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Abstract
Recent  advances  in  Large  Language  Models  (LLMs)  enable  Video-Language  Models  (Vid-LLMs)  for 
complex spatiotemporal video understanding. A systemic analysis of modern Vid-LLM architectures is 
presented,  highlighting  three  main  categories  based  on  input  processing  strategies:  Analyzer  +  LLM 
(relying on symbolic outputs), Embedder + LLM (using visual representations), and Hybrid frameworks as  
a combination of the first two. We analyzed their design principles, functional roles, and applications 
(captioning, QA, localization, agents). Challenges in long-context modeling, video tokenization, grounded 
reasoning, and integration with external tools are discussed. In conclusion, future research directions for 
improving Vid-LLM scalability, interpretability, and robustness are substantiated.
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1. Introduction

The swift expansion of video content across digital platforms, such as social media, entertainment,
surveillance, and autonomous systems, has generated an increased demand for intelligent systems
capable  of  autonomously  analyzing  and  comprehending  complex  visual  data.  Video 
comprehension, encompassing the identification of objects, actions, events, and the inference of 
high-level semantics over time, represents a core challenge in the fields of computer vision and 
artificial intelligence [1]. Conventional approaches, such as manual feature engineering and early 
neural  networks,  laid  the  groundwork  for  significant  progress;  however,  they  have  proven 
inadequate  in  fully  conveying  the  complexity  and  diversity  inherent  in  real-world  video
footage [2].

In the last ten years, deep learning has made models much better at handling spatio-temporal  
data.  Convolutional  Neural  Networks  (CNNs),  Recurrent  Neural  Networks  (RNNs),  and  more 
recently, Transformer-based architectures, have been successful in recognizing actions, classifying 
videos,  adding  captions,  and  finding  the  right  time.  Self-supervised  learning  has  sped  up  this 
advancement even further by making it possible to train strong video encoders without a lot of 
human annotation. But these models are frequently just good at certain tasks and don’t have the 
generalization and reasoning skills needed to interpret videos that are more abstract and include 
more than one phase [3].

Concurrently, Large Language Models (LLMs) such as GPT-4 [4], PaLM [5],  and LLaMA [6] 
have attained pioneering results in natural language processing tasks. These models demonstrate 
emergent capabilities, such as few-shot learning, instruction adherence, and advanced reasoning, 
by  utilizing  extensive  text  corpora  during  the  pretraining  phase.  Recent  initiatives  have 
commenced to investigate the integration of large language models with video data, leading to the 
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emergence of a novel category of video-language models (Vid-LLMs) [7]. These systems integrate 
vision  encoders  and  language  models  to  enable  multimodal  video  comprehension,  capable  of 
answering  questions  about  videos,  generating  descriptions,  identifying  temporal  events,  and 
performing commonsense reasoning based on visual input.

Vid-LLMs offer a unified interface for executing various video comprehension tasks through 
prompting  or  in-context  learning,  generally  without  requiring  extensive  retraining.  Their 
versatility and applicability across various domains render them valuable for purposes including 
robotics, surveillance, education, and content moderation.

The objective of this study is to perform a systematic analysis and classification of Video- Language  
Model (Vid-LLM) architectures to identify and assess the principal integration strategies between the 
visual and language modalities that characterize the capacity of Vid-LLMs for intricate multimodal 
video comprehension. The following goals are addressed:

1. Systematize the most advanced methods for developing Vid-LLMs by categorizing them 
according to architectural paradigms (Analyzer + LLM, Embedder + LLM, and Hybrid), and 
evaluate their fundamental design principles.

2. Assess the capabilities of Vid-LLMs across a broad spectrum of applications, including query 
answering, temporal localization, and agentic reasoning.

3. Identify the technical limitations and assessment criteria associated with video tokenization, 
long-context modeling, and interpretability.

4. Develop a  strategic  roadmap and delineate  future  research directions aimed at  creating 
more robust, scalable, and efficient systems for visual environment integration.

2. Trends and milestones in video comprehension methods

The field of video comprehension has undergone substantial development in the last two decades, 
driven by advancements in computer vision, machine learning, and, more recently, multimodal 
artificial  intelligence.  The  increasing  volume  of  video  data  across  diverse  domains,  including 
entertainment, social media, surveillance, and autonomous systems, has heightened the necessity 
for  efficient  and  scalable  methods  for  its  interpretation  and  analysis.  This  paper  analyzes  the 
historical development of video comprehension techniques.

2.1. Early techniques

The initial phase of video comprehension involved manually crafted feature extraction techniques 
and  conventional  machine  learning  algorithms.  Spatial  characteristics  have  traditionally  been 
obtained  using  descriptors  such  as  Scale-Invariant  Feature  Transform  (SIFT)  [8],  Speeded-Up 
Robust  Features  (SURF)  [9],  and  Histogram  of  Oriented  Gradients  (HOG)  [10],  which  aid  in 
identifying  and  representing  key  visual  patterns  within  discrete  frames.  Techniques  including 
optical flow, background removal, and Improved Dense Trajectories (IDT) [11] were employed to 
characterize motion and temporal dynamics.

Temporal dependencies in video sequences have frequently been examined through statistical 
models, notably Hidden Markov Models (HMMs) [12], which enabled the recognition of sequential 
patterns. Conventional machine learning models, such as Support Vector Machines (SVMs) [13], 
Decision Trees [14], and Random Forests [15], have been extensively utilized for classification and 
recognition  tasks.  Furthermore,  unsupervised  methods  including  cluster  analysis  and 
dimensionality reduction techniques such as Principal Component Analysis (PCA) were employed 
to categorize video segments and decrease computational complexity.

The techniques provided valuable insights into video analysis; however, their applicability in 
other contexts was limited, and they faced challenges in scaling, particularly when dealing with 
complex, high-dimensional, or extended-duration videos. This prompted the exploration of more 
dependable methods, ultimately resulting in the adoption of deep learning-based techniques.



2.2. First-generation neural video models

Initial  neural  video  models  represented  a  substantial  transition  from  conventional  handmade 
methods  by  using  deep  learning  architectures,  especially  convolutional  and  recurrent  neural 
networks. Early models like DeepVideo [16] used 3D Convolutional Neural Networks (CNNs) [17] 
to derive visual features from video frames; however, they failed to surpass handmade features 
owing to insufficient motion representation. To overcome this problem, two-stream networks were 
developed,  integrating  RGB  frame  data  with  motion  information  (e.g.,  optical  flow)  to  more 
effectively capture temporal dynamics.

Recurrent Neural Networks (RNNs) [18], particularly Long Short-Term Memory (LSTM) [19] 
networks,  were used to  analyze sequential  data  and improve the  representation of  long-range 
temporal  relationships.  Temporal  Segment Networks (TSN) [20]  consolidated data  from poorly 
sampled  segments  to  facilitate  efficient  analysis  of  long-form  videos.  Additional  advances, 
including  Fisher  Vectors  [21]  and  Bi-linear  pooling  [22],  were  used  to  enhance  video-level 
representations.

The advent of 3D CNNs, including C3D and Inflated 3D ConvNets (I3D) [23], facilitated the 
integrated modeling of spatial and temporal data via volumetric convolutions.

The models demonstrated impressive performance on benchmarks such as UCF-101 [24] and 
HMDB51 [25], resulting in the adaptation of well-known 2D architectures (e.g., ResNet, SENet) into 
3D  formats  (e.g.,  R3D,  MFNet,  STC)  [26].  To  enhance  computational  efficiency,  decomposed 
convolution methods (e.g., S3D, ECO, P3D) [27] divide 3D operations into separable 2D and 1D 
convolutions.

Subsequent progress involved the development of long-range temporal  modeling techniques 
(e.g., LTC, T3D, Non-local Networks, V4D) [28] and the introduction of efficient architectures such 
as SlowFast and X3D [29]. The incorporation of Vision Transformers (ViT) [30] has spurred the 
development of models  including TimeSformer [31],  ViViT [32],  and MViT [33].  These models 
substitute  convolutional  operations  with  attention  mechanisms,  thereby  providing  enhanced 
scalability  and  improved  temporal  reasoning  abilities  for  intricate  video  understanding 
applications.

2.3. Unsupervised pretraining for video understanding

Self-supervised pretraining for movies is a big step forward in video understanding because it lets 
models learn complete and generalizable representations from huge amounts of unprocessed video 
data. This method makes it easier to switch between jobs and lessens the need for notes that are  
specific to each task.  VideoBERT [34] was a groundbreaking and well-known model that used 
hierarchical  k-means  clustering  to  tokenize  video  features  and  masked  modeling  to  get 
representations that could go both ways. This model could be improved so that it does better at 
things like recognizing actions and adding captions to videos.

Subsequently, various approaches employed the pretraining-finetuning paradigm, incorporating 
innovations in architecture and training objectives. Models such as ActBERT, Spatio-temporalMAE, 
OmniMAE, VideoMAE, and MotionMAE have investigated masked video modeling and multimodal 
learning [35]. Others, including MaskFeat and CLIP-ViP, concentrated on contrastive learning and 
vision-language  alignment  [36].  These  models  incorporated  mechanisms  for  reconstructing  or 
predicting obscured video segments, aligning visual and textual modalities, or generating latent 
feature representations that encode both temporal and semantic information.

Self-supervised models have markedly enhanced performance on standard video benchmarks 
and exhibited robust generalization to tasks such as video classification, summarization, captioning, 
and question answering [37]. They also endorsed cross-modal learning, whereby coupled video and 
language  data  enabled  the  development  of  video-language  models  proficient  in  multimodal 
reasoning. This phase established the foundation for the integration of pretrained visual models  
with large language models in subsequent systems.



2.4. LLM-based approaches to video comprehension

The incorporation of  Large Language Models  (LLMs) into video comprehension represents  the 
most  recent  and significant  advancement  in  the  domain (Fig.  1).  Large  Language Models,  like 
ChatGPT and GPT-4,  pretrained  on  extensive  text  corpora,  exhibit  robust  in-context  learning, 
instruction adherence, and reasoning ability. Their application to video comprehension represents 
a  paradigm change  by  framing  intricate  video  interpretation  difficulties  as  language  modeling 
challenges, often without necessitating considerable task-specific fine-tuning.

Figure  1: A  visual  timeline  charting  the  development  of  video  comprehension  technologies 
powered by large language models. (Source: [3]).

Large language models (LLMs) are capable of processing textual representations obtained from 
video  content  or  engaging  with  visual  information  via  multimodal  encoders.  Utilizing  these 
capabilities, systems like Visual-ChatGPT and other Vid-LLMs have been created to execute open-
ended video reasoning, generate captions, respond to video-related inquiries, and invoke external 
vision APIs or tools based on prompts. This facilitates a dynamic and flexible comprehension of 
visual scenes through natural language. Instruction tuning and prompt engineering are essential 
for  adapting  large  language  models  to  perform  various  video-related  tasks.  These  models 
demonstrate  emergent  capabilities,  enabling  them  to  perform  multi-granularity  reasoning  – 
abstract,  temporal,  and spatio-temporal  – through the  integration of  visual  and  commonsense 
knowledge.  In  contrast  to  earlier  models  designed  for  specific  tasks,  LLM-based  video 
understanding  systems  exhibit  the  ability  to  generalize  across  various  tasks  through  unified 
interfaces and few-shot or zero-shot learning [38].

Combining LLMs with video analysis opens the door to more scalable and human-like video 
comprehension  systems  that  can  handle  multimodal  problems  in  the  real  world  in  fields  like 
robotics,  education,  entertainment,  and  surveillance.  This  development  marks  a  move  toward 
instruction-driven, general-purpose video intelligence.

3. Problem statement

Let a video be defined as a sequence of visual frames over time:

V={f 1 , f 2 , ... , f T },    f t∈R
H×V×C ,                                                (1)

where each frame 𝑓𝑡 is an RGB image of spatial resolution  ×  with  = 3 channels, and 𝐻 𝑉 𝐶 𝑇 
denotes the temporal length of the video.

Let an optional multimodal query  be a sequence of language tokens𝑄

Q={q1 , q2 , ... , qL},    qi∈V ,                                                    (2)



where  is the vocabulary space of the language model, and  is the length of the query or𝑉 𝐿  
prompt.

The goal of video comprehension with Large Language Models (LLMs) is to define a function:

FΘ :(V ,Q)→ A ,                                                              (3)

where 𝐹𝜃 is a parameterized model (e.g., a Vid-LLM) that maps the video and optional query to a 
structured output , such as:𝐴

1. A natural language sequence:  ∈  *.𝐴 𝑉
2. A classification label:  ∈ .𝐴 𝑌
3. Or continuous-valued predictions (e.g., timestamps, coordinates):  ∈ 𝐴 𝑅𝑑.

To learn this mapping, the system typically consists of:

1. Video encoder :𝜑

ϕ :V→v={v1 , v2 , ... , vT }    v t∈R
dv .                                           (4)

2. Language encoder (optional) :𝜓

ψ :Q→q={q1 , q2 , ... , qL}    qi∈R
dq .                                          (5)

3. Multimodal fusion function that aligns and integrates video and language features into a 
unified space interpretable by the LLM.

4. LLM  core   :  an  autoregressive  transformer  that  models  the  conditional  probability𝑉  
distribution:

M (x1: i−1)=p(xi∨x1: i−1) ,                                                       (6)

where 𝑥𝑖 ∈  ∪ { } and 𝑉 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑡𝑜𝑘𝑒𝑛𝑠 𝑥1: −1𝑖  may include fused visual-linguistic context.
The training objective is to minimize a task-specific loss , for instance:𝐿

θ ✳=argmin(E(V ,Q , A✳)∼ D [L(Fθ (V ,Q)F✳)]) ,                                    (7)

where  *  is  the ground truth target  from dataset   ,  and  includes  parameters  from the𝐴 𝐷 𝜃  
encoders, fusion module, and (optionally) the LLM.

This formulation encapsulates various subtasks, including:

1. Captioning:  ∈  * or .𝐴 𝑉 𝑌
2. Localization:  = (𝐴 𝑡𝑠, 𝑡𝑒), 𝑡𝑠, 𝑡𝑒, ∈ [1, ].𝑇
3. Tracking: A={|(xt , y t)|}t=1

T ,  etc.

The primary challenge lies in bridging the modality gap between continuous spatio-temporal 
visual  signals  and  discrete  symbolic  reasoning  in  LLMs,  while  maintaining  scalability, 
generalization, and data efficiency.

4. Vid-LLMs classification

Based on the  strategy used to  process  input  video data,  we divide  Vid-LLMs into  three  main  
categories.

4.1. Video Analyzer + LLM

The Video Analyzer + LLM architecture exemplifies a modular strategy for video comprehension, 
where the video content is initially handled by a specialized video analyzer module that extracts 
interpretable  intermediate  representations  in  textual  format  (Fig.  2).  The  outputs  generally 
encompass video captions, detailed temporal captions, object tracking data, audio transcriptions 



(through  ASR),  or  subtitle  text  (through  OCR)  [39].  The  resulting  textual  descriptions  are 
subsequently  provided  as  input  to  a  Large  Language  Model  (LLM),  which conducts  high-level 
reasoning, question answering, or task-specific inference based on the structured input [40].

This  design  effectively  reformulates  video  comprehension  as  a  text-based  reasoning  task,  
allowing LLMs to operate without the need for direct visual or spatio-temporal input processing. 
As a result, it leverages the zero-shot and in-context learning capabilities of pretrained LLMs while  
avoiding the computational overhead and training complexity of end-to-end multimodal models.

Figure 2: Illustration of Video Analyzer + LLM framework (Source: [3])

Two functional variants of this architecture are commonly employed:

1. LLM as Summarizer: in this arrangement, the LLM passively receives the output from the 
video  analyzer  and  produces  natural  language  summaries,  captions,  or  responses.  The 
information flow is unidirectional (i.e., Video → Analyzer → LLM), and the LLM does not 
influence the video processing pipeline. Notable examples include LaViLa, VAST, LLoVi,  
Video ReCap, Grounding-Prompter, and AntGPT [41].

2. LLM  as  Manager:  this  form  assigns  the  LLM  an  active  function,  whereby  it  provides  
directives, oversees various analytical instruments, and participates in iterative exchanges 
to accomplish intricate tasks. The LLM operates as a sophisticated coordinator of perceptual  
modules.  Notable  systems  in  this  area  include  ViperGPT,  HuggingGPT,  VideoAgent, 
SCHEMA, VideoTree, GPTSee, and AssistGPT [42].

This  architecture  is  especially  appealing  due  to  its  training-free  and  modular  structure, 
facilitating  swift  prototyping  and  deployment  of  video  comprehension  systems  with  readily 
available  LLMs  and  vision  tools.  It  constitutes  a  fundamental  pattern  in  the  architecture  of 
numerous contemporary Vid-LLM systems.

4.2. Video Embedder + LLM

The Video Embedder combined with the LLM architecture presents a more cohesive approach to  
video comprehension by embedding video content into a continuous feature space through a visual 
encoder (or embedder), and directly supplying these dense representations to a Large Language 



Model (LLM) (Fig. 3).  Unlike the Video Analyzer + LLM framework, which depends on textual  
intermediate outputs, this design permits the LLM to process raw visual data in embedded form, 
facilitating more detailed multimodal reasoning [43].

In this design, the video embedder, which may include a 3D CNN, a Transformer-based encoder, 
or a vision-language pretrained model, analyzes the video input  to produce a series of latent𝑉  
embeddings {𝑣1, 𝑣2, ..., 𝑣𝑇}, which are then aligned with the token space of the LLM. A bridging 
modality mechanism, such as a linear projection, adapter module, or cross-attention layer, is often 
used to transform visual embeddings into a format compatible with the input space of the LLM 
[44].

Figure 3: Illustration of Video Embedder + LLM framework and (Analyzer + Embedder) + LLM 
framework (Source: [3])

This method facilitates comprehensive training and enables the LLM to directly engage with 
visual  representations,  positioning  it  effectively  for  tasks  that  necessitate  temporal  alignment, 
spatial grounding, or multimodal reasoning across video and language inputs [45].

Training these models  necessitates  extensive multimodal  data and meticulous design of  the 
fusion  mechanisms  to  guarantee  stable  integration  of  visual  and  textual  features.  Prominent 
instances of this architecture encompass:

1. BLIP-2, MiniGPT4, and LLaVA (adapted for video with visual embedding extensions) [46].
2. Video-ChatGPT,  Video-LLaVA,  Video-Chat,  and  MM-VID  (which  incorporate  visual 

embedding adapters) [47].
3. SEED, Video-LLaMA, and mPLUG-Owl (leveraging pretrained vision-language encoders and 

LLMs for multimodal interaction) [48].

The Video Embedder + LLM architecture provides a cohesive multimodal interface between 
vision  and  language,  facilitating  enhanced  interaction  across  modalities.  Nonetheless,  it  often 
requires task specific adjustment and is susceptible to the quality of visual embeddings and their 
alignment  with  linguistic  representations.  This  methodology  signifies  progress  in  achieving 
coherent video-language integration, facilitating a diverse array of downstream tasks like video 
captioning, question answering, and temporal localization [49].



4.3. (Analyzer + Embedder) + LLM

The design of the (Analyzer + Embedder) + LLM integrates the optimal elements of both textual 
and visual feature pathways by using a video analyzer in conjunction with a video embedder. The 
outcomes  of  both  are  further  processed  using  a  Large  Language  Model  (LLM)  (Fig.  3).  This  
combined design seeks to use the advantages of both organized symbolic information and intricate 
visual imagery to enhance video comprehension and adaptability [50].

In this configuration, the video analyzer produces results that are comprehensible and often 
interpretable by people. These outputs include action labels, subtitles, and temporal annotations 
that  encapsulate the video material  coherently.  The video embedder converts  the video into a 
sequence of visual embeddings that capture intricate spatial and temporal details. Token union, 
dual-stream focus,  and multimodal  adapters  are  examples  of  modality  fusion methods used to 
integrate both symbolic and visual streams into the LLM [51].

This  design  facilitates  the  LLM’s  execution  of  complex  multimodal  cognitive  tasks  by 
integrating  advanced  symbolic  concepts  with  fundamental  visual  attributes.  It  is  effective  in 
scenarios  when  either  symbolic  or  embedded  information  alone  is  insufficient,  such  as  when 
simultaneous visual  grounding and semantic summarization are required.  Examples of  systems 
using this design include:

1. Video-LLaVA,  Video-Chat,  and  MM-ReAct  (which  combine  dense  vision  features  with 
analyzergenerated text) [52].

2. GPT4Tools, MM-ReAct, and MM-Vid (that enable dynamic tool use and feature fusion based 
on LLM-directed instructions) [53].

3. Video-ChatGPT,  which  leverages  both  vision  encoders  and  captioning  modules  for 
multimodal dialogue and reasoning [54].

This hybrid model architecture makes it easier to be flexible and understand, and it also lets  
LLMdriven control  dynamically organize visual  and symbolic clues.  However,  it  makes system 
design  more  complicated  since  the  analyzer,  embedder,  and  LLM inputs  need  to  be  carefully 
synchronized and aligned [55].

The (Analyzer + Embedder) + LLM model is a potential step toward creating video-language 
models that can do a wide range of jobs by combining different types of data and tools in real time.

5. Vid-LLMs applications

Adding  Large  Language  Models  (LLMs)  to  video  comprehension  systems  has  opened  up  new 
possibilities for a wide range of real-world uses. These models, especially when used with visual  
encoders or analytic modules, are quite flexible and may be used for tasks that require multimodal  
thinking, semantic comprehension, and interacting with video information in a way that is similar 
to how humans do it.  We talk about some of the most important areas where Video-Language 
Models (Vid-LLMs) have had a big effect or have a lot of promise in this part.

1. Summarizing  and  captioning  videos  involves  distilling  content  and  providing  textual 
representation for accessibility and comprehension.  The automatic generation of natural 
language descriptions for video content represents a key application of Vid-LLMs. These 
systems can generate concise summaries or detailed captions by analyzing dynamic scenes 
and relating them to  linguistic  semantics.  These  models  can generate  captions  that  are 
contextually  and temporally  aware,  as  well  as  highly  meaningful,  due to  the reasoning 
capabilities  of  large  language  models  (LLMs).  They  can  capture  purpose,  emotion,  and 
narrative structure, alongside object or action recognition. This capability is essential for 
activities such as content generation, material categorization, and support for individuals 
with disabilities [56].



2. Video Question Answering (Video QA.Vid-LLMs) lets people ask natural language questions 
about  the video material,  which makes it  possible  to  interactively interpret  videos.  The 
model takes in both visual and spoken inputs and gives correct answers. This job needs not 
only object  or event identification,  but  also spatio-temporal  thinking,  comprehension of  
causation, and even fundamental knowledge. Vid-LLMs show a lot of promise in this area,  
even when there are just a few examples or none at all. This is because they can follow 
instructions and respond to prompts, which they got from LLMs [57].

3. Temporal  and Spatial  Localization.  A significant  application area pertains to  identifying 
particular moments, actions, or objects within video streams. This encompasses temporal 
action localization, moment retrieval, and referring object grounding. In these contexts, Vid-
LLMs can effectively associate language-based prompts (e.g., “when does the person start  
running?”) with specific temporal segments and spatial areas of interest within the video. 
This functionality is  crucial  for applications such as video indexing,  surveillance,  sports 
analysis, and the comprehension of instructional content [57].

4. Multimodal Video Dialogues. The rise of multimodal chat systems has led to the integration 
of Vid-LLMs in interactive dialogue interfaces that encompass video comprehension. These 
systems  facilitate  natural  conversations  that  include  follow-up  questions,  temporal 
references,  and iterative  reasoning related to  video content.  This  approach is  especially 
beneficial  in  the  realms  of  educational  technology,  customer  support  automation,  and 
interactive storytelling, as comprehending video context is essential for producing relevant 
and coherent dialogue [58].

5. Using Tools and Video-Based Agents. Recent Vid-LLM designs improve their usefulness by 
acting as independent agents that can understand video input, think logically, and utilize 
other tools  or APIs as needed.  These agents can work with long videos,  make guesses,  
assess their work using tools like object detectors, trackers, and summarizers, and provide 
multi-step  answers.  Because  they  act  like  agents,  they  are  excellent  at  challenging 
occupations  that  require  making  choices,  like  as  robotics,  autonomous  monitoring,  or 
interpreting scientific movies.

6. Retrieval and recommendation across modes. Vid-LLMs are being utilized more and more in 
systems that enable you search for videos and text and vice versa, where it is vital for the 
semantics of the two forms of material to line up. By placing both types of data into a  
shared latent  space,  these  systems make it  easier  to  identify  relevant  content  based on 
natural  language  descriptions  or  the  other  way  around.  This  tool  is  highly  helpful  for 
searching video databases, recommending material, and managing digital assets.

7. Monitoring, security, and compliance. In high-stakes situations like surveillance or forensic 
analysis, Vid-LLMs could help find events, spot strange behavior, or check for conformity 
with regulatory standards. Their ability to assess and express visual information in plain 
English enables transparent and verifiable decision-making, particularly advantageous in 
legal, security, and auditing contexts [59].

The  application  range  of  Vid-LLMs  encompasses  descriptive,  analytical,  interactive,  and 
operational domains, facilitated by their ability to merge vision and language within a cohesive, 
human-centered framework. As the discipline advances, we foresee wider use of these models in 
domains  necessitating  explainability,  multi-turn  interaction,  and  dynamic  management  of 
multimodal inputs. Furthermore, forthcoming advancements in fine-tuning methodologies, long-
context  modeling,  and  the  incorporation  of  domain-specific  tools  will  likely  enhance  their 
applicability significantly.

6. Future research opportunities

As Large  Language  Models  (LLMs)  become  more  common in  video  understanding  systems,  a  
number  of  important  research  areas  and  problems  arise  that  are  likely  to  impact  the  future 



generation  of  multimodal  intelligence.  Current  Vid-LLMs  have  shown great  promise  in  video 
reasoning, captioning, and interactivity, but they still have big problems with scalability, accuracy,  
interpretability, and generalization across domains.

1. Video modeling with a long context. One of the most important problems is figuring out how 
to  analyze  long-form films well.  When working with  long temporal  sequences,  current 
models generally have trouble with memory and processing limitations.  Future research 
should investigate  more effective  temporal  compression methods,  hierarchical  modeling, 
and sparse attention processes that facilitate the representation and retrieval of relevant 
parts over extended periods while preserving essential context [39].

2. Learning to  Tokenize  and Represent  Video.  Video data  does  not  have a  widely  used and 
effective way to break it down into tokens, unlike photos or text. It’s important to come up 
with better ways to turn raw video into symbolic or discrete representations that are both 
useful and easy for computers to work with. Improvements in video-language tokenizers, 
separate visual vocabularies, and multimodal pretraining goals will be important for making 
video work better with LLM structures [60].

3. Reasoning that is based on facts and can be explained . Future Vid-LLMs must be able to do 
grounded reasoning, which means that predictions must be clearly connected to particular 
visual or temporal data in the input video. This is necessary for real-world applications to be 
trustworthy  and  open.  Developing  methods  that  produce  explainable  and  verifiable
outputs  –  for  instance,  via  textual  rationales,  highlighted  video  frames,  or  traceable 
inference paths – will be vital for adoption in sensitive domains such as healthcare, legal 
analysis, and autonomous systems [61].

4. Dynamic interaction and adding tools. The trend toward LLM-driven agents is expected to 
continue. Vid-LLMs will be able to use outside resources to help them see, track, summarize, 
and find things.  Future systems could be better at  planning and reasoning if  they have 
better  memory,  self-correction,  and adaptive tool  invocation mechanisms.  Research into 
multi-agent collaboration, where different expert models cooperate via LLM coordination, is 
also a promising direction [62].

5. Grounded  and  explainable  reasoning.  Future  Vid-LLMs  must  demonstrate  grounded 
reasoning to ensure trust and transparency in real-world applications, linking predictions 
explicitly to specific visual or temporal evidence in the input video. Creating methods that 
yield  explainable  and  verifiable  outputs  –  such  as  textual  rationales,  highlighted  video 
frames, or traceable inference paths – will be essential for implementation in sensitive fields 
like healthcare, legal analysis, and autonomous systems [61].

6. Dynamic interaction and tool enhancement. The trend of LLM-driven agents is expected to 
persist, with Vid-LLMs enhanced by external tools for perception, tracking, summarization,  
and  retrieval.  Future  systems  could  improve  through advanced  planning  and reasoning 
abilities, encompassing memory, self-correction, and adaptive strategies for tool invocation. 
Investigating multi-agent collaboration, in which various expert models interact through 
LLM coordination, represents a promising avenue of research [62].

7. Conclusion

In  recent  years,  the  integration  of  video  analysis  with  extensive  language  modeling  has 
significantly transformed the field of  multimodal  artificial  intelligence.  Video-Language Models 
(Vid-LLMs)  represent  an  advanced  type  of  system  capable  of  performing  complex  reasoning, 
engaging in  interactive  dialogue,  and  demonstrating  semantic  understanding of  video  content. 
Their functionality is achieved through the integration of Large Language Models (LLMs) with 
vision encoders and perceptual tools.

This survey has given a full picture of how Vid-LLMs have changed over time, how they are 
built, how they are used, and what problems they face. We put current methods into three main 



architectural  paradigms:  Video  Analyzer  +  LLM,  Video  Embedder  +  LLM,  and  (Analyzer  + 
Embedder) + LLM. We did this by showing how they work, how they are designed, and what 
models they are based on. We also looked at a lot of real-world uses, such as captioning, answering  
questions, temporal localization, multimodal conversation, retrieval, and agentic reasoning.

Even  though  modern  Vid-LLMs  are  quite  powerful,  they  are  still  in  the  early  stages  of 
development. Their performance is generally limited by problems with video tokenization, long-
context modeling, multimodal alignment, and explainability. The research community still has a lot 
of work to do on topics like scalability, domain robustness, and standardizing evaluations.

Integrating  LLMs  into  video  understanding  represents  a  significant  advancement  in  the 
development of general-purpose, instruction-driven, and human-aligned multimodal AI systems. 
With advancements in modeling architectures,  pretraining techniques,  and system-level  design, 
Vid-LLMs are poised to play a significant role in the development of intelligent systems capable of  
seamlessly interacting with their visual environments in the future.

This study lays the groundwork for understanding the current landscape of Vid-LLMs and offers 
a structured approach for future research initiatives aimed at improving the capabilities, efficiency, 
and reliability of video-language models.
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