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Abstract
The paper reviews current approaches to automated navigation tasks, such as localization and mapping, 
and proposes a different approach based on probability density approximation. The proposed system uses 
feature  extraction  to  reduce  computation  complexity.  Descriptors,  are  then  used  to  match  mapped 
features to a current view, and localization uses iterative pose estimation based on gradient descent.  
Current system limitations and weaknesses are also shown.
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1. Introduction

Robotic systems are increasingly used in confined spaces where traditional navigation methods, 
including  GPS,  are  inaccessible  or  not  accurate  enough.  The  use  of  infrastructure  solutions 
(beacons, reflectors, markers) requires high costs and limits flexibility. Instead, visual navigation 
based on computer vision and artificial intelligence algorithms can provide autonomy, accuracy, 
and adaptability to environmental changes. This makes the development of an automatic visual 
navigation  system  an  urgent  task  aimed  at  improving  the  efficiency  and  safety  of  robotic 
complexes.  In this  research,  the authors  aim to  apply a  probability  distribution approximation 
approach to localization and mapping problems, review the benefits and challenges this path offers 
and describe some elements of the proof-of-concept algorithm they are currently working on.

2. Current State of Research in the Field

In  modern  literature,  in  the  context  of  visual  navigation,  the  following  tasks  are  considered: 
localization, mapping, route planning and traffic control (traffic control and obstacle detection) [1]. 
Localization is the determination of the exact location of an object in a given coordinate system.

There are several  areas of  computer vision research dealing with localization issues:  Visual  
Odometry  (VO),  Visual  Position  Recognition  (VPR),  and  Visual  Simultaneous  Localization  and 
Mapping (VSLAM).

Visual odometry (VO) solves this problem directly by iteratively calculating the displacement of  
the robot both with the help of inertial sensors, odometers,  and through the analysis of image 
changes from cameras, in particular, calculating the optical flux.
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Optical flux in the context of visual odometry is a vector field that describes how pixels in an  
image are shifted between two consecutive camera frames. In other words, it is an estimate of the  
apparent movement of the points of the scene relative to the camera.

Usually, it is calculated either on a continuous wide area of the image (dense optical flow) or on 
individual features/key points (sparse optical flow).

To  ensure  sufficient  accuracy,  the  calculation  of  displacement  iterations  must  occur  quite
often  –  given  limited  computational  resources,  this  imposes  significant  limitations  on  the 
algorithms that can be used to calculate the optical flux.

Another problem is that optical flux is not the true motion of objects — it is a projection of  
three-dimensional motion onto the plane of an image. Therefore, algorithms based on dense optical 
flux can lose accuracy if there are a significant number of repetitive patterns in the image.

Known methods for calculating dense flow:

1. Horn–Schunck (HS) [2].
2. Lucas–Kanade Dense (Pyramidal LK / Farnebäck) [3].
3. Total Variation L1 (TV-L1) Optical Flow is an extension of the HS model with pyramidal 

scale and variational solution [4].
4. Brox Optical Flow (Variational, multilevel) [5].

Table 1
Comparison of Algorithms for Calculating Dense Optical Flux

Method Accuracy Performance Application in VO

Horn–Schunck
(low/medium) (fast)

Limited, basic scenes

Farnebäck Very common 
(baseline VO)

TV-L1
Stable VO, 

indoor/outdoor

Brox Used for offline VO 
and ground truth

Pyramidal Farnebäck Real VO Pipelines

HS / LK Hybrid Embedded VO, micro 
drones

On the other hand, algorithms based on feature selection are used in VPR and VSLAM: instead 
of analyzing the entire frame, the algorithm finds noticeable local fragments (features) — points, 
corners, texture elements, and contours. A descriptor is built for each such point.

A  descriptor  is  a  compact  numerical  representation  of  a  local  view that  can  be  compared 
between frames or with a memory base.

This allows:

1. Recognize terrain (VPR).
2. Evaluate camera movement and orientation (VSLAM).
3. Build an environment map (VSLAM).



Mapping in VSLAM is the process of building and gradually updating a spatial model of the 
environment based on images (video stream) and other sensory data.

In VSLAM, this includes the following key aspects:

1. Select and save landmarks (features/landmarks): From camera frames, stable points, objects, 
or characteristics of the scene are identified,  which can be re-recognized during further 
movement.

2. Map formation in the form of  3D points  or  their  structure:  based on triangulation and 
assessment of  the camera pose,  a map of  the environment (for example,  a  sparse point 
cloud) is created.

3. Constant map update: as the work progresses, the map is expanded, clarified, and corrected 
(via loop closure).

4. Cooperation with localization: mapping is closely related to the assessment of one's own 
posture. The map is used for better localization, and accurate localization allows you to 
refine the map.

Loop closure is the process of detecting that a current observation corresponds to an already 
known location on the map, followed by optimizing the posture and map to eliminate accumulated 
drift.

Simply put, mapping in VSLAM is the construction of an internal spatial representation of the 
environment (in the form of landmarks, 3D points, or keyframes) that allows the robot to navigate  
and localize.

In  classical  VPR (Visual  Place Recognition),  the concept  of  mapping in the usual  sense for 
VSLAM is almost never used, but there is a concept that is similar in meaning.

VPR  focuses  on  recognizing  already  known  places  from  an  image,  rather  than  building  a 
complete map of space. That is,  the system receives the current frame and compares it with a 
database  of  reference  images  or  features  to  determine  "where  I  have  already  been".  It  is  not  
required to build a 3D map or spatial model.

MMost VPR algorithms use a database of images or descriptors, which can be thought of as a  
passive observation map. It contains:

1. Global or local visual signs.
2. Coordinates or place indexes (if available).
3. Offline mapping.

In terms of computational resources, feature-highlighting algorithms have certain advantages 
compared to those that use dense optical flux, but they also lose accuracy in the case of large,  
uniform areas in the image.

3. Existing  Algorithms  for  Determining  the  Trajectory  of  Robots 
Based on Images

Today, there are a large number of algorithms for determining the trajectory of robots adapted for 
various functions, designs, and conditions of use of these systems. In particular, for indoor spaces,  
the following can be used:

1. PTAM (Parallel Tracking and Mapping) is one of the first successful real-time visual SLAM 
algorithms developed by Hern Klaus and Andrew Davison (2007) [6].

2. ORB-SLAM – supports monocular,  stereo, and RGB-D cameras,  as well  as inertial  (IMU) 
mode. Includes multi-map mode, the ability to merge maps, and strong initialization with 
the IMU [7].



3. VINS-Mono / VINS-Fusion is a monocular visual-inertial (camera + IMU) algorithm with an 
optimization "sliding window" scheme that includes IMU integration and an extension that 
allows  multi-touch  integration  (mono  +  IMU,  stereo  +  IMU,  even  with  GPS)  and  map 
merging [8, 17].

4. RTAB-Map (RGB-D) – real-time mapping + localization with a focus on RGB-D cameras 
(depth + image). Works as a topological map with a "workspace", uses flash tables (bag-of-
words) for loop closure and map extension [9].

5. DROID-SLAM is  a  hybrid  architecture  with  deep  learning  that  combines  classical 
optimization methods with neural  networks.  Makes recurrent iterative position updates. 
Works with monocular, stereo, or RGB-D video [10].

6. DSO (Direct Sparse Odometry) direct (no explicit feature highlighting) approach, works well 
in conditions with good texture, can be more flexible in scenes with few features, but is 
sensitive to lighting and exposure changes [11].

7. DTAM (Dense Tracking and Mapping) is one of the fundamental dense SLAM algorithms 
that has become the forerunner of many modern methods of dense 3D reconstruction and 
tracking.

8. LSD-SLAM (Large-Scale Direct Monocular SLAM) is a direct method that builds semi-dense 
depth maps as the camera moves. Uses filtering of pixels that have a sufficient brightness 
change with a small parallax change. Allows map construction even in conditions of weak 
signs, but can be unstable in aggressive traffic or poor lighting [12].

9. MSCKF is one of the classic algorithms that works on the basis of an advanced Kalman filter  
using a camera + IMU without building a dense map.

10. OKVIS (Open Keyframe-based Visual-Inertial SLAM) is an optimization (smoothing) system 
that combines visual measurements and IMU, uses keyframes, and minimizes projection 
errors [13, 18].

11. ROVIO (Robust Visual-Inertial Odometry) is a filtering approach (advanced Kalman filter and 
tracking of both image fragments and 3D points) for a visual-inertial system [16].

12. SVO  (Semi-Direct  Visual  Odometry) is  a  visual  odometry  algorithm  that  occupies  an 
intermediate place between feature-based and direct methods [14].

13. DeepVO is one of the first end-to-end visual odometry algorithms to use deep learning to 
evaluate camera movement without  the traditional  steps (feature detection,  comparison, 
filtering, etc.) [15].

In the context of the tasks of this work, localization algorithms can be classified according to the 
possibility of use in closed spaces (indoor),  the number of cameras used, the use of additional  
sensors (IMU), and approaches to image processing (feature highlighting, optical flux calculation,  
neural networks) (Fig. 1).

Comparison of algorithms in terms of requirements for hardware and computing resources, and 
general areas of application, is given in Table 2.

Table 2
Comparison of Localization Algorithms

Algorithm Advantages Restriction Typical applications

ORB-SLAM3 Works with 
mono/stereo/RGB-D/IMU, 
loop closure, multi-map. 

High accuracy and 
stability.

High requirements for 
computing resources. 

Limited work in 
monotonous 

environments.

Drones, AR/VR, mobile 
robotics, indoor 

navigation.

VINS-Mono / 
VINS-Fusion

Accurate VIO with IMU 
Autocalibration and loop 
closure. Fusion with GPS, 
stereo, multiple sensors.

Without IMU, it works 
to a limited extent.

Indoor robots, drones, 
autonomous systems, 

mobile devices.



RTAB-Map 
(RGB-D)

Support for large maps. 
Loop closure + 
relocalization.

Requires depth (RGB-
D). Heavier than VIO or 

mono SLAM.

Service robotics, 
warehouses, indoor 

mapping.
DROID-
SLAM

High fidelity on difficult 
scenesMono/stereo/RGB-

D support. Track loss 
resistance.

GPU is desirable for 
work. The main core is 

deep learning.

Autonomous Robots, 
UAV, Complex Scenes, 
Academic Applications.

DSO /
LSD-SLAM

No identification of signs 
Works with weak signs. 

Low dependence on 
detectors.

Sensitivity to light. No 
IMU unstable. No full 

loop closure.

Lightweight odometry. 
AR experiments, 

academic applications.

OKVIS / 
ROVIO

Reliable VIO with 
IMUOKVIS – 

optimization. ROVIO is a 
lightweight EKF.

Without IMUs do not 
work. No global maps 
or weak loop closure.

Drones, ground robots, 
real-time, energy-limited 

systems.

Figure 1: Classification of localization algorithms.



4. Probabilistic Approach to Mapping and Localization

In this study, the authors consider the first two tasks of navigation: route mapping (using training 
video recording of movement along the route and accelerometric and odometrical data), and robot 
localization (based on video from the robot's camera, without auxiliary data).

Localization of  a  robot is  the determination of  the coordinates  of  its  position (x,  y,  z)  in a 
predetermined general coordinate system, as well as the determination of the coordinates of the 
heading vector of its camera in this coordinate system (hx, hy, hz) (Figure 2).

Figure 2: General coordinate system, current position P and heading vector h.

It is important to mention restrictions pertaining to this way of pose description: the robot’s 
local  coordinate system rotations are limited in such a way that no axial  rotations around are 
possible, i.e., we have stable “up” and “down” directions.

The  mapping  process  can  be  presented  as  highlighting  sets  of  certain  features  (visible  
landmarks)  on the video and approximation of  the distribution of  probability density  ρ of  the 
robot's presence at a point along the vector {(𝐶𝑉, , , , ℎ𝑥 𝑦 𝑧 X, ℎ𝑌, ℎ𝑍)} in the space of input vectors, 
where 𝐶𝑣 is the set of coordinates of the features selected in the frame, , ,  are the coordinates of𝑥 𝑦 𝑧  
the robot, ℎ𝑥, ℎ𝑦, ℎ𝑧, are the coordinates of the camera's guide vector.

Knowing the probability distribution ρ, it is possible to solve the localization problem by finding 
the position 𝑥𝑜, 𝑦0, 𝑧𝑜, ℎ𝑋𝑜, ℎ𝑌𝑜, ℎ𝑌𝑜 of the maximum ρ for a given set of 𝐶𝑣:

E ρ (CV , x0 , y0 , z0 , hX 0 , hY 0 , hZ 0)=maxX ,H (ρ (CV , x , y , z ,hX , hY , hZ)) ,                (1)

In order to simplify calculations,  ρ can be represented as the product of probability density 
distribution functions for individual features ρi:

ρ (CV , x , y , z ,hX , hY , hZ)=∏
f=1

V

ρ f (uf , v f , x , y , z ,hX , hY , hZ) .                         (2)

Here uf, vf are the screen coordinates of the f-th feature.
Thus, the construction of a navigation model can be viewed as approximation of distributions ρi.
The use of (2) and the gradient descent (ascent) method for estimation (1), in our opinion, can 

provide  a  flexible  iterative  process  of  refining  the  position  of  the  robot  by  step-by-step 
consideration of features.



Figure 3: Determination of the position and orientation of the camera by the position of features  
on video frames.

A distinctive feature of this approach is that we do not build a map of the environment in the  
sense of VSLAM, but create a database of features with approximated densities of probabilities of 
them being in certain point of multidimensional space S of position (x, y, z), heading vector of the 
camera ℎ𝑥, ℎ𝑦, ℎ𝑧, and screen coordinates (u, v):  = ( , , , , , ℎ𝑠 𝑢 𝑣 𝑥 𝑦 𝑧 𝑥, ℎ𝑦, ℎ𝑧) ∈ .𝑆

At the mapping phase for each feature f we collect a set of observations: 𝑆  𝑓= {(𝑢𝑖, 𝑣𝑖, 𝑥𝑖, 𝑦𝑖, 𝑧𝑖, ℎ𝑥𝑖, 
ℎ𝑦𝑖, ℎ𝑧𝑖)}. Before starting approximation process it is mandatory to consider rotational symmetry: 
given different camera orientation ℎ same feature f can be viewed at different screen coordinates 
(u, v) (see Figure 4).

Figure 4: Rotational symmetry considerations.

To account for this  fact,  we inject in our set  Sf additional  points for set  of  pre-determined 
heading vectors ℎ𝑎𝑠 for which the calculated (u, v) fits within viewport.

Let’s assume that approximation ρf is a hypersurface in (ρ, S) space defined by equation:

ρ f (u , v , x , y , z ,hx , h y , hz) = 

= ∑
pu=0

P

∑
pv=0

P

... ∑
phx=0

P

... ∑
phz=0

P

a
pu , pv , px , ... , phx , ... , phz u

pu v
pv x

px ... hx
phz hz

phz
.                 (3)

Here  apu , pv , px , ... , phx , ... , phz
 – coefficients that must be determined,  P – maximal power we 

consider.
One limitation related to representation (3) that we already see is that feature have to be “local 

enough”  – if  there  are  many  view  areas  producing  similar  features  their  corresponding 
approximations become less useful for pose estimation.

Having probability density in form (3) allows to compute partial derivatives easily, e.g.:



∂ ρ f
∂ u

= ∑
pu=0

P

∑
pv=0

P

... ∑
phx=0

P

... ∑
phz=0

P

a
pu , pv , px , ... , phx , ... , phz u

pu−1 v
pv x

px ... hx
phz hz

phz
.      (4)

The loss Lf,ρ for candidate distribution approximation ρf can be expressed as:

Lf , p=∑
i

N f

|N f ρ f (si)w−n(si)|2 .                                                (5)

Here Nf – number of data points in the set, 𝑛𝑓( ) – number of observations of feature 𝑠 f in the 
small volume w around vector . The goal of approximation algorithm is to find a set of coefficients𝑠  
apu , pv , px , ... , phx , ... , phz

such that Lf,ρ is minimal.

Although the mapping phase is computationally intensive, ideally, it can be performed once for 
a given closed space. The result is a file with a list of stable features with their corresponding 
approximation coefficients.

The localization problem is solved by detecting features in a video frame and looking up their 
similarities in the map file. For each feature match the corresponding probability coefficients then 
used  to  compute  estimated  probabilities  via  (2)  and  their  gradients  using  (5)  that  are  used 
iteratively to adjust pose estimation.

5. Overview of Implemented System

To implement the data processing algorithm and navigation algorithm, OS Ubuntu v.24.04,  the 
Python runtime environment v.3.12, and the interactive shell JuPyter are used. The PyPlot and 
ParaView tools are used for data visualization.

As part of development and testing a data collection and mapping subsystem was developed. To 
gather video and IMU information a smartphone app was created that records video and IMU data.

The Android Studio environment was used to develop the application to collect training data. 
The application supports Android OS version 13 and higher.

A screenshot of the application is shown in Figure 5.
Requirements for the application:

1. Ability to record video.
2. Ability to record accelerometer and gyroscope readings of a smartphone with a frequency 

of at least 25 measurements per second and store them together with the timestamp in CSV 
format (see Table 3).

Figure 5: Application interface for data collection.



Table 3
IMU Data Saving Format

The Time Mark, N
Linear acceleration, m/s2 Angular acceleration, rad/s2

X Y Z X Y Z

An algorithm was also developed for intermediate processing of training data. Stages of the 
algorithm:

1. Select lighting-resistant feature sets from video frames.
2. Generation of a unique handle for each feature.
3. Define the timestamp of the frame.
4. Calculation of camera position and orientation for a given frame based on timestamps.
5. Saving data in CSV format.

Figure 6: Diagram of the algorithm for preparing training data.



Table 4
Format for Saving Training Data

Descriptor
Screen coordinates Robot coordinates Robot orientation

U V X Y Z hx hy hz

In the course of the tasks, it was found that the direct detection of features on the Grayscale or  
RGB (separate ORB detector per channel) image is vulnerable to changes in lighting from daylight 
to  artificial.  The  features  that  stand  out  under  the  daytime  lighting  are  not  reproduced  with 
artificial lighting, and vice versa. In order to improve the persistence of feature detection, it was  
decided to convert the image to the LAB color space and select the features from channels A and B 
separately.

To distinguish features originating from different channels, the prefix 01 (for channel A) and 02 
(for channel B) is added to their descriptors.

The current block diagram of the algorithm is as follows (Fig. 6).
A part of the room was used as a test site - an area of complex configuration shown in Figure 7.
For the convenience of calculations, the beginning of the general coordinate system coincides 

with the starting point of the training trajectory. The training trajectory passes through several  
points  with  pre-measured coordinates  W1,  W2,  W3 and ends at  point  E (coordinates  are  also 
measured).

Figure 7: Test site plan.

For storing map data, the following CSV file is currently used:

Table 5
CSV map file structure

Descriptor
(hex representation)

Approximation coefficients

𝑎0,0,0,0,0,0,0,0 ... 𝑎P,P,P,P,P,P,P,P



The map file generator structure is straightforward:

Figure 8: Map generator block schema.

Note: Currently, the map generator and localizer algorithms use a reduced power factor P = 2.
The localizer algorithm schema is shown in Fig. 9.
The output CSV trajectory file structure is presented below:

Table 6
CSV estimated trajectory file structure

Timestamp
Estimated robot coordinates Estimated robot heading

X Y Z hx hy hz

An algorithm was also developed for intermediate processing of training data.

6. Experiments

Several data collections were carried out under different lighting conditions:

1. Natural light (daylight from a window on a sunny day).
2. Artificial lighting (cold white light) 100% brightness.
3. Artificial lighting 50% brightness.

The average recording time was 30 seconds.
The ORB detector was configured to allocate up to 500 characters per channel per frame.
A total of 6 data collections were performed:

1. 3 entries – for the version of the algorithm with highlighting features from the Grayscale  
image in 3 different lighting modes.

2. 3 entries – for the version of the algorithm with the selection of features from LAB A, B 
channels, also for 3 lighting modes. It is worth noting that the daytime regime in this case 
differed due to weather conditions.



Figure 9: Localizer algorithm block schema.

7. Conclusions

As was mentioned before, the system is in a work-in-progress state. At the moment of this paper  
writing,  only  the  first  training  data  collection  and  evaluation  were  performed,  together  with 
mapper and localizer debugging runs on mock-up data. Currently, we are working on proof-of-
concept implementation of described system and improving the mapping phase (ideally, to achieve 
feature observation-time iterative coefficient estimation).

Declaration on Generative AI

During  the  preparation  of  this  work,  the  authors  used  ChatGPT and  Grammarly  in  order  to: 
Grammar and spelling check, and as a smart Search Engine to find related works based on the 
context of the conversation. After using these tools/services, the authors reviewed and edited the 
content as needed and take full responsibility for the publication’s content.
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