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Abstract
The paper presents a method for implementing a modular information system of the full cycle – from 
automated collection to deep analytics of text messages, specialized in open sources and text streams. The 
system combines text preprocessing with the calculation of a set of metrics, in particular lexical similarity,  
temporal-semantic influence, classification of hostile rhetoric, clustering and construction of a directed 
graph of sources. The system also includes an asynchronous processor that receives tasks from the queue 
and stably interacts with the API (using Circuit  Breaker),  and also stores the results in a document-
oriented database. At the analytics level, TSI captures the direction and intensity of cross-channel impact  
even with low overall lexical similarity, while the hostile speech detection module evaluates rhetoric at  
the message and source levels. The summary interface generates brief automatic conclusions for each 
source.
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1. Introduction

The actual informational space is described by fast changes of headlines, fragmentation of sources, 
and a surplus of sources which often share the same information in different ways, speeds, and 
contexts. The lack of editorial oversight in platforms like messaging apps leads to repeated posts,  
mutual citations, and paraphrases. It creates multiple copies of the same message, complicating the 
task of verifying content, tracing the original source, and identifying connections between sources. 
In  this  situation,  it's  necessary  not  only  to  gather  large  amounts  of  text  from open  sources,  
especially Telegram channels, but also to uncover hidden relationships, rhetorical similarities, and 
possible influences between sources over time.

As  Natural  Language  Processing  (NLP)  methods  have  expanded  greatly,  it  makes  sense  to  
combine NLP techniques [1] to extract and compute metrics in order to compare two or more 
sources. It should contribute for calculated overall conclusions about the behavior of sources and 
the structure of their connections. Using those algorithms into a specific combination, we can bring 
together collection, pre-processing, and analyze it deeply, while saving results at every stage for 
future visualization and comparison.

2. Problem Statement

The today’s informational space changes rapidly. This is particularly evident on social platforms 
and  messengers,  where  the  lack  of  editorial  control  allows  for  the  spread  of  all  types  of
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information – from news and analysis to disinformation, manipulation, and aggressive rhetoric. In 
this setting, we need to build effective tools that can automatically collect, process, and analyze 
messages from open sources.

The most challenging thingh is analyzing large volumes of text data in real time or close to real 
time. The issue is larger then just collecting messages. It is required to identify hidden connections 
between  sources,  evaluate  their  rhetoric,  and  identify  coordinated  activities  or  information 
influences that may not be clear with a superficial view. For complex analysis, both the content of 
the messages and the timing of their distribution are important factors.

3. Formulation of the purpose of the article

The main goal of current work is to create a method for building an information system. Proposed 
system  should  analyze  open  sources  of  text  information.  It  will  combine  tools  for  collecting,
pre-processing,  analyzing  data  using  natural  language  processing  techniques,  and  visualizing 
results. The system should be scalable, stable, and precise in its calculations. Also it should allow 
for expansion of new sources and metrics in the future to count more factors of the information. 
The work looks at a range of technical and analytical methods, along with a modular structure 
approach  in  order  to  enable  flexible,  multi-stage  analysis  of  text  messages.  The  results  from 
reproduced analysis can be applied in scientific research and practical tasks, like OSINT-analysis,  
society awareness of harmful sources etc. These tasks include identifying information influences 
between sources, forming information graphs, determining levels of hostility for each source, and 
classifying the main topics of sources.

4. Justification of the analysis of scientific research sources

A study of the MediaRank system demonstrates that ranking approximately 50 thousand news 
sources  based  on  the  citation/reputation  graph,  content  features,  popularity  and  “bottomline 
pressure” indicators gives global “quality-impact” of sources [2], but does not directly measure the  
temporal-semantic impact between sources at the message level.

In turn, the studied NELA ecosystem provides a toolkit and large datasets of news with features  
for  comparing sources,  in  particular  the analysis  of  content  distribution networks  (copying or 
republishing) between publications [3]. The analyzed methods build similarity and copying graphs, 
apply vector representations of nodes (Node2Vec) and compare with reliability and bias.

The  scientific  work  Semantic  “Echo”  of  Strategic  Communications  proposes  a  metric  for 
measuring the echo (impact) of public messages in social networks through semantic similarity: the 
texts are encoded with sentence-embedding, then the cosine similarity between the generations of 
organizations and the tweet before/after the event is calculated [4]. Changes are compared with the 
basic background of activity.

Another  way  of  detecting  the  impact  between  events  (or  messages  in  our  case)  was  also  
analyzed. Hawkes processes are a class of stochastic point processes in which the occurrence of an  
event increases the probability of the occurrence of subsequent events in the near future [5]. They 
are described as self-exciting processes: each new event increases the intensity of the process for a  
certain time, after which this impact gradually decreases. The intensity depends on the base level 
and on the sum of the contributions of all previous events through the impact kernel.

5. Method  of  implementing  a  modular  system  for  analyzing 
information sources

The first step in proposed method is to examine the input data from the chosen data source. Since  
the  system  will  handle  large  amounts  of  text  and  produce  general  estimates  for  information 
sources, it’s crucial to define the structure, form, and analysis value of input data, which includes 
identifying stable fields, gaps, the text’s language, and its temporal patterns.



Next step is the system requirements formulation: includes determining a set of measurable 
features  relevant  to  our  area  of  research,  such  as  lexical  similarity,  indicators  of  temporal 
distribution, and rhetorical classes at both the message and source levels. We also select methods to 
calculate  these  features.  The  non-functional  requirements  address  the  expected  performance, 
processing speed, fault tolerance, security, and scalability.

Using the outlined requirements, we design a general architecture.  The modules must work 
together so the final system is reliable and resilient against partial failures. Modularity is essential  
for  both  expansion  –  adding  more  complex  models  or  increasing  throughput  –  and  for  clear 
responsibilities: collection, processing, storage, and visualization are all  handled separately. The 
core of the system is effectively represented by a small set of modules: MISA = {API, UI, Scheduler, 
NLP,  Preprocessing,  Queue,  Database},  and  the  external  data  provider,  Telegram API,  acts  as  a 
separate integration component outside of MISA (Modular information system analysis).

The  next  step  includes  breaking  down  the  key  subsystems  for  pre-processing  and  natural 
language  processing.  It’s  important  to  establish  clear  relationships  between  metrics  and  their 
calculation methods as  well  as  their  dependencies  on other  metrics  (of  applicable).  It  includes 
understanding  what  influences  text  vector  representations,  where  sensitivity  to  language  or 
lemmatization lies, and how the parameters of methods and response impact a back-off of timing 
and precision.

Implementing the modules is a central point of the proposed method, accompanied by testing  
metrics  against  known  estimates  and  fine-tuning  parameters.  Both  standard  checks,  like 
consistency, reproducibility, and sensitivity to noise, and comparisons with basic approaches are 
useful to understand the advantages of each engineering approach.

The final step is the generation of short automatic conclusions for each source, which bring 
together key metrics and compare them with other sources. It is these summaries that turn massive  
numerical arrays into understandable solutions: who influences what, where informational waves 
appear, how rhetoric changes over the time, and which connections between sources are stable.

An information system for analyzing information sources is required meet several functional 
and  non-functional  requirements  to  ensure  its  effectiveness,  scalability,  and  ability  to  conduct 
analytical research in real or near real time. The system must be designed to work with dynamic 
information flows, especially messages from open sources like Telegram channels [6], which are 
frequently used to share news, propaganda, or coordinated disinformation.

One basic  requirement for  the system is  the ability to  add new sources  of  information for 
processing and analysis. In the initial implementation stage, Telegram channels are the first type of 
platform we use, but the design should allow for future expansion to other platforms. Adding a 
new channel  should be easy for the user and automatically trigger  the collection of  historical 
messages (within the available API), saving them for further processing.

Users should have a user-friendly interface to check the availability of data in the database for  
each source. The feature comes in the form of a timeline that displays whether data exists for  
certain periods. For instance, if messages for a specific channel have been collected only for the last  
three months, the system should show selected ranges and let users other select time ranges for  
deeper analysis.

Access  to  basic  statistical  information about  each source is  another  important  requirement. 
Required set of statistics should include the average message length,  average word length, the  
number of messages by type (text,  photo, video, audio),  and a list of the most frequently used  
words. Moreover, the system should show the average daily activity of the channel, indicating how 
many  messages  are  published  per  each  hour.  It  help  provide  a  basic  understanding  of  the 
communication style of the source before applying more complex NLP methods on it.

To effectively monitor technical performance, the system should allow users or administrators 
to view current process activity. They should be able to see whether text processing is happening 
(through the Processing Handler module) or if NLP operations are being conducted.

Beyond  analyzing  individual  sources,  the  system  should  also  support  aggregated  analytics 
across all sources simultaneously. It includes constructing and viewing a cosine similarity matrix  



among  allsources,  allowing  for  the  identification  of  thematic  or  stylistic  connections  between 
channels. A Timed Semantic Influence (TSI) matrix should also be generated to assess the temporal 
semantic influence of one source on another.  All these metrics are illustrated in an interactive 
graph, enabling users to select a specific node (channel) for a more detailed analysis of connections 
and influences.

The system (see Figure 1: System Asrchitecture Module diagram.) should operate in a mode of 
periodic data updates, at least daily or weekly. The task scheduler should ensure automatic loading,  
processing,  and  analysis  of  new  messages  without  user  intervention.  This  keeps  the  system 
current, allowing for the timely detection of new information trends or changes in source behavior.

The  system  should  automatically  generate  short  summaries  for  each  source  based  on  the 
analytics. Summaries can cover source classification (e.g., news, propaganda, persona), main topics,  
trends in changing of style or rhetoric, and shifts in influence graph positions, whuch allows users 
to quickly understand the content and potential threats from a particular source without needing to 
review and analyze the raw messages.

Figure 1: System asrchitecture module diagram.

UI (User Interface). UI acts as the main point of interaction between the user and the analytical 
system.  It  provides  access  to  key  functions:  viewing  a  list  of  information  sources,  displaying 
statistical  characteristics  of  each  of  them,  building  activity  graphs,  analyzing  the  structure  of 
messages and the results of NLP processing. UI also allows you to work with analytical tables, such  
as similarity matrices or influence graphs between sources, providing representative visualization 
and filtering of information. Special attention is paid to the intuitiveness of the interface so that 
even a non-specialist user can easily navigate the results.

API. A connecting component that connects the user, the administrative interface and all system 
modules between them. The API is used to call the main functions: adding new sources, starting 
processing, obtaining statistics and analytical results. In addition, the API performs the basic logic 
of  pre-processing  queries,  namely:  aggregating  statistical  data  based  on  information  from the 
database,  performing  preliminary  filtering  and  calling  the  functions  of  the  corresponding 
subsystems.

Task queue.  The system uses the Kafka message broker,  which acts as a task queue. Queue 
allows  you  to  scale  information  processing  by  dividing  large  tasks  into  smaller  subtasks  and 
ensuring  their  stable  execution  [7].  Kafka  guarantees  the  preservation  of  each  message, 
maintenance of the queue, redelivery in case of failures, and load balancing between executions. 



This ensures reliable delivery of tasks to the processor function, even in the event of high load or  
temporary unavailability of individual system components.

Data processing module. The module is responsible for performing tasks of preprocessing text 
messages [8].  Its main functions include: parsing messages, cleaning text,  extracting key fields, 
filtering irrelevant information, and forming a standard format for NLP analysis. The processed 
data is stored in the database in a structured form, which allows for easy sampling, aggregation,  
and  analysis  in  the  future.  The  module  interacts  with  the  Kafka  queue,  accepting  tasks  for 
processing and sending the results further to the system.

Let  S  =  {s1,  …,  sN} –  be  a  set  of  sources,  and  for  each  s  we  have  a  sequence  of  messages
Ms = {(tk, xk)} where tk is the publication time, xk is the raw message text.

Before saving, encoding is applied: a dictionary lemma V and an injective mapping c: V → N, 
where V is the word and N is the code. Each prepared message is represented by a code sequence  
x’k  = [c(w1), …, c(wn)], and the inverse mapping c−1 allows us to decrypt the text. As a result, two 
collections are supported: Dictionary (w, c(w)) and Messages (s, tk, x’k).

The  task  scheduler is  a  module  that  automates  the  launching  of  data  processing  tasks.  It 
regularly  launches  tasks  to  update  information  from  sources,  such  as  daily  or  weekly.  The 
scheduler identifies which sources need data updates, generates tasks, and adds them to the Kafka 
queue. The scheduler has flexible configuration options; it supports setting periods, analysis types, 
and sources. It also helps avoid re-running areas that have already been processed.

Natural Language Processing Module. The module is the central part of the analytical core of the 
system. It  accepts  tasks via API and runs text  analysis  according to specified parameters.  The 
module supports configuration of the analysis type: Cosine Similarity [9], TSI, hostile language 
detection [10], clustering [11, 12], etc. The processing results are stored in the database along with  
the corresponding time stamps and launch parameters, which allows not to duplicate calculations 
and speed up repeated queries. The module is scalable in terms of new metrics or processing steps 
and allows parallel processing of individual sources or periods.

Database.  The system uses the document-oriented database MongoDB. Mongo allows you to 
store messages in JSON document format, which provides flexibility when storing data of different 
structures (for example, messages with text, images or links to media files). The main advantages of 
MongoDB in the context of Big Data are scalability and a convenient data aggregation mechanism 
used in the formation of statistics and analytics [13], which allows us to quickly execute queries on  
a large number of records without losing system performance.

6. Preprocessing module

The Preprocessing module, or Processing Handler (see Figure 2: Text Preprocessing Workflow), is  
the basic part for converting raw messages from platforms into structured data that can be further 
analyzed in our system. It operates as an asynchronous functional unit that takes parameters from 
the Kafka queue, processes them according to specified logic, and stores the results in the database.  
The module is designed to work reliably with unstable external data sources and considers the 
unique aspects of using the Telegram API or any other social platform in the future.

Unloading data from the Telegram API begins with initializing a request to retrieve a block of 
messages from the chosen channel for a specific time period. Since the Telegram API does not  
guarantee  stable  connections,  the  system  employs  the  Circuit  Breaker  [14]  pattern.  Proposed 
approach helps avoid overload during failures by temporarily blocking requests after a series of  
unsuccessful attempts, allowing the service to recover before trying again.

Additionally, the Telegram API periodically requires reauthentication of the session. If access 
needs a confirmation code, such as an SMS code, the system automatically generates a message and 
sends a notification to the administrator's central mail, prompting them to log in and enter the 
code.

Calculation  of  basic  message  metrics.  For  each  received  message,  basic  characteristics  are 
immediately calculated: number of characters, number of words, presence of URL links, presence of 



media, whether the message is a repost. Secondary characteristics are also stored, such as message 
structure,  previous tags,  original author ID (in case of repost),  which may be useful in further  
analysis.

Determination  of  message  language.  At  this  step,  the  system  automatically  determines  the 
language of the message – Ukrainian or Russian. It’s important for subsequent processing steps, in  
particular for translation and lemmatization. Both simple rules (for example, character frequency)  
and machine learning libraries can be used to determine the language [15].

Text tokenization.  The message is broken down into individual tokens (words or characters) 
according to linguistic features. Tokenization is the first step in preparing the text for analysis,  
allowing you to work with the text at the word level.

Text cleaning. Stop words (the most common service words), numbers, unnecessary punctuation 
marks, URL links, emojis, special characters, and other information that does not carry a linguistic  
load are removed from the text. Cleaning improves the quality of subsequent lemmatization and 
semantic analysis.

Translation  of  Russian-language  words.  If  the  message  is  written  in  Russian,  each  word  is 
checked in the local cached dictionary of matches. If a corresponding word already exists, the word 
is automatically replaced with a Ukrainian analogue. If the word is not found, it is translated using  
a third-party translation tool (for example, via the Google Translate API or another open-source 
tool), and the result is stored in the dictionary for reuse. Message language normalization provides 
a significant increase in productivity and precise of final results.

Figure 2: Text preprocessing workflow.

Lemmatization. After translation, the text undergoes lemmatization – the process of reducing 
words to their original (dictionary) form.

Calculation  of  additional  metrics.  Based  on  the  cleaned  and  lemmatized  text,  additional 
characteristics  are  calculated  that  can  be  used  at  subsequent  stages  of  NLP  analysis:  word 
frequency, syntactic features, number of unique words, share of links, etc. These metrics are stored 
in a separate field of the document, which allows them to be used selectively.

Conversion to a compact format. After processing, the message is converted to a compact format 
for storage: duplicates are reduced, repeated elements are aggregated, auxiliary fields are reduced. 
This saves space in the database and speeds up subsequent selections.

Saving to the database. The final processed object is written to the document-oriented MongoDB 
database.  Both  raw data  and  calculated  metrics,  language,  creation  time,  message  source,  and 
technical information are stored.

Our previous analysis represent that the average message length is about 234 characters, with 
variations  from 132  to  366,  depending on the  channel  [16].  After  thorough data  cleaning,  the 
average length dropped to 220 characters,  reducing noise and improving the quality of further  



processing. On average, one message consists of 34 tokens, but that number decreased to 27 after 
removing stop words, marking a 21% reduction.

Several methods were tested for optimizing message storage: token arrays, strings, and numeric 
encoding. The least efficient format was the array, which took up 8.03 MB. Switching to strings 
reduced it to 5.33 MB, achieving a savings of around 17%.

The best results came from token encoding, where each word is assigned a numeric identifier. In 
this  method,  the average document size shrank from 440 to 249 bytes,  and the collection size 
decreased to 2.76 MB – almost half the size of the string format. The additional cost of maintaining  
the  dictionary  is  minimal,  and  the  encoding/decoding  time  is  less  than  a  second  for  12,000  
messages.

7. Natural Language Processing Module

The Natural Language Processing Module (NLP module) (see Figure 3: Submodules of NLPmodule) 
is responsible for conducting a entire analytical analysis of text data previously prepared by the 
Processing Handler. The main function of the module is to extract high-level information from 
stored  raw  messages:  from  measuring  lexical  similarity  to  constructing  influence  graphs  and 
analyzing  hostility  of  sources.  Both  classical  text  processing  algorithms  and  own  developed 
approaches are used, in particular Timed Semantic Influence. Each analytical step is implemented 
as a separate submodule, and its results are stored in the database, which allows you to avoid 
repeated calculations and use the data to compute more complex metrics.

Figure 3: Submodules of NLP module.

Cosine Similarity Module. This submodule generates a vector representation of each information 
source based on its lexical profile. The frequency of lemmas in messages is calculated, after which a 
multidimensional  vector  z  is  created  (see  Formula  1),  which  represents  the  topic,  style,  and 
vocabulary of the source. Based on the constructed vectors, a cosine similarity matrix is calculated 
(see Formula 2), which allows us to determine how similar the sources are to each other in terms of 
vocabulary – the first basic metric that demonstrates the potential thematic or semantic proximity  
of channels and is further used in clustering or building influence graphs.

z (s)= 1
ns
∑
k=1

ns

v (xk)∈ℝd .                                                         (1)



Then for a pair of sources s1, s2 the cosine similarity is equal to:

cs(si , s j)=
z (si)

T z (s j)
|z (si)2||z (s j)2|

∈[−1 ,1] ,                                                 (2)

where z(si) is the corresponding vector for channel si.
TSI – Timed Semantic Influence. The TSI algorithm is an innovative approach that allows you to 

detect the temporal influence of one source on another. Its goal is to find informational waves, i.e.  
similar messages that appear in different sources in a short period of  time. If  a certain source 
consistently publishes key topics earlier than others, and its vocabulary is subsequently repeated in 
other sources, which indicates its influence. Even if the overall similarity between channels is low 
(by Cosine Similarity), TSI allows you to detect hidden connections between sources. The result of 
the work is an influence matrix, which shows the direction and intensity of information influence 
between pairs of channels.

TSI=
sm(si , s j)
1+α ×Δ t

,                                                                  (3)

where α – is the time influence coefficient, Δt is the difference between the publication times of 
2 messages, sm is the cosine similarity function.

TSI  determines  the  influence  between  channels  by  the  appearance  of  semantically  similar 
messages in close time windows. Unlike Hawkes, TSI works not only with time, but also with 
content, which reduces the number of false connections and integrates well into the NLP module.  
At the same time, its parameters are set empirically, and it is not a full stochastic model.

Advantages of TSI over Hawkes:

1. Semantically determined influence: TSI selects only pairs of posts similar in content in a 
given time window, so the connection is less sensitive to noisy activity matches.

2. Easy  integration  into  your  system:  TSI  is  calculated  on  already  prepared 
vectors/embeddings.

Disadvantages of TSI over Hawkes:

1. Parameters (similarity threshold, decay shape, window width) are set empirically. Without 
additional statistical tests, it is more difficult to make formal conclusions about causality.

2. TSI is not a full stochastic model of event generation. It is more of a content- and time-based 
impact estimator.

Hostile  Language  Detection.  The  submodule  classifies  messages  based  on  hostility  using  a 
specially prepared dataset. The training set includes examples of messages marked as either hostile 
or not, which trains the model. After training, the model processes all messages and assigns each a  
hostility score. The average hostility level for each source is then calculated, serving as a metric for 
further analysis.

Clusterization. Once vector representations (lexical profile, hostility, TSI impact) are created for 
all sources, they are used for cluster computation. This submodule is developed to group sources 
with similar rhetorical or thematic characteristics. Standard clustering methods like DBSCAN or 
KMeans  are  used,  facilitating  work  in  multidimensional  spaces.  The resulting  clusters  identify 
information coalitions and groups of sources that work together or promote similar narratives in  
informational space.

Source  Graph.  The  final  step  of  analysis  requires  creating  a  graph  that  shows  connections 
between sources. This submodule combines all previously calculated metrics: cosine similarity, TSI, 
hostility level, and statistical activity, to create a directed graph. In this graph, nodes represent 
information sources, and edges indicate presence and direction of influence between them. The 
strength of an edge reflects the relationship's intensity, based on TSI, hostile rhetoric, or thematic 



closeness.  The  graph  visualizes  the  information  landscape,  highlighting  isolated  or  overly 
influential sources and potential centers of coordination.

All  analysis  results,  whether  intermediate  (vectors,  metrics,  estimates)  or  final  (matrices,  
clusters, graphs), are stored in a database by source, pair of sources and data ranges, which allows 
for reuse in visualizations,  new queries,  graphing, or comparisons over time without repeating 
calculations.

8. Conclusions

The  proposed  system provides  a  complete  cycle  for  gathering,  processing,  and  analyzing  text 
messages from information sources, particularly Telegram channels. The architecture emphasizes 
fault  tolerance through the Circuit Breaker mechanism and ensures reporting at  all  processing 
stages.  It  includes  automatic  alerts  about  re-authentication needs.  The modular  design enables 
system scaling, addition of new sources, or updates to individual components without refactoring 
the entire system architecture of analysis, which makes the system responsive to changes in the 
technical and analytical environment. The NLP module analyzes text in key areas: building vector 
models, calculating cosine similarity, determining TSI for influence detection, assessing hostility  
levels, clustering channels, and creating a connection graph. The results are stored in the database 
for future use.

Compared to other systems, this one analyzes messages in messengers and indentify sources in 
a multi-metric space, including the time-semantic influence coefficient. It combines top practices 
from various systems with its own analysis methods.

The  scientific  innovation  is  based  on  the  introduction  of  the  time-semantic  influence  (TSI)  
metric, which links the timing of messages with their semantic similarity. By that, it enables the  
detection  of  directional  connections  between sources,  even  with  low overall  lexical  similarity, 
leading to an influence matrix for building an interaction graph. A method for implementing a 
modular system for analyzing and evaluating relationships between informational sources, taking 
into account non-functional requirements for the system, was proposed. Furthermore, multi-metric 
NLP analysis is consolidated in a single module: the system integrates lexical similarity (cosine),  
TSI,  rhetoric  classification,  and  clustering  as  separate  submodules  while  reusing  intermediate 
results.

Practical value includes efficient source analytics. Users receive brief automatic summaries for 
each channel (type, topics, position dynamics in the graph), saving time on primary analytics. The 
combination  of  TSI  and  lexical  metrics  aids  in  detecting  coordination  and information  waves, 
revealing hidden connections and tracking early narrative "waves" between channels. The system 
supports scalable workflows, by using of the architecture with Kafka and asynchronous processing, 
ensuring  stable  performance  under  heavy  loads  and  allowing  for  regular  updates  without 
administrator  intervention.  Metric  enhancement  is  flexible,  following  a  modular  scheme  that 
simplifies the addition of new indicators, like additional rhetoric classifiers or network metrics, 
without modifying the entire system. It reuses intermediate representations in similarity matrices 
and influence graphs.  The proposed tool  developed by proposed method is  actually  useful  for 
different scenarios like: including OSINT, editoral offices, and research groups, helping to identify 
primary sources, monitor risks for society, and map the informational space.
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