanisms  have  been  highlighted  as  effective  tools  for  automating 
transaction validation,  enhancing data  transparency and security  in  telemedicine  systems [21], 
[22].

2.3. Energy Efficiency and LPWAN

Wearable  devices  and  IoT  sensors  in  telemedicine  require  energy-efficient  communication 
protocols to prolong battery life, particularly in regions with unreliable power supply [23]. The 
LoRa protocol, part of the LPWAN family, supports long-range communication up to 15 km while  
consuming significantly less energy than Wi-Fi [24]. LoRa has been shown to reduce energy usage 
by up to 40% compared to Wi-Fi, making it suitable for rural clinics [25]. It is also well-suited for 
low-resource environments, where alternatives like NB-IoT are costlier and have shorter ranges 
[26]. LoRa networks can support up to 1,000 devices without significant performance degradation, 
confirming their scalability for regional telemedicine system.

2.4. Machine Learning in Telemedicine

Convolutional neural networks (CNNs) are widely applied in medical  image analysis,  biosignal 
processing, and outcome prediction [27]. CNNs have also been used for compressing multimedia 
data, achieving up to 25% size reduction without quality loss, though they often lack adaptability 
for heterogeneous telemedicine data like ECGs or video streams [28]. A key limitation of CNNs is  
their high computational cost on low-power devices. Offloading CNN training to a central server 
while performing inference locally can address this issue. Studies on CNN-based ECG processing 
show promise but often do not integrate these models with blockchain or LoRa, limiting their real-
world telemedicine applicability [22, 29].

2.5. Ethical Considerations

Medical data processing in telemedicine must comply with ethical  regulations like the General 
Data Protection Regulation (GDPR) [18].  Data anonymization and transparency are critical  for 
building  patient  trust.  Blockchain-based  models  enhance  privacy  protection  but  require  well-
defined  access  protocols  [21].  Smart  contracts  can  manage  data  access  permissions,  ensuring 
compliance with international standards while maintaining data anonymity during transmission.

2.6. Research Gaps

Previous  studies  have not  provided a  fully  integrated  solution combining blockchain,  adaptive 
compression,  LoRa,  and  cost-efficiency  for  telemedicine  [12,  30,  19].  They  often  overlook 
constraints  of  low-resource environments,  such as  limited bandwidth and unreliable electricity 
[23]. For instance, Aguiar et al. [11] reviewed blockchain strategies focusing on static compression, 
while others addressed security without real-time transmission [30] or emphasized EMR storage 
without considering energy efficiency or data compression [19]. Other works offer partial solutions 
but  neglect  economic  and  ethical  dimensions  [12,  31].  This  model  addresses  these  gaps  by 
proposing a comprehensive solution for next-generation global telemedicine systems.

3. Materials and Methods

3.1. System Architecture

The proposed model consists of three interconnected layers, as illustrated in Figure 1:

1. Blockchain  layer:  Hyperledger  Fabric  is  used  for  decentralized  storage  of  medical  data 
hashes, validated by five trusted nodes (e.g., hospitals and clinics), ensuring data integrity 
and transaction traceability [18].



2. Adaptive compression module: a convolutional neural network (CNN) dynamically adjusts 
the compression ratio (CR) based on the type of data (ECG, video, text), network bandwidth 
(10–100 kbps), and device energy level (0–100%), optimizing transmission efficiency [27].

3. Communication  layer:  The  LoRa  protocol  enables  energy-efficient  long-range 
communication (10–15 km) at speeds ranging from 0.3 to 50 kbps, making it ideal for low-
resource environments [23].

Figure  1  depicts  the flow of  data  from wearable  devices  through the adaptive  compression 
module  (where  CR  is  adjusted  based  on  available  bandwidth)  and  LoRa  transmission  to  the 
blockchain ledger,  where the data is  validated by five trusted nodes (e.g.,  hospitals  or clinics). 
Arrows indicate bidirectional communication between components.

Figure 1: Proposed system architecture.

3.2. Adaptive compression algorithm

The adaptive compression algorithm is based on a CNN that classifies input data and predicts the 
optimal compression ratio (CR), defined as (see formula 1) [13]:

CR=Original data size
Compressed data size

.

Input parameters include:

1. Data type: biosignals (e.g., ECG, EEG), multimedia (e.g., video), text.
2. Network bandwidth: measured in real-time (10–100 kbps).
3. Device energy level: estimated using battery APIs (0–100%).

A dedicated algorithm was developed to perform adaptive compression and data transmission, 
dynamically  adjusting  the  CR according  to  network  conditions  to  ensure  efficient  LoRa-based 
communication.

The flowchart of the algorithm is presented in Figure 2.
Dataset description:

1. ECG:  10,000  samples  from  the  MIT-BIH  Arrhythmia  Database,  sampled  at  500  Hz, 
preprocessed using wavelet filters for noise reduction [32].

2. Video: 5,000 video streams from the UCF-101 dataset, 720p at 30 fps, downsampled to 480p 
for low-bandwidth conditions [33].

3. Text: 2,000 clinical reports from MIMIC-III, average size of 100 KB, metadata removed for 
anonymization [34].



4. Preprocessing  steps  included  amplitude  normalization  (ECG),  video  scaling,  and  text 
cleaning.

CNN architecture: 3 convolutional layers (32, 64, 128 filters, 3×3 kernels), 2 pooling layers (2×2),  
2 fully connected layers (512 and 1 neuron), ReLU activation, Adam optimizer, Loss function: MSE.

The model was trained on a GPU-based server (NVIDIA RTX 3080) for 50 epochs and achieved 
95% prediction accuracy for compression ratio selection [28].

Figure 2: Flowchart of the proposed algorithm.



3.3. Blockchain Implementation

The blockchain layer is implemented using Hyperledger Fabric, a permissioned platform composed 
of five nodes representing medical institutions (e.g., two central hospitals and three clinics). Each 
data packet is hashed using SHA-256 and recorded as a blockchain transaction. Smart contracts 
automate validation and grant access only to authorized users (e.g., doctors, administrators). The 
test network processed up to 500 transactions per second, with an average validation time of 0.1 
seconds. Node failure simulations demonstrated resilience in 95% of cases [18].

3.4. Simulation Setup

Simulations were conducted using MATLAB (signal processing) and NS-3 (network modeling) [35]:
Data types:

1. Single-lead ECG: 60 KB/min, 500 Hz.
2. Video: 2 MB/min, 480p, 15 fps.
3. Text: 100 KB/min.

Network:

1. LoRa bandwidth: 10–100 kbps.
2. Transmission range: up to 10 km.
3. Spread factors: SF = 7–12.
4. Frequency: 868 MHz (European band).

Device specifications:

1. Wearable sensor.
2. 1000 mAh battery, 3.3 V.
3. ARM Cortex-M4 microcontroller.

Blockchain:

1. Hyperledger Fabric with 5 nodes.
2. 500 transactions/sec.
3. SHA-256 hashing.

Baseline comparisons were conducted against:

1. Static compression: Huffman coding (CR = 2).
2. Centralized security: no blockchain, data stored on a single server.
3. Wi-Fi transmission: IEEE 802.11n, 2.4 GHz.

Performance metrics: transmission delay, energy consumption, security.

3.5. Ethical considerations

The  model  complies  with  the  General  Data  Protection  Regulation  (GDPR)  [36].  All  data  is 
anonymized  before  processing,  and  access  is  controlled  via  smart  contracts.  Patients  receive 
explicit notifications regarding data usage, and their consent is securely stored on the blockchain. 
Simulations used synthetic datasets to prevent potential privacy violations [37].



4. Results

4.1. Latency

The proposed model reduced data transmission latency by 25% compared to static compression 
(Huffman coding) and by 40% compared to uncompressed data transmission. At a bandwidth of 10 
kbps,  the  model  achieved  a  96-second  delay  for  transmitting  60  KB  of  single-lead  ECG data, 
compared to 128 seconds for Huffman coding and 160 seconds for uncompressed data [13].

The CNN dynamically adjusted the compression ratio (CR), prioritizing biosignals (CR = 3) over 
video streams (CR = 5) in low-bandwidth scenarios [28].

Figure 3 presents a line graph illustrating latency (in seconds) for transmitting 60 KB of singe-
lead ECG data at bandwidths of 10, 50, and 100 kbps. Blue line: proposed model. Red line: Huffman. 
Green line: uncompressed. The graph demonstrates a consistent 25% latency reduction at 10 kbps 
for the proposed approach.

4.2. Energy Consumption

The proposed system achieved a 30% reduction in energy consumption compared to uncompressed 
transmission and a 20% reduction compared to Wi-Fi.

LoRa consumed only 100 mJ per transmission cycle, compared to 120 mJ for Wi-Fi and 140 mJ  
for uncompressed data, extending battery life by approximately several hours using a 1000 mAh 
battery in simulation [23].

Computational overhead from CNN inference was minimized by offloading model training to a 
centralized GPU server [14].

Figure 4 presents a bar chart comparing energy consumption per cycle (in millijoules). Blue:  
proposed model. Red: Wi- Fi. Green: uncompressed data. The proposed method shows the lowest 
power consumption.

Figure 3: Latency comparison for transmitting single-lead ECG data using different compression 
methods.

Figure 4: Energy consumption per cycle for different data transmission methods.



4.3. Security

The  blockchain  layer  successfully  detected  and  prevented  100%  of  simulated  cyberattacks, 
including man-in-the-middle attacks and data tampering. In contrast, the centralized architecture 
was vulnerable to 80% of attacks. The SHA-256 hashing algorithm ensured data integrity with an 
average verification time of 0.1 seconds per transaction [18].

4.4. Bandwidth Sensitivity

The system was tested under various bandwidth conditions (5–150 kbps). At 5 kbps, latency was: 
180 seconds for single-lead ECG, 300 seconds for video, 120 seconds for text.

This confirms the model's adaptive adjustment of the compression ratio (CR) to match real-time 
network conditions. Compared to Huffman coding, the model retained performance advantages 
even under extreme bandwidth constraints [28].

Figure 5 shows a line graph of latency (seconds) across bandwidths from 5 to 150 kbps. Blue: 
ECG, red: video, green: text.

The proposed model outperformed static compression in all scenarios.

4.5. Scalability

The model was tested with network sizes ranging from 10 to 1,000 devices.
Latency increased linearly (from 96 seconds to 144 seconds) as the number of devices grew, but 

remained lower than that of Huffman-based systems (176 seconds at 1,000 devices).
The blockchain layer sustained 500 transactions per second without failure, making it suitable 

for regional telemedicine systems. Additional LoRa gateways ensured network stability at scales 
exceeding 500 devices [23].

The following Table  1  provides  a  concise  summary of  the  simulation outcomes across  key 
performance metrics.

Figure 5: Latency comparison for ECG, video, and text data across different bandwidths.

Table 1
Simulation Summary

Method Latency, s (at 10 kbps) Energy (mJ/60 KB) Security (%)

Proposed Model 96 100 100

Static Compression 128 110 80

Uncompressed 160 140 80

Wi-Fi 112 120 80



5. Discussion

The  proposed  hybrid  model  demonstrates  significant  advantages  over  traditional  telemedicine 
architectures by integrating blockchain, adaptive compression, and energy-efficient communication 
technologies. The inclusion of a permissioned blockchain ensures robust data security, addressing 
vulnerabilities  typical  of  centralized  systems.  Simulation  results  confirmed  100%  resilience  to 
cyberattacks, supporting findings by Androulaki et al [18].

The adaptive CNN-based compression algorithm outperforms static methods by dynamically 
adjusting the compression ratio (CR) based on data type and real-time network conditions. This 
flexibility is  especially critical  for heterogeneous telemedicine data,  such as ECG signals,  video 
consultations, and clinical text, commonly transmitted over low-bandwidth rural networks [11].  
The model achieved a 25% reduction in transmission latency and 30% lower energy consumption,  
which is vital for real-time applications and battery-constrained wearable devices.

Compared to prior research, the model exhibits unique strengths:

1. Unlike  Aguiar  et  al.  [12],  which  focused  on  static  blockchain-based  data  sharing,  our 
approach  adapts  to  fluctuating  bandwidth,  improving  efficiency  under  constrained 
conditions.

2. In contrast to Kuo et al. [30], which lacked support for real-time transmission, the proposed 
system ensures real-time data delivery, essential for emergency contexts such as stroke care 
in remote areas [16].

3. Unlike  Peng  Zhang  et  al.  [19],  which  emphasized  secure  EMR  storage,  our  model 
incorporates LoRa-based communication,  improving energy efficiency and scalability for 
remote healthcare systems.

In addition, the model integrates economic and ethical aspects, often neglected in earlier studies 
[31]. In low-resource regions, the ability to transmit a 60 KB ECG file in 96 seconds at 10 kbps, 
compared to 160 seconds without compression, could be critical in life-saving scenarios [12].

From a cost-efficiency perspective, the model is more economical than Wi-Fi and centralized 
solutions due to the use of LoRa, which requires less expensive infrastructure and lower energy 
consumption. Furthermore, unlike costlier alternatives such as 5G or NB-IoT (limited range), LoRa 
offers a scalable solution for rural environments [26].

The model also complies with ethical and legal requirements, such as GDPR, by integrating data 
anonymization and smart contract-based access control. These features promote patient trust and 
data transparency, aligning with recommendations by Gordon et al. [21].

Despite its benefits, the proposed model has certain limitations:

1. High computational load from CNN inference on low-power devices,  partially mitigated 
through centralized training but requiring stable server access [14].

2. Limited  bandwidth  of  LoRa  (up  to  50  kbps),  which  may  affect  high-resolution  video 
transmission, although this is compensated by adaptive compression [23].

3. Dependence on central infrastructure (for CNN and blockchain), which necessitates a stable 
power supply at core network nodes – a challenge in remote regions [18].

Future Work: The following research directions are recommended:

1. Integration  of  5G  in  urban  settings  combined  with  LoRa  for  hybrid  long-short  range 
networks.

2. Optimization of CNN for ultra-low power inference using quantized neural networks to 
reduce processing load on wearables [15].

3. Pilot testing in real-world environments to evaluate long-term performance.
4. Development of hybrid LoRa + 5G architectures capable of supporting up to 5,000 devices.



Additionally, recent developments in compact optical transmission, such as the use of vertical-
cavity surface-emitting lasers (VCSELs), may further enhance telemedicine systems due to their 
high-frequency modulation capabilities and low power consumption [38].

Practical Implications: The proposed model can be deployed in regional health networks, support 
emergency telemedicine during natural disasters (e.g., floods), and be integrated into global EMR 
systems to enable centralized access to patient data [39]. The architecture can also be adapted to 
local  environmental  conditions,  such as deploying corrosion-resistant LoRa hardware in humid 
climates.

6. Conclusions

The scientific novelty of the proposed model lies in the integrated application of three advanced 
technologies – permissioned blockchain (Hyperledger Fabric),  adaptive compression based on a 
convolutional neural network (CNN), and the LoRa communication protocol – to enable secure, 
energy-efficient,  and  scalable  transmission  of  heterogeneous  medical  data  in  low-resource 
environments.

In contrast to existing approaches, the proposed model:

1. Dynamically adjusts the compression ratio based on data type, network bandwidth, and 
battery level, optimizing performance under varying conditions.

2. Combines anonymized LoRa-based transmission with blockchain validation, ensuring data 
confidentiality and integrity.

3. Achieves  a  25%  reduction  in  transmission  latency  and  a  30%  decrease  in  energy 
consumption,  while  maintaining  high  compression  accuracy  and  scalability  up  to  500 
devices.

4. Offers a cost-effective solution compared to conventional telemedicine systems, making it 
particularly attractive for developing countries.

This work contributes a secure, efficient, and cost-effective solution for modern telemedicine, 
particularly in underserved and infrastructure-poor regions. Potential applications include remote 
monitoring of chronically ill  patients,  emergency telemedicine during disasters,  and integration 
with global electronic medical record (EMR) platforms.

Policy Recommendations:

1. Integrate  the  proposed  model  into  existing  EMR systems  to  support  rural  hospitals  in 
developing countries.

2. Fund pilot projects in bandwidth-constrained regions.
3. Establish  international  standards  for  blockchain-based  telemedicine  systems  that 

incorporate both technical and ethical considerations.

Future Research Directions:

1. Conduct real-world pilot studies in low-resource regions to evaluate the model’s long-term 
effectiveness.

2. Integrate 5G for hybrid networking, combining urban high-speed access with LoRa’s long-
range capabilities.

3. Leverage AI-based medical prediction tools to enhance diagnostic accuracy based on CNN-
processed data.

4. Optimize  CNN  models  for  ultra-low-power  wearable  devices  using  techniques  such  as 
quantization and pruning.



In summary, the proposed architecture offers a scalable and economically viable solution that 
has  the  potential  to  transform  global  telemedicine,  supporting  the  digital  transformation  of 
healthcare in resource-constrained environments.
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