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Abstract

The paper reviews current approaches to automated navigation tasks, such as localization and mapping,
and proposes a different approach based on probability density approximation. The proposed system uses
feature extraction to reduce computation complexity. Descriptors, are then used to match mapped
features to a current view, and localization uses iterative pose estimation based on gradient descent.
Current system limitations and weaknesses are also shown.
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1. Introduction

Robotic systems are increasingly used in confined spaces where traditional navigation methods,
including GPS, are inaccessible or not accurate enough. The use of infrastructure solutions
(beacons, reflectors, markers) requires high costs and limits flexibility. Instead, visual navigation
based on computer vision and artificial intelligence algorithms can provide autonomy, accuracy,
and adaptability to environmental changes. This makes the development of an automatic visual
navigation system an urgent task aimed at improving the efficiency and safety of robotic
complexes. In this research, the authors aim to apply a probability distribution approximation
approach to localization and mapping problems, review the benefits and challenges this path offers
and describe some elements of the proof-of-concept algorithm they are currently working on.

2. Current State of Research in the Field

In modern literature, in the context of visual navigation, the following tasks are considered:
localization, mapping, route planning and traffic control (traffic control and obstacle detection) [1].
Localization is the determination of the exact location of an object in a given coordinate system.

There are several areas of computer vision research dealing with localization issues: Visual
Odometry (VO), Visual Position Recognition (VPR), and Visual Simultaneous Localization and
Mapping (VSLAM).

Visual odometry (VO) solves this problem directly by iteratively calculating the displacement of
the robot both with the help of inertial sensors, odometers, and through the analysis of image
changes from cameras, in particular, calculating the optical flux.
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Optical flux in the context of visual odometry is a vector field that describes how pixels in an
image are shifted between two consecutive camera frames. In other words, it is an estimate of the
apparent movement of the points of the scene relative to the camera.

Usually, it is calculated either on a continuous wide area of the image (dense optical flow) or on
individual features/key points (sparse optical flow).

To ensure sufficient accuracy, the calculation of displacement iterations must occur quite
often — given limited computational resources, this imposes significant limitations on the
algorithms that can be used to calculate the optical flux.

Another problem is that optical flux is not the true motion of objects — it is a projection of
three-dimensional motion onto the plane of an image. Therefore, algorithms based on dense optical
flux can lose accuracy if there are a significant number of repetitive patterns in the image.

Known methods for calculating dense flow:

1. Horn-Schunck (HS) [2].
Lucas—Kanade Dense (Pyramidal LK / Farnebéck) [3].
Total Variation L1 (TV-L1) Optical Flow is an extension of the HS model with pyramidal
scale and variational solution [4].

4. Brox Optical Flow (Variational, multilevel) [5].

Table 1
Comparison of Algorithms for Calculating Dense Optical Flux

Method Accuracy Performance Application in VO
Horn-Schunck W = Limited, basic scenes
(low/medium) (fast)
N Y ¥r Very common
Farneback = (baseline VO)
TV-L1 Y Yo e e _ Stable VO,
indoor/outdoor
Brox N Used for offline VO
and ground truth
Pyramidal Farnebéack w W Real VO Pipelines
HS / LK Hybrid e e Embedded VO, micro

drones

On the other hand, algorithms based on feature selection are used in VPR and VSLAM: instead
of analyzing the entire frame, the algorithm finds noticeable local fragments (features) — points,
corners, texture elements, and contours. A descriptor is built for each such point.

A descriptor is a compact numerical representation of a local view that can be compared
between frames or with a memory base.

This allows:

1. Recognize terrain (VPR).
2. Evaluate camera movement and orientation (VSLAM).
3. Build an environment map (VSLAM).



Mapping in VSLAM is the process of building and gradually updating a spatial model of the
environment based on images (video stream) and other sensory data.
In VSLAM, this includes the following key aspects:

1. Select and save landmarks (features/landmarks): From camera frames, stable points, objects,
or characteristics of the scene are identified, which can be re-recognized during further
movement.

2. Map formation in the form of 3D points or their structure: based on triangulation and
assessment of the camera pose, a map of the environment (for example, a sparse point
cloud) is created.

3. Constant map update: as the work progresses, the map is expanded, clarified, and corrected
(via loop closure).

4. Cooperation with localization: mapping is closely related to the assessment of one's own
posture. The map is used for better localization, and accurate localization allows you to
refine the map.

Loop closure is the process of detecting that a current observation corresponds to an already
known location on the map, followed by optimizing the posture and map to eliminate accumulated
drift.

Simply put, mapping in VSLAM is the construction of an internal spatial representation of the
environment (in the form of landmarks, 3D points, or keyframes) that allows the robot to navigate
and localize.

In classical VPR (Visual Place Recognition), the concept of mapping in the usual sense for
VSLAM is almost never used, but there is a concept that is similar in meaning.

VPR focuses on recognizing already known places from an image, rather than building a
complete map of space. That is, the system receives the current frame and compares it with a
database of reference images or features to determine "where I have already been". It is not
required to build a 3D map or spatial model.

MMost VPR algorithms use a database of images or descriptors, which can be thought of as a
passive observation map. It contains:

1. Global or local visual signs.
2. Coordinates or place indexes (if available).
3. Offline mapping.

In terms of computational resources, feature-highlighting algorithms have certain advantages
compared to those that use dense optical flux, but they also lose accuracy in the case of large,
uniform areas in the image.

3. Existing Algorithms for Determining the Trajectory of Robots
Based on Images

Today, there are a large number of algorithms for determining the trajectory of robots adapted for
various functions, designs, and conditions of use of these systems. In particular, for indoor spaces,
the following can be used:

1. PTAM (Parallel Tracking and Mapping) is one of the first successful real-time visual SLAM
algorithms developed by Hern Klaus and Andrew Davison (2007) [6].

2. ORB-SLAM - supports monocular, stereo, and RGB-D cameras, as well as inertial (IMU)
mode. Includes multi-map mode, the ability to merge maps, and strong initialization with
the IMU [7].



3. VINS-Mono / VINS-Fusion is a monocular visual-inertial (camera + IMU) algorithm with an
optimization "sliding window" scheme that includes IMU integration and an extension that
allows multi-touch integration (mono + IMU, stereo + IMU, even with GPS) and map
merging [8, 17].

4. RTAB-Map (RGB-D) - real-time mapping + localization with a focus on RGB-D cameras
(depth + image). Works as a topological map with a "workspace", uses flash tables (bag-of-
words) for loop closure and map extension [9].

5. DROID-SLAM is a hybrid architecture with deep learning that combines -classical
optimization methods with neural networks. Makes recurrent iterative position updates.
Works with monocular, stereo, or RGB-D video [10].

6. DSO (Direct Sparse Odometry) direct (no explicit feature highlighting) approach, works well
in conditions with good texture, can be more flexible in scenes with few features, but is
sensitive to lighting and exposure changes [11].

7. DTAM (Dense Tracking and Mapping) is one of the fundamental dense SLAM algorithms
that has become the forerunner of many modern methods of dense 3D reconstruction and
tracking.

8. LSD-SLAM (Large-Scale Direct Monocular SLAM) is a direct method that builds semi-dense
depth maps as the camera moves. Uses filtering of pixels that have a sufficient brightness
change with a small parallax change. Allows map construction even in conditions of weak
signs, but can be unstable in aggressive traffic or poor lighting [12].

9. MSCKF is one of the classic algorithms that works on the basis of an advanced Kalman filter
using a camera + IMU without building a dense map.

10. OKVIS (Open Keyframe-based Visual-Inertial SLAM) is an optimization (smoothing) system
that combines visual measurements and IMU, uses keyframes, and minimizes projection
errors [13, 18].

11. ROVIO (Robust Visual-Inertial Odometry) is a filtering approach (advanced Kalman filter and
tracking of both image fragments and 3D points) for a visual-inertial system [16].

12. SVO (Semi-Direct Visual Odometry) is a visual odometry algorithm that occupies an
intermediate place between feature-based and direct methods [14].

13. DeepVO is one of the first end-to-end visual odometry algorithms to use deep learning to
evaluate camera movement without the traditional steps (feature detection, comparison,
filtering, etc.) [15].

In the context of the tasks of this work, localization algorithms can be classified according to the
possibility of use in closed spaces (indoor), the number of cameras used, the use of additional
sensors (IMU), and approaches to image processing (feature highlighting, optical flux calculation,
neural networks) (Fig. 1).

Comparison of algorithms in terms of requirements for hardware and computing resources, and
general areas of application, is given in Table 2.

Table 2
Comparison of Localization Algorithms
Algorithm Advantages Restriction Typical applications
ORB-SLAM3 Works with High requirements for Drones, AR/VR, mobile
mono/stereo/RGB-D/IMU,  computing resources. robotics, indoor
loop closure, multi-map. Limited work in navigation.
High accuracy and monotonous
stability. environments.
VINS-Mono/  Accurate VIO with IMU Without IMU, it works Indoor robots, drones,
VINS-Fusion  Autocalibration and loop to a limited extent. autonomous systems,
closure. Fusion with GPS, mobile devices.

stereo, multiple sensors.




RTAB-Map Support for large maps. Requires depth (RGB- Service robotics,
(RGB-D) Loop closure + D). Heavier than VIO or warehouses, indoor
relocalization. mono SLAM. mapping.
DROID- High fidelity on difficult GPU is desirable for Autonomous Robots,
SLAM scenesMono/stereo/RGB-  work. The main core is UAYV, Complex Scenes,
D support. Track loss deep learning. Academic Applications.
resistance.
DSO/ No identification of signs  Sensitivity to light. No Lightweight odometry.
LSD-SLAM Works with weak signs. IMU unstable. No full AR experiments,
Low dependence on loop closure. academic applications.
detectors.
OKVIS / Reliable VIO with Without IMUs do not Drones, ground robots,
ROVIO IMUOKVIS - work. No global maps  real-time, energy-limited
optimization. ROVIO is a or weak loop closure. systems.
lightweight EKF.
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Figure 1: Classification of localization algorithms.



4. Probabilistic Approach to Mapping and Localization

In this study, the authors consider the first two tasks of navigation: route mapping (using training
video recording of movement along the route and accelerometric and odometrical data), and robot
localization (based on video from the robot's camera, without auxiliary data).

Localization of a robot is the determination of the coordinates of its position (x, y, z) in a
predetermined general coordinate system, as well as the determination of the coordinates of the
heading vector of its camera in this coordinate system (hx, hy, hz) (Figure 2).
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Figure 2: General coordinate system, current position P and heading vector h.

It is important to mention restrictions pertaining to this way of pose description: the robot’s
local coordinate system rotations are limited in such a way that no axial rotations around are
possible, i.e., we have stable “up” and “down” directions.

The mapping process can be presented as highlighting sets of certain features (visible
landmarks) on the video and approximation of the distribution of probability density p of the
robot's presence at a point along the vector {(Cv, x, ¥, z, hx, hy, hz)} in the space of input vectors,
where C, is the set of coordinates of the features selected in the frame, X, y, z are the coordinates of
the robot, h., hy, h,, are the coordinates of the camera's guide vector.

Knowing the probability distribution p, it is possible to solve the localization problem by finding
the position X,, Yo, Zo, fxo, hvo, hyo of the maximum p for a given set of Cy:

EIO(CV’XO’yO’ZO’hXO’hYO’hZO):maXX,H(IO(CV’X!y’Z’hX’hY’hZ))’ (1)

In order to simplify calculations, p can be represented as the product of probability density
distribution functions for individual features p;:

\%4
p(Cv,x,y,z,hX,hy,hZ):H ,of(uf,vf,x,y,z,hX,hy,hZ). (2)
f=1

Here uy, vrare the screen coordinates of the f-th feature.

Thus, the construction of a navigation model can be viewed as approximation of distributions p;.

The use of (2) and the gradient descent (ascent) method for estimation (1), in our opinion, can
provide a flexible iterative process of refining the position of the robot by step-by-step
consideration of features.



Figure 3: Determination of the position and orientation of the camera by the position of features
on video frames.

A distinctive feature of this approach is that we do not build a map of the environment in the
sense of VSLAM, but create a database of features with approximated densities of probabilities of
them being in certain point of multidimensional space S of position (x, y, z), heading vector of the
camera hy, hy, h,, and screen coordinates (u, v): s = (U, v, x, ¥, Z, hy, hy, h;) €S.

At the mapping phase for each feature f'we collect a set of observations: Sy = {(w;, vi, Xi, Vi, Zi, hui,
hyi, hz)}. Before starting approximation process it is mandatory to consider rotational symmetry:
given different camera orientation h same feature f can be viewed at different screen coordinates
(u, v) (see Figure 4).

Figure 4: Rotational symmetry considerations.

To account for this fact, we inject in our set S; additional points for set of pre-determined
heading vectors hq, for which the calculated (u, v) fits within viewport.
Let’s assume that approximation pyis a hypersurface in (p, S) space defined by equation:

ppu,v,x,y,z,h h h)=

Y Y

p P
- z Z Py Py Py hphzhphz' (3)
pu=0pv=0 phXZO phz:0 PysPysPysess Pyyseens Pp U v o X 2 1,0,
Here a - coefficients that must be determined, P - maximal power we
PysPysPysewss Ppyseess Py
consider.
One limitation related to representation (3) that we already see is that feature have to be “local
enough” — if there are many view areas producing similar features their corresponding

approximations become less useful for pose estimation.
Having probability density in form (3) allows to compute partial derivatives easily, e.g.:
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0 Pp,
The loss Ly, for candidate distribution approximation pscan be expressed as:
N
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Here Ny — number of data points in the set, ng(s) — number of observations of feature fin the
small volume w around vector s. The goal of approximation algorithm is to find a set of coefficients

a such that Ly, is minimal.
PysPysPyseees Ppyseoes Py

Although the mapping phase is computationally intensive, ideally, it can be performed once for
a given closed space. The result is a file with a list of stable features with their corresponding
approximation coefficients.

The localization problem is solved by detecting features in a video frame and looking up their
similarities in the map file. For each feature match the corresponding probability coefficients then
used to compute estimated probabilities via (2) and their gradients using (5) that are used
iteratively to adjust pose estimation.

5. Overview of Implemented System

To implement the data processing algorithm and navigation algorithm, OS Ubuntu v.24.04, the
Python runtime environment v.3.12, and the interactive shell JuPyter are used. The PyPlot and
ParaView tools are used for data visualization.

As part of development and testing a data collection and mapping subsystem was developed. To
gather video and IMU information a smartphone app was created that records video and IMU data.

The Android Studio environment was used to develop the application to collect training data.
The application supports Android OS version 13 and higher.

A screenshot of the application is shown in Figure 5.

Requirements for the application:

1. Ability to record video.
Ability to record accelerometer and gyroscope readings of a smartphone with a frequency
of at least 25 measurements per second and store them together with the timestamp in CSV
format (see Table 3).

1322 @O » 0139 = ulE6e2%

Figure 5: Application interface for data collection.



Table 3
IMU Data Saving Format

Linear acceleration, m/s2 Angular acceleration, rad/s2

The Time Mark, N
X Y Z X Y Z

An algorithm was also developed for intermediate processing of training data. Stages of the
algorithm:

Select lighting-resistant feature sets from video frames.

Generation of a unique handle for each feature.

Define the timestamp of the frame.

Calculation of camera position and orientation for a given frame based on timestamps.

Saving data in CSV format.

Video file Decode video ’

Extract timestamps

C3V file with Compute § DOF Conversion to LAB
MU using known

data technic

A NS

Extract
RGB frames

Channel A Channel B
Exfracting ORB Extracting ORB
features features

I '

Adding descriptor Adding descriptor
prefix prefix
01 02

! I

CSV training data Creating CSV records

Figure 6: Diagram of the algorithm for preparing training data.



Table 4
Format for Saving Training Data

Screen coordinates Robot coordinates Robot orientation

Descriptor
U \% X Y Z hs h, h.

In the course of the tasks, it was found that the direct detection of features on the Grayscale or
RGB (separate ORB detector per channel) image is vulnerable to changes in lighting from daylight
to artificial. The features that stand out under the daytime lighting are not reproduced with
artificial lighting, and vice versa. In order to improve the persistence of feature detection, it was
decided to convert the image to the LAB color space and select the features from channels A and B
separately.

To distinguish features originating from different channels, the prefix 01 (for channel A) and 02
(for channel B) is added to their descriptors.

The current block diagram of the algorithm is as follows (Fig. 6).

A part of the room was used as a test site - an area of complex configuration shown in Figure 7.

For the convenience of calculations, the beginning of the general coordinate system coincides
with the starting point of the training trajectory. The training trajectory passes through several
points with pre-measured coordinates W1, W2, W3 and ends at point E (coordinates are also
measured).

o 06 o =

229 ——————=

Figure 7: Test site plan.
For storing map data, the following CSV file is currently used:

Table 5
CSV map file structure

Descriptor Approximation coefficients

(hex representation)

@0,0,0,0,0,0,0,0 AppppppPP

,,,,,,




The map file generator structure is straightforward:

CSV training data —r‘ Feature records poeling |

0

Coefiicients calculation

O«

CSV map data 1—[ Creating CSV records ]

(

End

Figure 8: Map generator block schema.

Note: Currently, the map generator and localizer algorithms use a reduced power factor P = 2.
The localizer algorithm schema is shown in Fig. 9.
The output CSV trajectory file structure is presented below:

Table 6
CSV estimated trajectory file structure

Estimated robot coordinates Estimated robot heading

Timestamp
X Y Z hy hy h.

An algorithm was also developed for intermediate processing of training data.

6. Experiments

Several data collections were carried out under different lighting conditions:

1. Natural light (daylight from a window on a sunny day).
2. Artificial lighting (cold white light) 100% brightness.
3. Artificial lighting 50% brightness.

The average recording time was 30 seconds.
The ORB detector was configured to allocate up to 500 characters per channel per frame.
A total of 6 data collections were performed:

1. 3 entries — for the version of the algorithm with highlighting features from the Grayscale
image in 3 different lighting modes.

2. 3 entries — for the version of the algorithm with the selection of features from LAB A, B
channels, also for 3 lighting modes. It is worth noting that the daytime regime in this case
differed due to weather conditions.



Video file Decode video |

Extract
RGB frames

Conversion to LAB

Extract
Timestamp

Channel A Channel B

!

Exiracting ORB
features

Exiracting ORB
features

Adding descriptor Adding descriptor
prefix prefix
01 02

CSV map data Fature matching, coefficients retrieval

Are there new matched features?

YES
2

[ Probability estimation

¥

[ Gradient estimation ] NO

¢ NO

NO [ Estimated pose adjustment ]

Is optimum reached?

YES

s-mnimum precision reached or Stable
estimation obtained?

YES

v

CSV trajectory data Create CSV trajectory record ]17

End

Figure 9: Localizer algorithm block schema.

7. Conclusions

As was mentioned before, the system is in a work-in-progress state. At the moment of this paper
writing, only the first training data collection and evaluation were performed, together with
mapper and localizer debugging runs on mock-up data. Currently, we are working on proof-of-
concept implementation of described system and improving the mapping phase (ideally, to achieve
feature observation-time iterative coefficient estimation).

Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT and Grammarly in order to:
Grammar and spelling check, and as a smart Search Engine to find related works based on the
context of the conversation. After using these tools/services, the authors reviewed and edited the
content as needed and take full responsibility for the publication’s content.
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