
A multilingual analysis for political stance and
manipulative language in Reddit comments on the
Ukraine war⋆

Victoria Vysotska1,†, Alla Kuzko1,†, Lyubomyr Chyrun1,2,†, Yuriy Ushenko3,†, Roman
Romanchuk1,∗,†, Roman Lynnyk1,†, Yaroslav Pelekh1,†, Laura Duisembaueva4,† and Mariia
Brygadyr5,†

1 Lviv Polytechnic National University, S. Bandera Street 12, 79013 Lviv, Ukraine
2 Ivan Franko National University, Universytetska Street 1, 79000 Lviv, Ukraine
3Yuriy Fedkovych Chernivtsi National University, Kotsiubynskoho Street 2, 58012 Chernivtsi, Ukraine
4 Аl-Fаrаbi Kаzаkh Nаtiоnаl Univеrsitу, Al-Farabi Ave, 71, 050040 Ust-Kamenogorsk, The Republic of Kazakhstan
5 West Ukrainian National University, Lvivska Street 11, 46004 Ternopil, Ukraine

Abstract
The article presents a comprehensive study of online discourse on Russia's war against Ukraine on the
Reddit platform using natural language processing (NLP) techniques. A multilingual information system
is proposed, which collects, cleanses, and analyses the sentiment of comments in English, Ukrainian, and
Russian through thematic clustering. Particular attention is paid to the definition of a political position
(stance detection): pro-Ukrainian, pro-Russian or neutral. The model is based on the multilingual embeder
multilingual-e5-base, complemented by manual data markup and specialised dictionaries of manipulative
and propaganda vocabulary. The paper also provides a comparative analysis of modern NLP solutions
(Perspective API, MonkeyLearn, Watson NLU, BERT architectures). It substantiates the advantages of the
proposed approach in the context of information security. The results of the study demonstrate the
effectiveness of the system in identifying information narratives, dominant topics of discussion and the
structure of users' emotional reactions. The created system can be used to monitor public sentiment,
detect propaganda and analyse information operations in social networks.

Keywords
Reddit, NLP, multilingual classification, stance detection, text sentiment, information warfare,
propaganda, manipulative vocabulary, text vectorisation, thematic clustering, multilingual-e5-base, BERT,
public opinion, disinformation. 1

1. Introduction

In today's world, social media has become the main arena of the struggle for public opinion. In the
context of Russia's war against Ukraine, the information space is a critical element of hybrid
warfare. In particular, the Reddit platform, which is characterised by an active and global English-
speaking community, has become one of the tools for shaping the views of an international
audience. Thousands of comments related to events in Ukraine are published on Reddit every day.
These statements are a direct reflection of public sentiment, encompassing emotions, support,
criticism, and deliberate misinformation [1–3]. The analysis of these comments enables us to

⋆AIT&AIS’2025: International Scientific Workshop on Applied Information Technologies and Artificial Intelligence Systems,
December 18–19 2025, Chernivtsi, Ukraine
1∗ Corresponding author.
† These authors contributed equally.

 victoria.a.vysotska@lpnu.ua (V. Vysotska); alla.kuzko.sa.2022@lpnu.ua (A. Kuzko); lyubomyr.v.chyrun@lpnu.ua
(L. Chyrun); y.ushenko@chnu.edu.ua (Y. Ushenko); roman.v.romanchuk@lpnu.ua (R. Romanchuk);
roman.o.lynnyk@lpnu.ua (R. Lynnyk); yaroslav.m.pelekh@lpnu.ua (Y. Pelekh); duisembaevalaura@gmail.com
(L. Duisembaueva); m.bryhadyr@wunu.edu.ua (M. Brygadyr)

 0000-0001-6417-3689 (V. Vysotska); 0000-0002-6356-4992 (A. Kuzko); 0000-0002-9448-1751 (L. Chyrun); 0009-0002-
7620-5355 (Y. Ushenko); 0009-0004-4352-1073 (R. Romanchuk); 0009-0007-0948-4338 (R. Lynnyk); 0000-0002-4339-8093
(Y. Pelekh); 0009-0005-5402-6753 (L. Duisembaueva); 0000-0002-1101-7479 (M. Brygadyr)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:m.bryhadyr@wunu.edu.ua
mailto:duisembaevalaura@gmail.com
mailto:yaroslav.m.pelekh@lpnu.ua
mailto:roman.o.lynnyk@lpnu.ua
mailto:roman.v.romanchuk@lpnu.ua
mailto:y.ushenko@chnu.edu.ua
mailto:lyubomyr.v.chyrun@lpnu.ua
mailto:alla.kuzko.sa.2022@lpnu.ua
mailto:victoria.a.vysotska@lpnu.ua

understand precisely how the image of war is perceived by a global audience [3–6]. The relevance
of this topic is also due to [6–12]:

1. The rapid spread of fake news, memes, and propaganda clichés needs to be identified and
addressed.

2. Insufficient study of Reddit as a source of data for the Ukrainian context.
3. A need for prompt monitoring of public sentiment outside Ukraine.
4. The availability of large data sets for NLP research.

Thus, the combination of comment sentiment analysis and the detection of manipulative
vocabulary on Reddit is not only relevant but also a socially significant area of research in
computational linguistics.

The purpose of this study is to develop an information technology for a comprehensive analysis
of comments in different languages on Reddit related to Russia's war against Ukraine, using natural
language processing methods. It is envisioned to identify the emotional colouring of statements
(tonality) and the frequent use of vocabulary, which may indicate manipulative influence. It will
enable us not only to establish the prevailing public emotions but also to identify the structural
features of information campaigns and propaganda narratives. Research objectives:

1. Download and prepare a selection of Reddit comments on the war in Ukraine.
2. Clean up texts (remove noise, duplications, unwanted characters).
3. Conduct a preliminary analysis of the comment language and determine the comment

languages to distribute into groups.
4. Apply sentiment analysis tools (TextBlob, VADER, or others) to classify sentiment.
5. Build a distribution of comments by tone.
6. Highlight negative and neutral comments for more detailed analysis.
7. Conduct lexical analysis and build a TF-IDF model to identify key terms.
8. Visualise common vocabulary (wordcloud).
9. Form a dictionary of potentially manipulative vocabulary.
10. Analyse examples of comments containing propaganda frames or disinformation narratives.

The object of the study is the process of forming online discourse around Russia's war against
Ukraine on English-language social media platforms (including Reddit), as well as the
dissemination of manipulative and emotionally colored messages among users. The subject is the
methods and means of analysing text statements (comments) from Reddit users that contain
emotionally charged or potentially manipulative language related to Russia's war against Ukraine.
The presence of typical propaganda narratives ("denazification", "liberation", "NATO provocation",
etc.) is also investigated. The scientific novelty of the study is reflected in the following:

1. Using Reddit as a source to research information warfare in the context of Ukraine.
2. combination of classical methods of sentiment analysis with thematic and frame analysis of

manipulations.
3. Identifying keywords and patterns used for propaganda.
4. Creation of a frequency dictionary with examples of manipulative vocabulary.
5. Approbation of NLP methods on the corpus of informal English-language online

commentaries.

The results of the study can be used [6–12]:

1. To create automated systems for monitoring public sentiment.
2. To detect new waves of information attack or propaganda.
3. In the work of state think tanks, journalists, and public organisations.
4. To train models for detecting disinformation and bot activity.

5. As part of an interactive public opinion dashboard with visualisation elements (e.g. via
Streamlit or Gradio).

For the study, a relevant, interdisciplinary topic was chosen that combines computational
linguistics, analysis of public sentiment, elements of information security, and NLP. The purpose,
objectives, scientific novelty and practical value of the project are detailed. The results can be
helpful in both academic and applied environments for understanding the influence of information
in wartime.

2. Related works and comparative analysis of similar solutions

In the context of modern information warfare, a crucial task is to automatically identify users'
political positions based on their comments [12–18]. Comments on platforms like Reddit may
contain signs of manipulative language, toxicity, or overt political leanings. There is a need to
create systems capable of detecting neutral, pro-Russian or pro-Ukrainian positions [18–21]. The
urgency of the problem stems from the need to counter disinformation, combat fake news, and
enhance information security [21–30]. The modern landscape of natural language processing tools
offers a wide range of solutions for analysing textual content; however, the vast majority of them
focus on traditional tasks, such as determining emotional tone, detecting toxicity, or performing
general sentiment analysis. The specific task of defining a political position, particularly in the
context of the armed conflict in Ukraine, remains a largely untapped area, creating unique
opportunities for the development of specialised technological solutions. Automatic identification
of a political position is an interdisciplinary task that combines approaches from the fields of
machine learning, natural language processing (NLP), sociolinguistics, and media studies [1–12].
Let us review and analyse the leading publications that have influenced the development of these
approaches [13–20]. In [13], the authors present a detailed methodology for analysing position in
social networks, highlighting the difference between emotional assessment (sentiment) and
position on a particular topic. The study [14] is devoted to fact-checking with an emphasis on
contextual verification of statements, accompanied by the analysis of rhetorical techniques. The
work [15] is an overview of methods for detecting disinformation, including classification, graph
approaches, and argumentation models. The authors in [16] propose an explainable NLP that
explains the reasons why a statement is deemed true or false. In [17] the authors develop models
for detecting propaganda, hostile messages, and ideologically colored statements. The work [18]
provides an overview of classical and modern methods for sentiment analysis, including rule-based,
statistical, and deep learning approaches. A study [19] describing the implementation of the BERT
architecture was a revolutionary step in NLP and provided a basis for further training in stance
detection problems. In [20], an overview of the use of transformers in social analysis problems,
including hate speech, misinformation, and stance classification, is carried out. Modern methods
include [21–30]:

1. Using BERT, DistilBERT for stance classification (with fine-tuning).
2. Transformers with a special position token ("[STANCE]").
3. Multilingual models (XLM-RoBERTa) – especially relevant for multilingual data (e.g.

English-Ukrainian-Russian contexts).
4. Use of unsupervised approaches (topic modelling, clustering) for preliminary analysis.
5. Use of manipulative or propagandistic vocabulary in dictionaries.

We will carry out a detailed review of existing approaches and their functional limitations.
Google Jigsaw developed the Perspective API as a cutting-edge machine learning tool designed

to automatically identify problematic content in online discussions. The system is focused on
identifying a wide range of negative manifestations in texts, which makes it popular among social
platform moderators. The system is capable of evaluating a variety of text characteristics, including

overall toxicity, insult, profanity, threats, identity-based attacks, and severe toxicity. The API offers
a user-friendly interface for seamless integration with various platforms and research projects,
making it accessible to a broad range of users. Critical shortcomings for political analysis:

1. Lack of understanding of the political context.
2. Contextual errors in estimation.
3. Language and cultural barriers.
4. Western-centricity of algorithms.

The Perspective API is not fundamentally intended to analyse the political positions of
participants in discussions. Instead of determining whether the user supports a particular side of
the conflict, the system only assesses formal signs of aggressiveness or resentment, which can lead
to serious interpretation errors. Real-world examples show that phrases like "I support the heroic
defence of Ukraine" can get high toxicity ratings simply because of mentioning military actions,
despite their obviously positive nature in the context of supporting the victim of aggression. The
system demonstrates a critically low quality of work in the Ukrainian and Russian languages,
which is manifested in incorrect recognition of Cyrillic characters, tokenisation errors, and a
misunderstanding of culturally specific expressions and idioms. The educational data of the system
are primarily based on English-language content from Western countries, which makes it
unsuitable for an accurate assessment of the specifics of the post-Soviet information space, with its
unique forms of political discourse.

Leading commercial platforms such as MonkeyLearn, IBM Watson Natural Language
Understanding, and Amazon Comprehend are comprehensive solutions for the enterprise segment.
These systems provide ready-to-use tools for a wide range of text processing tasks, from analysing
customer feedback to automatically categorising documents. Functionalities of leading platforms:

1. MonkeyLearn stands out for its customisation flexibility, allowing users to train their own
classifiers for specific tasks, conduct multivariate sentiment analysis, and automatically
detect topic categories in large arrays of text.

2. IBM Watson NLU offers a comprehensive approach to analysis, including the extraction of
emotional markers, conceptual connections, and named entities, and also provides advanced
means of visualising results for business intelligence.

3. Amazon Comprehend specialises in automatically analysing large documents, efficiently
identifying text language, key phrases, dominant topics, and emotional characteristics
without requiring pre-tuning.

System limitations for research purposes:

1. The problem of the "black box".
2. Limited control over learning.
3. Economic barriers.
4. Inferior multilingualism.
5. Lack of political categories.

The closed nature of the algorithms used by these platforms makes it impossible to gain a deep
understanding of the decision-making processes, which is critical for scientific research. Users do
not have the opportunity to fine-tune the systems to the specific needs of the Ukrainian-Russian
political discourse. Procedures for further training models on their own data are either inaccessible
or highly complex and costly, making them impractical for academic or volunteer projects. The
cost of processing large amounts of social media (hundreds of thousands or millions of comments)
through the APIs of these services can become prohibitive for research budgets, especially in the
context of long-term monitoring. Despite the declared support for multiple languages, the quality
of work with Ukrainian and Russian is significantly inferior to that of English, as evidenced by

incorrect recognition of specific vocabulary, misunderstanding of synonymous series, and errors in
processing morphologically complex constructions. None of the platforms offers ready-made
classifiers for determining a political position, such as "pro-Ukrainian" or "pro-Russian", which
requires the creation of entirely custom solutions on top of the basic functionality.

A family of transformer models, including BERT, RoBERTa, XLM-RoBERTa, and DistilBERT,
has revolutionised the field of natural language processing by offering a fundamentally new
approach to understanding context in texts. These architectures have become the foundation for
most advanced NLP systems due to their ability for deep contextual analysis. Technical
characteristics of key models:

1. BERT (Bidirectional Encoder Representations from Transformers) has implemented the
revolutionary principle of bidirectional context analysis, which enables the model to
consider both previous and subsequent words when interpreting each element of the text.

2. RoBERTa introduces an optimised version of BERT with improved learning strategies,
resulting in higher accuracy on most benchmarks while maintaining architectural
compatibility.

3. XLM-RoBERTa extends the capabilities of the base model to more than a hundred
languages, theoretically providing multilingual functionality for global applications.

4. DistilBERT offers a compromise solution between performance and precision, providing
significantly faster machining at the expense of some reduction in result quality.

Challenges of practical application:

1. There is a need for specialised additional training.
2. The problem of the interpretation of decisions.
3. Superficial contextual analysis.
4. Language imbalances in educational data.
5. High requirements for computing resources.

Basic transformer models lack a built-in understanding of the concept of political position. After
downloading from repositories such as Hugging Face, they require painstaking additional training
on specially prepared and marked data, which requires significant technical resources and
expertise. Transformer models function as complex "black boxes", which makes it challenging to
understand the logic of their solutions without using specialised explanation methods such as LIME
or SHAP, which are resource-intensive in themselves. Without the integration of thematic
dictionaries or specialised analysis modules, models can classify texts according to formal patterns,
without understanding the deep meaning of key terms such as "de-occupation", "collaboration", and
"militarisation" in the Ukrainian context. Even the most advanced multilingual models, such as
XLM-RoBERTa, demonstrate uneven quality of work across different languages due to an
imbalance in educational resources, where Ukrainian is significantly underrepresented compared to
English. Effective retrotraining and application of transformer models on large datasets requires
access to powerful GPUs or cloud computing platforms, which may not be available for many
research projects.

Specialised research initiatives:

1. The TWEETSBK (Knowledge Base for Political Tweets) project represented an ambitious
attempt to create a centralised knowledge base for classifying politically oriented messages
on Twitter. The developers attempted to systematise the patterns of political discourse and
develop universal tools for recognising them. The study focused exclusively on the
American political context and English-language data, making its results of little use for
analysing other regional conflicts or multilingual environments.

2. The PHEME project (dataset and position detection on rumours) proposed interesting
methodological approaches for analysing how users support or refute circulating claims on
social networks, which have some similarities with stance detection tasks. Despite the
conceptual proximity, the methods of this project are not fully adapted for the
comprehensive identification of political positions in multifaceted conflicts, particularly
without considering the specific regional context.

3. Explanatory NLP models (LIME, SHAP with BERT) – the integration of machine learning
explanation methods with transformer architectures opens up opportunities for
understanding the logic of decision-making by models, which is especially important for
political analysis tasks. The implementation of such systems requires significant computing
resources and deep technical expertise; however, there are no standardised solutions
specifically adapted to the task of stance detection in the political context.

3. Statement of the research task

The central problem our system addresses is the critical lack of reliable tools to automatically
determine the political stance of social media users in the context of the Russian-Ukrainian conflict.
Existing methods on the market are unable to fully identify and classify pro-Russian or pro-
Ukrainian narratives, especially when they are presented in complex, multi-layered or deliberately
veiled formulations. The main goal of the project is to create a comprehensive tool that is capable :

1. Accurately recognise a political position based on the textual content of comments,
regardless of their stylistic design.

2. Conduct an in-depth analysis of the thematic structure and lexical composition of the texts
under study.

3. Efficiently handle multilingual content, including English, Ukrainian, and Russian.
4. Adapt to new types of content through additional training mechanisms using fresh

examples.
5. Ensure transparency of classification through detailed analysis of the most significant words

and phrases.

The development faces a number of serious challenges:

1. Linguistic diversity of online communication.
2. Technical limitations of the platforms.
3. The problem of artificial content.
4. The complexity of political discourse.

Social networks are characterised by an extremely high level of linguistic variability, including
transliteration, informal abbreviations, dialectisms, and new forms of slang that are constantly
evolving. The APIs of most social platforms have significant limitations on data collection, which
makes it challenging to form representative samples for analysis. The widespread use of bots and
automated systems for content generation presents substantial challenges to the accurate analysis
of public opinion. The high level of irony, sarcasm, and manipulative techniques in political
discussions makes automatic interpretation a challenging task even for the most advanced
algorithms. To overcome these challenges, it is necessary to implement an integrated approach:
pre-processing improvements, vectorisation optimisation and development of analytical
dashboards. Development of specialised algorithms for text cleaning, normalisation of various
writing forms, automatic error correction, and creation of slang and colloquial vocabulary
dictionaries for each supported language. Maximise the use of multilingual-e5-base capabilities to
ensure high-quality representation of multilingual texts in vector space, taking into account
cultural and contextual features. Creation of interactive visualisation tools that will allow you to

compare the distribution of political positions according to various criteria: thematic categories,
social platforms, time periods, and demographic characteristics of users. Advantages of our
approach (in the context of the disadvantages mentioned above):

1. Focus on stance detection in political discourse.
2. Multilingual support thanks to multilingual-e5-base.
3. Manual data markup is the basis of accuracy.
4. Thematic and lexical analysis is not only a matter of classification.
5. Flexible architecture, core open to additional learning.
6. A balanced combination of statistical and linguistic methods.

The system being developed is fundamentally different from traditional tonality analysis tools in
that it focuses on identifying the user's political stance regarding the Russia-Ukraine conflict.
Instead of simply determining the positive or negative colour of the text, the system classifies
comments into three categories: pro-Ukrainian, pro-Russian, and neutral. Such specialisation
proves to be critically important when analysing the information space in wartime, where a
seemingly positive comment may actually contain manipulative or disinformation messages.

The use of the multilingual-e5-base model enables our system to efficiently work with texts in
Ukrainian, Russian, and English simultaneously. This solution provides comprehensive coverage of
the entire range of comments found on international platforms, including Reddit, YouTube, and
other social networks. Traditional models, such as BERT, or commercial solutions, like Perspective
API, show significantly lower efficiency in this aspect, as they are primarily configured to work
with the English language.

Creating your own case of manually marked comments has become the basis for the high
accuracy of our system. This corpus contains real-world examples of texts from various social
platforms representing the full range of political positions in their natural context. This approach
enables the system to learn to recognise not only direct statements, but also complex forms of
expression of position, such as sarcasm, metaphors, specific jargon, and other linguistic features
characteristic of the Ukrainian information space.

The proposed system goes far beyond a simple classification, offering a comprehensive
analytical toolkit. It is capable of generating TF-IDF models and visual representations of
vocabulary (word clouds) for each language separately, conducting detailed analyses of keywords
in comments based on the identified political position, and identifying manipulative patterns
through the study of frequency dictionaries. This level of analytical depth is fundamentally
unavailable in commercial "black boxes" like IBM Watson or MonkeyLearn.

The use of open models from the Hugging Face ecosystem, combined with its proprietary
preprocessing and analytics logic, creates a flexible system that can be easily adapted to analyse
other conflicts or regional discourses. For example, the system can be configured to work with the
Middle East or the Balkan region. The ability to expand dictionaries, topic modules, and analytical
frames makes the system scalable and suitable for long-term use.

The proposed approach combines the advantages of modern machine learning (classifiers,
clustering) with time-tested methods of natural language processing (lexical analysis, noise
filtering, specialised dictionaries). This combination provides reliable results even with limited
computing resources. For example, when working with neutral comments, the additional use of
vocabulary visualisation and TF-IDF filtering made it possible to identify hidden political
connotations that implicitly express the author's position.

Disadvantages and limitations of the developed system:

1. Insufficient amount of training data.
2. Difficulty in interpreting ambiguous statements.
3. Critical dependence on the quality of pre-treatment.
4. Lack of bot identification mechanisms.

5. Real-time processing restrictions.
6. The need for constant updating of dictionaries.

Despite the high quality of manual markup, the size of our case remains relatively limited,
which can negatively affect the model's ability to generalise to new data. To fully scale the system,
a significant expansion of the corpus is necessary, especially for languages that are currently
represented by fewer examples. A large part of the comments on social networks are characterised
by ambiguity, irony, or neutrality in wording. Such texts pose challenges for interpretation, even
for experienced analysts, let alone automated systems. It is especially true for texts where the
political position is expressed through allusions or cultural references. The stage of data
preprocessing has a significant impact on the system's final results. Errors in automatic language
detection, tokenisation, or removal of noise elements can significantly reduce classification
accuracy and lead to incorrect conclusions.

The current version of the system does not distinguish between content created by real users
and content generated by bots or automated systems. It can lead to a distortion of analytical
conclusions, especially given the active use of bots in information operations. Currently, the
system operates with local datasets and lacks the functionality to automatically collect and process
new comments from platforms like Reddit in real-time. It limits its use for monitoring current
information trends. Dictionaries of terms, emotional markers, propagandistic and manipulative
constructions need to be regularly updated in accordance with the evolution of the information
field and the emergence of new narratives and formulations.

Despite the active development of NLP tools, most approaches either overlook the political
context or require significant adaptation to it. A combination of manual markup, thematic analysis,
and manipulation detection distinguishes our project. It makes the task relevant and innovative in
the context of information warfare.

4. System Software Analysis

Comments are collected from Reddit, which allows you to cover different points of view regarding
the war in Ukraine. For data preparation, CSV files with pre-collected messages were used. Each
message contains text, language, source, and other metadata. For accurate analysis, messages are
processed in at least three languages: English, Ukrainian, and Russian. At the first stage, the data is
cleared of noise, removing links, special characters, repetitions, and unnecessary spaces. Speech
detection (langdetect) is also performed.

Based on the sentence-transformers/multilingual-e5-base model, vectorisation is performed for
all messages. This model enables you to represent texts in a single multidimensional vector space,
regardless of language. It is critically vital for multilingual analysis. The resulting embeddings are
used to cluster thematic comment groups, allowing you to identify the most discussed topics (such
as weapons, referendums, aid, refugees, economy, etc.).

For English-language messages, the VADER library is utilised to determine the sentiment as
positive, negative, or neutral. For Ukrainian and Russian texts, an extension with support for a
custom dictionary is provided. Additionally, a hand-compiled dictionary of potentially
manipulative vocabulary was compiled. It includes words like "fascists", "Nazis", "liberation", and
"ukroregime", which are often used in propaganda narratives. Counting the frequency of such
terms enables you to identify comments that may contain potential misinformation.

The classification of the commentary's political position as Pro-UA, Pro-RU or Neutral has been
implemented. For this purpose, an approach using poorly labelled data and heuristics was
employed, based on keywords and frames inherent to a particular position. An extension with
additional training of the BERT or XLM-RoBERTa model on the marked dataset is provided. At the
same time, even the basic heuristics showed promising results for identifying extreme positions.
Each comment group (language, cluster, stance). A calculation of the number of comments by
political positions and tone has also been implemented. To reduce the dimensionality of vector

representations, PCA and t-SNE were employed to visualise the clusters. The purpose of the system
is to analyse the political position and sentiment of Reddit users' comments on the war in Ukraine:

1. Automated collection and aggregation of Reddit comments.
2. Detection of the language of texts and pre-processing (cleaning, normalisation).
3. Thematic grouping of comments (clustering).
4. Analysis of the emotional tone of comments.
5. Definition of political position (Pro-UA, Pro-RU, Neutral).
6. Visualisation of results in a format that is convenient for analysis.

We will describe in detail the functional requirements for each module of the information
system, which analyses the political position and tone of Reddit users' comments on the war in
Ukraine.

Data collection and preparation module:

1. Uploading and preprocessing Reddit comments.
2. Definition of the language of comments (English, Ukrainian, Russian).
3. Cleaning texts from noises, symbols, emojis, and links.
4. Saving data in a structured form (CSV).

Word Processing Module:

1. Tokenisation, lemmatisation of texts.
2. Elimination of grammatical and stylistic errors.
3. Support for custom vocabulary (slang, propaganda templates).

Thematic clustering module:

1. Vectorisation using sentence-transformers.
2. Building thematic clusters (HDBSCAN).
3. Visualisation of clustering results.

Sentiment analysis module:

1. Analysis of the emotional component of comments (Stanza, custom methods).
2. Division into positive, negative, and neutral messages.

Political position classification module:

1. Heuristic definition of stance based on keywords.
2. Additional training of the model on a manual dataset to improve accuracy.
3. Building and testing models (SVM, XGBoost, BERT).

Visualisation module:

1. Building graphs, word clouds, and PCA visualisations.
2. Interface to view classification results and statistics.

Non-functional requirements for the system for analysing the political position and sentiment of
Reddit users' comments on the war in Ukraine:

1. Modular system structure for flexible adaptation.
2. Scalability for different languages or data sources.
3. Open source that allows reuse.

4. Use of open source software (Python, Jupyter, Streamlit).

Limitations of the system for analysing the political position and tone of Reddit users'
comments on the war in Ukraine:

1. The primary source of data is Reddit (without integrating the APIs of other social
networks).

2. Heuristics – the initial method for classifying stance.
3. Partial analysis support for only three languages.

Python 3.11.9 was used to implement the system, specifically the libraries Pandas, NumPy,
Scikit-learn, Matplotlib, Seaborn, Stanza, XGBoost, sentence_transformers, tqdm, joblib, UMAP,
hdbscan, and langdetect, as well as Matplotlib and Seaborn for visualisation. The environments are
Jupyter Notebook (for EDA, clustering, and hypothesis testing) and VS Code (for modular
programming, deployment, and integration). The architecture of the system for analysing the
political position and sentiment of Reddit users' comments on the war in Ukraine:

1. src/data/ – modules for collecting and saving comments.
2. src/preprocessing/ – cleanup, tokenisation, normalization.
3. src/embedding/ – vectorisation of texts.
4. src/clustering/ – clustering.
5. src/classification/ – stance classification.
6. src/visualisation/ – plotting.
7. notebooks/ – experiments and analyses.

Expected results from the functioning of the system for analysing the political position and
sentiment of Reddit users' comments on the war in Ukraine:

1. Structured multilingual Reddit comment data.
2. The language, tone and political position of each message are defined.
3. Thematic clusters have been built.
4. Web interface to visualise results.

The developed information system comprises several main functional subsystems that together
provide a full cycle of data work, from collection to visualisation of results.

The data collection subsystem is responsible for obtaining information from Reddit. It provides
the download of pre-compiled comments in CSV file format. Each entry contains the text of the
message, user ID, language, date, and metadata about the subreddit. In the future, integration with
the official Reddit API will enable the extension of functionality and automatic database updates.

The data preprocessing subsystem encompasses cleaning, normalisation, noise removal, and
language detection, utilising the langdetect module. It integrates modules for tokenisation,
lemmatisation, and cleaning, as well as dictionaries for abbreviations, slang, and propaganda
vocabulary. Particular attention is paid to interlingual normalisation for the comparability of
analysis results in different language groups.

The modelling subsystem implements multi-stage processing, including clustering of topics
using HDBSCAN (with visualisation via PCA/t-SNE), analysis of emotional tonality through Stanza
and user dictionaries, and determination of a political position. Classification is carried out both on
the basis of heuristic rules and using machine learning (BERT, XGBoost).

The visualisation subsystem provides the construction of graphs, word clouds (WordCloud),
clustering and classification results. Additionally, it provides users with a Streamlit web interface
to view and filter results by language, topic, political position, and date.

System user roles:

1. Administrator – configures system settings, re-trains models, adds new dictionaries, and
monitors the safety and relevance of data. Can perform complete reconfiguration of
classification and processing modules.

2. User – interacts through the Streamlit web interface, chooses a language, topic, or position
to view analytics. Can compare results by different parameters and export graphs.

Interconnections of components:

1. Data collection modules (data_loader.py) read messages from CSV sources and form a
primary database.

2. Preprocessing (clean_text.py, langdetect, preprocessing.py) normalises and cleans up the
text.

3. The embedding/clustering modules vectorise the texts and store the coordinates for PCA/t-
SNE.

4. The classification/ modules determine the political position and tone.
5. Visualisation modules form graphs, word clouds, and interactive comparisons.
6. The Streamlit interface provides user interaction with the results and allows you to save

them as reports.

Information flows:

1. Collection flow – data comes from Reddit or saved CSV files → data/raw/.
2. Processing flow – data is cleaned, normalised, and distributed by languages →

data/processed/.
3. Clustering flow – embeddings are created, topics are grouped → data/clusters/.
4. Analysis flow – texts are classified by stance and tonality → data/results/.
5. Visualisation flow – the results are aggregated, metrics and graphs are generated →

Streamlit.

The system's architecture is implemented on a modular principle, with a clear division into
functional components corresponding to the main stages of data processing and analysis, from
collection to visualisation of results. Each module can function autonomously, which allows you to
scale the system when changing input data, expanding languages or sources, or introducing new
analytical approaches. Each module corresponds to a separate processing stage, making it easy to
scale the system, add new sources or languages, and deploy individual parts of the project
independently. The entire architecture is designed with a focus on reproducibility, transparency,
and modularity. Having separate directories for models, dictionaries, results, and raw data makes it
easy to debug and retrain individual components. To start the project, install the dependencies
listed in requirements.txt and run the Gradio interface using the Python command src/app.py.

The main user interactions with the system (scenarios):

1. View and filter visualisations.
2. Data upload and processing.
3. Running clustering and modelling.
4. Counting manipulative vocabulary.
5. Training or additional training of the model.
6. Updating dictionaries or parameters.

The sequence of the main stages of data processing:

1. Downloading dataset (CSV files) from Reddit (comments).
2. Text cleaning and normalisation.
3. Definition of the message language (langdetect).

4. Lemmatisation and noise removal
5. Vectorisation (embeddings) using the multilingual-e5-base (sentence-transformers) model.
6. Search for manipulative vocabulary.
7. Counting terms from the dictionary.
8. Clustering messages (e.g. HDBSCAN).
9. Classification of political position or tonality,
10. Heuristics/ML model.
11. Combining results.
12. Graphing and word cloud.
13. Output of results and visualisation in the Gradio interface.

It enables you to comprehend the system's logic, from data receipt to result display for the end
user. The following diagram describes the structure of our system's program classes. Each class has
its own responsibility (Fig. 1):

1. DataLoader – Responsible for reading raw data from CSV.
2. TextPreprocessor – processes text, including cleansing, lemmatisation, and normalisation.
3. Embedder – forms a vector representation of the text.
4. ClusterBuilder – performs thematic clustering.
5. Classifier – determines the political position (pro_Ukraine, pro_russia, neutral).
6. Lexicon Analyser – analyses the presence of manipulative/propagandistic vocabulary.
7. Visualizer – generates output in the form of graphs, tables, and word clouds.
8. GradioInterface is an interactive interface for user interaction.
9. OpinionAnalysisSystem is the main class that coordinates the work of other components.

It allows you to better structure the code logic and relationships between objects.

Figure 1: Class Diagram.

The component diagram displays the architectural structure of the system at the component
level (Fig. 2):

1. Gradio is a client interface.
2. Core System – implemented in the form of Python modules.
3. The propaganda dictionary is a separate component that is used to detect manipulative

messages.
4. CSV source (Reddit Dataset) – input.
5. Data Storage – raw/processed/clusters/results.
6. Visualisation Module – creating graphs, cluster diagrams, and word clouds.

Each component communicates through a specific interface/function, ensuring the scalability
and maintainability of the system.

Figure 2: Component Diagram.

A systematic approach to building an information system for analysing public opinion in Reddit
social networks has been implemented, with a focus on classifying political positions (stance
detection), analysing discussion topics, and identifying manipulative vocabulary. We have gone
through a complete cycle:

1. From collecting and preprocessing multilingual comments.
2. To vector representation and thematic clustering.
3. To the classification of political orientation.
4. And building analytical visualisations through the Gradio interface.

The developed system supports multilingual analysis, is tailored to the specific needs of the
Ukrainian context, and features a modular architecture that provides flexibility and the potential
for further scalability. The results of the work demonstrate that even within a limited dataset, it is
possible to build a system capable of effectively analysing political narratives, which is of practical
value in the context of media literacy, combating disinformation, and researching the impact of
information in wartime.

5. Selection of methods and means of the product being developed

When creating a system for analysing public opinion in social networks, it was necessary to
carefully select the tools and methods for each stage of data processing. Particular attention was
paid to the specifics of the Ukrainian language and available computing resources.

Python became the primary programming language, and this decision had sound reasoning.
According to the TIOBE Index for June 2025, Python ranks first among programming languages,
with a score of 25.87%, which is particularly notable in the field of data analysis. When compared to
alternatives, Python showed the best balance of characteristics. If R is traditionally strong in
statistical analysis, but loses in development speed, and Java demonstrates high performance, but
requires significantly more time to write code, then Python combines development speed with
sufficient functionality. The main advantage of Python turned out to be its ecosystem. The Pandas
library for working with data, scikit-learn for machine learning, Transformers for working with
modern language models, spaCy for text processing, and Gradio for creating interfaces have greatly
simplified development. The interpreted nature of the language allowed for quick testing of ideas
and making changes without a lengthy compilation process. This choice proved especially
successful for working with Ukrainian text, as many specialised libraries offer robust support for
multilingualism and the ability to fine-tune models for specific tasks.

Reddit was chosen as a source of information for analysing public opinion. It is a platform with
active discussions and a substantial amount of Ukrainian-language content, making it an ideal fit
for our task. However, there were problems with the official Reddit API. Firstly, there are stringent
restrictions on the number of requests – you can only get a limited number of posts in a specific

time. Secondly, a complex authentication procedure that requires registering an application and
obtaining special keys. And finally, the data comes in the form of bulky JSON structures that
require additional processing. Therefore, we decided to go the other way – to use ready-made CSV
files with Reddit data. Such files can be obtained through third-party services or pre-assembled
independently. This approach made it possible to focus on the main thing – qualitative data
analysis, and not the fight against technical limitations. The CSV files collected all the necessary
information: the text of the comment itself, the language of the message, the name of the subreddit,
the publication time, and the author's unique identifier. It is pretty enough for a thorough analysis
of sentiment. Comparing the two approaches, CSV files emerge as the more straightforward and
more accessible option. There are no restrictions on requests, no need to set up complex
authentication, and full access to historical data is available. The only drawback is that the data is
not updated in real time, but this is not critical for our analysis.

Text processing before analysis is probably the most crucial stage of work. The accuracy of all
further conclusions depends on how well we clean and prepare the data. And with Ukrainian texts
in social networks, this is especially challenging – there are slang terms, abbreviations, surzhyk
with Russian, and various types of jargon. We had to collect a whole arsenal of tools. To determine
the language, we used the langdetect library, which recognises Ukrainian well among other
languages. With the help of NLTK and ordinary regular expressions, links, user mentions, emojis
and other "digital garbage" were removed. However, the most challenging aspect was the
morphology of the Ukrainian language. NLTK works well with English, but its capabilities are
limited for Ukrainian. spaCy is fast, but also not very friendly with our language. I had to look for a
specialised solution. The use of Stanza was considered because it provides a complete
morphological treatment of the Ukrainian language. However, due to the complexity of
integration, most of the processing is implemented manually or using its own dictionaries and
regular expressions.

A particular challenge in analysing texts from social networks is the presence of spelling
mistakes, informal word forms, and slang. Therefore, a separate subsystem has been implemented
to correct and normalise such cases.

At the planning stage, there was a choice: use large ready-made dictionaries or develop your
own approach. Many text analysis systems rely on massive lexical databases – dictionaries with
millions of words, corpora of texts, and complex error correction algorithms. But we went the
other way. We decided to create a minimalist text cleaning system that does not require external
dictionaries. First, large dictionaries occupy a significant amount of space and slow down
processes. Secondly, they often fail to take into account the specifics of social networks, such as
new slang, abbreviations, and meme vocabulary. Third, it is more critical for our sentiment analysis
task to preserve the overall context than to correct every word ideally.

Instead of complex spelling correction algorithms, they focused on the effective removal of
"noise" – everything that interferes with the analysis of the content. We have developed a system
for step-by-step text cleaning. First, we remove technical junk: URLs that convey nothing about the
author's mood; mentions of users of the form @username that are just links; numbers and
numbers, if they do not carry an emotional load; and excessive punctuation, which can confuse the
analysis. Then we work with the case – bring the entire text to lowercase. It avoids a situation
where the words "GOOD" and "OK" are perceived by the system as different. At the same time, we
remove unnecessary spaces and emojis – although emojis can carry an emotional load, their
analysis requires separate algorithms. Separately, we process stop words – prepositions,
conjunctions, and pronouns, which occur in each sentence, but do not affect the mood. So far, we
are using the standard English list, but we plan to add a Ukrainian version.

One of the most important steps is to determine the language of the text. In the Ukrainian
segment of Reddit, posts in Russian, English, and Polish are often encountered. For our analysis of
public opinion in Ukraine, such content may be irrelevant or even noise in the results. Therefore, at
the very beginning of the processing, each text is run through langdetect. This library accurately

determines the language, even for short messages. If the text is not in Ukrainian, we immediately
discard it, without wasting time on further processing. It significantly speeds up the system.

When you process thousands of messages, every millisecond counts. Therefore, we compile all
regular expressions in advance using the re.compile function. It means that Python "understands"
the search pattern once and then applies it to each text. The sequence of processing also matters.
First, a quick language check – if the text does not fit, we immediately move on to the next one.
Then the fastest operations are to remove URLs and mentions. And only at the end more complex
transformations. The result of this approach is that the system can process a case of tens of
thousands of messages in a matter of minutes on a regular computer. At the same time, you do not
need to download and store large dictionaries in memory.

The simplicity of the architecture makes it easy to understand what is happening at every step.
If something doesn't work as expected, it's easy to identify and resolve the issue. There are no
"black boxes" in the form of complex linguistic algorithms. The speed of work remains high even
with an increase in the amount of data. The system does not rely on external resources –
dictionaries that require constant updates. Flexibility for expansion – if you need to add new types
of processing in the future, this can be done in stages, without rewriting the entire system from
scratch. Of course, this approach has its limitations. We do not correct typographical errors, do not
recognise complex grammatical constructions, and do not analyse syntax. However, for the task of
analysing moods, this is reasonably sufficient – the main thing is to preserve the general meaning
and emotional tone of the text.

The task is how to convert words into numbers that can be processed by machine learning.
After all, the computer does not understand what "good" or "bad" is – it works only with numbers.
Therefore, it is necessary to find a way to represent each text in the form of a vector of numbers so
that texts similar in content have identical numerical representations. We tested two radically
different approaches to this problem – the classical statistical method and modern neural networks.
Each has its own advantages and disadvantages.

We started with TF-IDF, which is an abbreviation for Term Frequency-Inverse Document
Frequency. It may not sound very easy, but the logic is actually elementary. Imagine that you are
analysing political commentary and want to understand which words are most important to
determine the author's position. TF-IDF works according to the principle: if a word is often found
in a particular document but rarely in the entire collection, then it is likely vital for that document.
For example, the word "president" can occur in many political texts, so its weight will be less.
However, some specific words that are characteristic of a particular political position will receive
higher weight. The advantages of TF-IDF are obvious: speed, ease of implementation, and clarity of
results. You can easily see which words the system considers most important for each class. No
powerful graphics cards or special computing resources are required. But there are also serious
drawbacks. TF-IDF does not understand the context at all. For him, the phrases "Ukraine defeated
Russia" and "Russia defeated Ukraine" are very similar, as they contain the exact keywords. He
does not take into account the order of words, does not understand synonyms, and fails to
recognise semantic connections. When we tested TF-IDF on our data, the results were, to say the
least, not impressive. He performed particularly poorly with short comments, where context is
critical, given the limited number of words to analyse. On social networks, most messages are brief.

Therefore, they switched to modern methods – contextual embeddings. It is a result of the
revolution in natural language processing that has occurred in recent years, thanks to the
development of neural networks of the Transformer type. The primary concept of contextual
embedding is to encode not individual words, but entire sentences, considering the surrounding
context. A neural network trained on massive corpora of texts "understands" semantics – it knows
that "good" and "excellent" are similar in meaning, what "not bad" is actually positive, that "Ukraine
won" and "Russia lost" convey similar information. For our project, we used SentenceTransformer
– a family of models specially configured to create vector representations of entire sentences. We
chose a multilingual model that supports the Ukrainian language. It is critically important because
the most popular models are primarily trained on English text. Each sentence is fed to the input of

a neural network that consists of hundreds of millions of parameters. At the output, we get a vector
of several hundred numbers that encode the meaning of the sentence. At the same time, sentences
with similar meaning will have similar vectors – they can be compared using cosine distance or
other metrics.

The difference between TF-IDF and contextual embedding is especially noticeable in examples
from Ukrainian politics. Let's take two comments: "Zelensky is leading the country well in difficult
times", "The president is not doing his job well." TF-IDF sees only the words: "Zelensky", "good",
"leads", "country" in the first and "president", "bad", "copes" in the second. For him, these are two
different texts with minimal word intersection. Contextual embedding recognises that "Zelensky"
and "president" in the Ukrainian context often refer to the same person. They hear the opposite
tone: "leads well" versus "does not do well". Such texts will receive vectors that will be far apart in
the vector space.

Working with the Ukrainian language added its own difficulties. Most of the best models are
trained on English text. Although multilingual models exist, their quality for Ukrainian may be
worse than for more "popular" languages. I had to experiment with different models and test their
behaviour on the Ukrainian text. It turned out that some models confuse Ukrainian with Russian or
Polish, especially when there are many borrowings in the text. But when a suitable model was
found, the result exceeded expectations. The system began to understand subtle differences in
political vocabulary, recognise sarcasm, and consider the context of Ukrainian realities.

Ultimately, it was decided not to abandon the TF-IDF entirely. Although contextual embedding
produces better quality, it is also much slower. For the initial selection and rapid analysis of large
datasets, TF-IDF remains useful. We created a hybrid system: first, TF-IDF helps to filter out clearly
irrelevant texts and make a rough classification. Contextual embeddings then provide subtle
analysis for the most critical messages. This approach enabled the achievement of the best of both
worlds: the speed of classical methods and the accuracy of modern neural networks. Additionally,
the system has become more stable; if complex models fail for any reason, you can always revert to
reliable yet straightforward methods.

Contextual embedding has proven to be useful not only for classifying political positions but
also for other applications. We also used them for clustering, which involves finding hidden groups
of users with similar views. When you have high-quality vector representations of texts, a variety
of machine learning algorithms can be applied: from simple classification to complex analysis of
social networks. Vector space allows not only to classify texts, but also to search for similar ones,
identify anomalies, and track changes in public opinion over time. It opens up vast opportunities
for further development of the system.

Several models from the scikit-learn library were used to classify the political position. The
main goal is to find a balance between learning speed, accuracy, and interpretation.

1. The Logistic Regression model has become the basis of our project. It is easy to implement,
provides good accuracy on small amounts of data, and is easy to interpret. It has been tested
with both TF-IDF and SentenceTransformer vectors.

2. K-Nearest Neighbours (KNN) — this approach allowed you to work better with data
clusters. Its advantage is intuitiveness and the ability to process new points by similarity to
known ones. It was used mainly with TF-IDF vectors.

3. The XGBClassifier model (an ensemble method — gradient boosting) yielded the highest
accuracy, but required more time to learn. Due to its good generalisation, XGBoost was
effective on contextual vectors.

We evaluated the quality of the classification according to the following metrics:

1. Accuracy – the overall accuracy of the classification.
2. Precision and Recall – for each class (pro-Ukraine, pro-Russia, neutral).
3. F1-score is the harmonic mean of Precision and Recall.

Technical metrics:

1. Confusion Matrix – to identify common classification errors.
2. Cosine Similarity – to check the quality of vectorisation between similar messages.
3. Loss curve graph – to monitor learning and avoid overlearning.
4. Execution time – to evaluate the effectiveness of each approach (TF-IDF vs transformers).

These metrics enabled a comprehensive assessment of the effectiveness of both classical models
and modern transformer approaches.

To visualise the results of the classification, the following libraries were used:

1. Matplotlib – for plotting basic graphs, including PCA visualisation of clusters.
2. Seaborn – for building Confusion Matrix heatmaps and distribution graphs.
3. Pandas – for building tables with analysis of results.

The main objective was to depict the spatial structure of clusters and the distribution of classes.
The libraries were chosen because of their flexibility and ease of integration with other parts of the
pipeline. Streamlit was not used in this project, as the focus was on offline analytics, clustering, and
graphical interpretation of results in Jupyter Notebook.

The project was developed in the Jupyter Notebook environment, utilising Visual Studio Code
as the editor. The combination of these tools made it possible to effectively:

1. Develop, run and test code in stages.
2. Visualise the results of the classification.
3. Save the model's logic and conclusions in a format convenient for presentation.

VS Code provided advanced autocompletion, debugging, project navigation, and GitHub
synchronisation. Jupyter has been the primary medium for experimentation and model testing. It
offered a transparent project structure, convenient scheduling, and a step-by-step recording of
results.

Various approaches to vectorisation (TF-IDF and transformers), classification (logistic
regression, XGBoost, KNN), and evaluation of results (F1 score, accuracy, confusion matrix) were
analysed. Selected Python platform tools, such as scikit-learn, transformers, matplotlib, and pandas,
made it possible to achieve high classification accuracy while maintaining the simplicity of
implementation and the ability to scale the system. The project demonstrated the potential of
automated analysis of public opinion in social networks, opening up opportunities for further use
of models in media monitoring, political analytics and digital sociology.

6. Software Development

The development of the Reddit comment sentiment analysis system required the integration of
natural language processing (NLP) methods, machine learning algorithms, and specialised
approaches to handling content that contains political and emotionally charged language, as well
as potential manifestations of manipulative rhetoric. A notable feature of Reddit comments is their
linguistic variability, encompassing multiple languages (English, Ukrainian, Russian), diverse
communication styles, the presence of spelling errors, abbreviations, Internet slang, and memetic
elements. As a result, the system had to be adapted to accommodate multilingual content, capable
of revealing both explicit and implicit user positions regarding the war in Ukraine. The architecture
of the project is built on the principles of modularity, where each stage of processing is
implemented in the form of separate modules:

1. Module for downloading and filtering Reddit comments (CSV, JSON).
2. Text preprocessing module (cleaning, language detection, normalisation).

3. Text vectorisation module (SentenceTransformer multilingual-e5-base).
4. Manual markup and machine learning module (Logistic Regression).
5. Clustering and visualisation module (KMeans, PCA).
6. User Experience Module (Gradio).

In the pre-processing phase, the removal of URLs, user mentions, punctuation marks, and
numbers, as well as the conversion of lowercase text, has been implemented. Comments were
filtered by language, allowing you to focus on English-language messages for initial markup and
model training.

Vectorisation is implemented based on the multilingual-e5-base contextual model, which
enables the generation of a deep vector representation for each comment, taking into account its
context, intonation, and semantic load. It significantly improves the classification quality compared
to TF-IDF.

The classification model was trained on a manually marked subset dataset with the positions:
pro-Ukraine, pro-Russia, and neutral. Logistic Regression was chosen as the classifier due to its
stability, ease of interpretation and good consistency with linearly represented embeddings.

Visualisation of results is carried out through PCA dimensionality reduction and clustering,
which allows groups to be tracked by key and position. To demonstrate the analysis, an interface
has been implemented on Gradio, which allows you to enter a comment, receive predictions, and
view examples of classified comments.

Thus, the system encompasses the entire cycle of social content processing, from collection and
purification to vectorisation, classification, and interactive demonstration of the results of public
opinion analysis.

The software is implemented as a modular system with a clear division of responsibilities
between components. The architecture is built on the principle of a multi-level model, where each
layer performs separate data processing functions:

1. Level 1 — downloading and filtering data (English-language Reddit comments).
2. Level 2 — preprocessing of text (cleanup, lowercase, deletion of URLs, characters, etc.).
3. Level 3 — vectorisation (SentenceTransformer multilingual-e5-base).
4. Level 4 — training the classification model and saving the results.
5. Level 5 — clustering and visualisation (KMeans, PCA).
6. Level 6 — user interface (Gradio application for demonstration).

The project has the following structure:

1. data/ – saved files with Reddit comments and classification results, in particular, raw/
(initial CSV files with data) and processed/ (cleaned and marked up data);

2. models/ – stored classification models and vectorizers;
3. embeddings/ –.npy embedding files;
4. notebooks/ – Jupyter notebooks for EDA, clustering, model training;
5. src/ – main code: preprocessing.py – text cleaning functions; training.py – training code for

the logistic regression model; vectorization.py – work with multilingual-e5; clustering.py –
clustering, PCA imaging; interface.py is the implementation of the Gradio application.

The entire system is designed to be expandable for new platforms (such as Twitter and
YouTube) or adaptable to other languages and categories.

Creating a high-quality dataset for classifying the sentiment of Reddit comments about the war
in Ukraine required careful planning of each stage, from data collection to final markup. The focus
was on the relevance of the content, the purity of the language, and the accuracy of the annotation.

The source of the data was popular subreddits that covered the Ukrainian-Russian war,
international support, political leaders, and the social consequences of the conflict. The collection

was conducted via API or the export of available datasets, followed by saving the data in CSV
format. The collected comments underwent multi-stage filtering:

1. Removal of non-informative fields and empty comments.
2. Detection of the language of the comment (English, Ukrainian, Russian).
3. Automatic translation of Ukrainian and Russian comments into English (for unification of

vectorisation).
4. Cleaning the text of HTML artefacts, URLs, symbols, and mentions.

The main feature of the markup was the integration of the cluster approach. Initially, each
comment was vectorised using the multilingual-e5-base transformer model, which creates
semantically rich representations of sentences in a multilingual space. Next, K-Means clustering
was used. After clustering, the most representative examples of each cluster were manually
analysed to identify the prevailing political position. Based on this, each cluster was assigned one
of the following labels: +1 (pro-Ukraine), 0 (neutral), or −1 (pro-Russia). Thus, it was automatically
distributed to all comments in the corresponding cluster. It made it possible to achieve a
compromise between speed and quality, as well as to reduce the influence of the human factor
when marking up large amounts of data. Manual verification of clusters ensured the correctness of
the results and allowed for the identification of cases of semantic noise or ambiguity.

The text preprocessing module is a critical component of the entire system, since the quality of
further analysis directly depends on the purity of the input data. Reddit comments contain a
significant amount of "noise": HTML tags from formatting, URL links, special characters, redundant
spaces, and various artefacts that can negatively impact the accuracy of NLP models. The
advantages of the developed approach include the preservation of semantics, processing of
multilingual content, and optimisation of performance. Unlike aggressive cleanup, which can
remove important information, our approach preserves key elements of the text by replacing the
URL with a [URL] marker, allowing the model to understand that a link was present in the text.
Unicode normalisation ensures the correct processing of texts from various language systems,
including Cyrillic, Latin, and other alphabets. Regular expression compilation and batch processing
significantly enhance the speed of processing large datasets.

import re
def clean_text(text):
 text = re.sub(r'http\S+', '', text)
 text = re.sub(r'<.*?>', '', text)
 text = re.sub(r'[^\w\s]', '', text)
 return text.lower().strip()

One of the biggest challenges when analysing social media content is multilingualism. Reddit
communities comprise users from all over the world, who naturally write in their native languages.
Direct analysis of such multilingual content results in data fragmentation and a decline in
classification quality. The key advantages of the translation system are intelligent caching,
contextual language definition, error handling and fallback mechanisms, and optimisation of API
calls. An LRU cache with a capacity of 10,000 elements prevents repeated translations of identical
texts, thereby significantly increasing processing speed and reducing the load on the translator's
API. The system utilises not only automatic language detection but also heuristic rules to
distinguish between similar languages (e.g., Ukrainian and Russian), which is especially important
in the context of political discussions. In the event of an unsuccessful translation, the system
returns the original text, ensuring the stability of work even in the event of technical problems
with translation services. The system incorporates latency and batch processing to comply with
rate-limiting limits for external services.

from langdetect import detect
from deep_translator import GoogleTranslator
def translate_comment(comment):
 lang = detect(comment)
 if lang != 'en':
 return GoogleTranslator(source=lang, target='en').translate(comment)
 return comment

Text vectorisation is a key step in converting unstructured text content into numerical
representations that machine learning algorithms can efficiently process. Unlike traditional
methods such as TF-IDF or Bag-of-Words, modern transformer models create multidimensional
vector representations that capture deep semantic connections between words and phrases. The
intfloat/multilingual-e5-base model was chosen for vectorisation due to its multilingual support,
optimal balance of quality and speed, and contextual understanding. The model is trained on texts
from 100+ languages, making it ideal for processing multilingual Reddit content. 768-dimensional
vectors provide sufficient expressiveness for complex semantic problems while remaining
computationally efficient. Unlike static word embeddings, the model considers the context of each
word within a sentence. Advantages of the developed vectorisation system include GPU
acceleration, memory optimisation, caching of results, and flexibility in analysis – automatic
detection and use of CUDA to speed up computing, with fallback to CPU for non-GPU systems.
The use of FP16 on the GPU and batch processing allows you to efficiently process large datasets
even on limited resources. The system of saving and loading vectors eliminates the need for
repeated calculations on already processed texts. Additional methods for calculating similarity,
searching for similar texts, and reducing dimensionality expand the analytical capabilities of the
system.

from sentence_transformers import SentenceTransformer
model = SentenceTransformer("intfloat/multilingual-e5-base")
embeddings = model.encode(texts, show_progress_bar=True)

Classifying political sentiments in social networks is a much more difficult task compared to
traditional sentiment analysis. Political commentary often contains:

1. Complex irony and sarcasm: "Thank you, Putin, for 'peace' in Ukraine".
2. Cultural references, i.e. references to historical events that require contextual

understanding.
3. Euphemisms and code words: "Special military operation" instead of "war".
4. Multi-layered meanings, in particular, comments, which can have different interpretations

depending on the context.

The key advantages of the classification system are: an ensemble approach, intelligent
balancing, complex validation, and analysis of interpretation. Combining different algorithms
(logistic regression, Random Forest, SVM) allows you to compensate for the weaknesses of
individual models and increase overall accuracy. The system utilises SMOTE to generate synthetic
examples of minority classes and undersampling to reduce the prevalence of majoritarian courses,
thereby ensuring an optimal balance. Cross-validation, along with various metrics (F1-macro,
Matthews correlation coefficient, Cohen's kappa), provides an objective assessment of the model's
quality. The Feature Importance Analysis System enables you to understand which words and
phrases have the most significant impact on classification, which is crucial for comprehending
political sentiment.

vfrom sklearn.linear_model import LogisticRegression
clf = LogisticRegression(max_iter=1000, class_weight='balanced')
clf.fit(X_train, y_train)

Cluster analysis presents a unique opportunity to look beyond a simple three-part classification
(pro-Ukrainian, pro-Russian, neutral) and identify more nuanced semantic groups in political
discussions. Imagine a vast space of thoughts, where each comment is a point with coordinates that
reflect its semantic meaning. Clustering allows you to find natural "clusters" of similar thoughts
that can reveal hidden trends that are not noticeable in a superficial analysis. For example, among
the "neutral" comments, individual clusters can stand out: one contains truly balanced opinions on
a peaceful settlement, another – veiled scepticism about the Ukrainian position, and the third –
disappointment with the duration of the conflict. These nuances are critical to understanding the
actual dynamics of public opinion.

Working with 768-dimensional vectors presents unique challenges. Imagine that each comment
is represented by a point in space with 768 axes – this is absolutely impossible to visualise with the
human eye. It is where the "dimensionality curse" arises: in high-dimensional spaces, traditional
distance measurement methods become less reliable, and visualisation becomes impossible.
Principal component analysis (PCA) solves this problem elegantly: it finds the most critical
"directions" in the data – those axes along which the comments differ most from each other. The
first two principal components typically capture the most significant differences between
commentaries, enabling a two-dimensional "map" of political sentiment.

Clustering reveals psychological patterns in political discussions. Unexpected groups are often
found: "passive supporters" (support one side without aggressive rhetoric), "radical critics" (sharply
condemn opponents), "analysts" (attempt to understand the complexity of the situation), and
"emotional commentators" (react to specific news). Exciting are the "transitional" clusters –
comments that are on the border between the main categories. These texts often reflect the internal
contradictions of the authors, their doubts or the evolution of views. Analysis of such clusters can
reveal how people adjust their positions in response to new events. The creation of two-
dimensional maps of political sentiments is of great practical importance. They enable the
detection of polarisation, tracking the evolution of thoughts, and identifying influential topics. If
the clusters are located far from each other, this indicates a high polarisation of opinions. If they
overlap, it means greater tolerance for different views. By comparing maps for various periods, you
can observe how moods shift in response to events. For example, after significant hostilities,
clusters may become more polarised. The analysis of cluster centres shows which themes or
arguments are most characteristic of each group. It helps to see how semantically different the
comment groups are.

from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
pca = PCA(n_components=2)
X_pca = pca.fit_transform(embeddings)
kmeans = KMeans(n_clusters=3)
labels = kmeans.fit_predict(X_pca)

Visualising political data is not just about creating visually appealing graphs. It is the art of
telling a story that is hidden in numbers. Each visualisation should answer a specific question:
"Have moods changed over the past month?" "What words are most often used by supporters of
different parties?" "How polarised is society?" A particular challenge lies in striking a balance
between scientific accuracy and accessibility to a broad audience. Researchers need detailed
statistical graphs, journalists need vivid infographics, and politicians need simple charts for quick
decision-making.

People perceive political visualisations through the prism of their own beliefs. It creates unique
challenges, including cognitive biases, the emotional impact of colours, and information overload.
A person who supports one side may interpret the same diagram differently from a supporter of
the opposite view. Therefore, visualisations should be as objective and understandable as possible.
The use of red and blue colours in political visualisations is not neutral – it evokes associations
with different political forces. The system utilises neutral colours to minimise subconscious
influences. Political data is highly multidimensional, but the human brain can efficiently process a
limited amount of information at a time. Effective visualisation shows precisely what you need to
know, nothing more and nothing less.

Innovative approaches to mood visualisation: word clouds as psychological portraits, heat maps
of manipulative vocabulary, and dynamic visualisations of changes over time. Traditional word
clouds show the frequency of word use, but our system creates "psychological portraits" of each
group. Word size reflects not only frequency, but also emotional weight and uniqueness for a
particular group. The system generates unique heat maps that display the frequency with which
different groups employ emotionally charged words. It helps to identify propaganda techniques
and manipulative techniques. Static graphs only show a snapshot of the situation. The system
generates animated visualisations that display the evolution of sentiment over time, identifying
trends and reactions to specific events.

Visualising political data carries a huge responsibility. Misrepresented information can affect
public sentiment, political decisions, and even international relations. The system ensures that
visualisations do not reinforce negative stereotypes about any groups or nations. All graphs are
created with the aim of presenting different perspectives fairly, without bias in favour of either
side. Each visualisation is accompanied by an explanation of its context and the limitations of
interpretation. These visualisations help you understand the distribution of sentiments and key
themes in the comments.

import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
def plot_sentiment_distribution(labels):
 sns.countplot(x=labels)
 plt.title("Sentiment Distribution")
 plt.show()
def plot_wordcloud(texts):
 text = ' '.join(texts)
 wc = WordCloud(width=800, height=400).generate(text)
 plt.imshow(wc)
 plt.axis("off")
 plt.title("WordCloud")
 plt.show()

Creating an intuitive interface for analysing political sentiments is a matter of democratising
knowledge and information. Powerful machine learning and NLP algorithms have traditionally
only been available to professionals with technical education. Our system breaks down this barrier
by enabling journalists, researchers, activists, and ordinary citizens to conduct their own research
on public opinion.

Imagine a journalist who wants to understand the public's reaction to a new political statement.
Instead of spending weeks learning programming and machine learning, it can simply upload
comments to the system and get a detailed analysis in minutes. Trust in an AI system does not
arise instantly. Users, especially in the context of political analysis, are naturally sceptical of "black
boxes" that give conclusions without explanation. Therefore, the interface is designed with the
principle of maximum transparency, providing explanations of each step, visualising confidence,
and allowing for verification. The system displays the entire analysis process to the user, from text

cleaning to final classification. It enables you to understand how the system arrived at its
conclusions. A confidence indicator accompanies each forecast. If the system is uncertain about the
classification of a particular comment, it reports it honestly. Users can view examples of comments
from each category and evaluate the correctness of the classification for themselves.

The system is designed taking into account the needs of different categories of users:

1. Scientists and researchers require detailed statistics, the ability to export data, and the
flexibility to configure analysis parameters. Advanced features and APIs are available for
them to integrate with their own research.

2. Journalists appreciate speed and clarity. Quick visualisations and ready-made infographics
are optimised for use in publications.

3. Public activists want to understand the mood of their communities. The system provides in-
depth but straightforward analytical tools for monitoring public reactions.

4. Politicians and government officials require prompt and accurate assessments of public
opinion to inform their decisions. Summary reports and trends are available for them.

Ethical principles of interface development: avoidance of manipulation, privacy protection,
openness and transparency. The interface is designed to avoid imposing specific conclusions on
users. All results are presented neutrally, with an explanation of limitations and possible
alternative interpretations. The system does not store users' personal data and does not track their
activity. All analyses are performed locally or with minimal data retention. Algorithms and
analysis methods are described openly, allowing users to understand the system's principles and its
limitations. The interface is designed to be user-friendly, even for those without technical
experience, making it convenient for real-time demonstrations and analysis.

import gradio as gr
def analyze_sentiment(comment):
 # preprocessing → translation → vectorization → prediction
 return prediction
gr. Interface(fn=analyze_sentiment, inputs="text", outputs="label").launch()

Modern social networks generate colossal amounts of content. On Reddit alone, millions of
comments are published every day, and even a small fraction of them related to a specific topic can
be tens of thousands of texts. Processing such large amounts of data poses unique technical
challenges, including memory issues, processing times, and network limitations. The 768-
dimensional vectors for each comment quickly fill up the RAM. For example, storing 100,000
comments requires approximately 300 MB to store vectors, not counting the original text and
intermediate calculations. Vectorisation of text using transformer models is a computationally
expensive operation. On a conventional processor, processing 10,000 comments can take several
hours. Translating comments through external APIs can create delays and impose restrictions on
the number of requests per minute.

The system uses a multi-level approach to batch processing. At the first level, comments are
grouped by language to optimise translation. At the second level, optimally sized batches are
created for vectorisation, taking into account the available memory and computing resources. This
approach enables you to process large datasets in parts, without overloading the system, while
maintaining efficiency through vectorised operations. Traditional caching stores results for
identical inputs. Our system goes further – it uses semantic caching. If the new comment is very
similar to the one already processed (based on the cosine similarity of the vectors), the system can
use the cached result instead of reprocessing. It is especially effective for comments that are slight
variations of each other – a typical situation on social media, where people often rephrase similar
thoughts. The system automatically adapts to the available computing resources. On powerful

servers with GPUs, it uses parallel processing and acceleration. On regular computers, it optimises
the size of the batches and uses more conservative settings to avoid memory overflow.

The system's modular architecture enables easy distribution of the load across multiple servers.
Different modules (translation, vectorisation, and classification) can work on separate machines,
communicating via an API. It is vital for real-time monitoring, where it is necessary to handle a
constant stream of new comments without delay. The system is designed to account for possible
failures. Each processing stage can be restarted from the last successful point. Intermediate results
are saved to disk, which allows you to resume work after unforeseen outages. Particular attention
is paid to error handling in external services (translation API, model loading). The system has
fallback mechanisms for all critical components.

The development of an effective system for analysing political sentiments necessitated in-depth
empirical research. We conducted a series of experiments to optimise each component of the
system and validate its performance in real-world conditions. The first stage involved comparing
different approaches to text vectorisation. We tested traditional methods, Word2Vec and GloVe, as
well as Transformer models. The n-gram TF-IDF showed basic efficacy but failed to capture
complex semantic relationships in political commentary. The handling of sarcasm and irony was
especially problematic. The Word2Vec and GloVe methods performed better with semantic
relationships, but had limitations in handling multilingual content and contextual understanding.
BERT, RoBERTa, and SentenceTransformers performed significantly better, particularly in
understanding context and handling informal social media language. An interesting finding was
that multilingual models (such as multilingual-e5-base) performed better, even on English-language
texts, compared to monolingual models. It is due to their greater resistance to noise and language
variability.

One of the most controversial aspects of our approach is the automatic translation of all
comments into English. Critics argued that translation could distort semantics and reduce
classification accuracy. To test this hypothesis, we conducted a controlled experiment with 5,000
comments in Ukrainian, Russian, German, and French, which were independently labelled by
native speakers. The results were unexpected: the accuracy of classifying the translated texts was
only 3–5% lower than that of the original texts, but the overall efficiency of the system increased
significantly due to the ability to use a single model for all languages. Moreover, some subtle
semantic shades that were lost during translation were compensated for by a greater consistency of
classification and the ability to identify interlingual patterns in political rhetoric.

We tested a wide range of machine learning algorithms. Logistic regression showed the best
balance between accuracy and interpretation. The coefficients of the model allow you to
understand which words have the most significant influence on the classification. Gradient
Boosting (XGBoost, LightGBM) exhibited higher accuracy on the test sample but was prone to
overtraining and less interpretable. Deep models demonstrated the highest accuracy, but required
significantly more computational resources and were largely uninterpretable. Ensemble methods:
Combining several algorithms (Ensemble methods) yielded the best result – high accuracy with an
acceptable level of interpretation.

Creating a high-quality dataset for training was one of the most challenging tasks. We collected
over 50,000 comments from various political subreddits, including r/worldnews, r/europe,
r/UkrainianConflict, and others. The marking process included several stages:

1. Automatic pre-filtering to remove spam and irrelevant comments.
2. Markup by a team of 10 annotators, including speakers of different languages.
3. Conflict resolution through voting and discussion.
4. Validation by a separate group of experts in political science.

The inter-notation coherence (Cohen's kappa) was 0.72, which is considered a good result for
such a subjective problem as the classification of political sentiments.

It was crucial to test how the system works with comments from different time periods. Political
sentiment can change rapidly, and a model trained on data from a single period may not perform
well on more recent data. We tested the system on comments from different stages of the conflict:

1. Before the start of the full-scale invasion (2021-2022).
2. The first months of the war (March-May 2022).
3. Later stages (summer-autumn 2022).

A detailed analysis of the errors revealed several characteristic patterns:

1. Sarcasm and irony: "Thank you, Putin, for peace in Europe" – such comments were often
classified as pro-Russian due to their superficial content, ignoring the ironic context.

2. Cultural references, i.e. references to historical events or memes, were understandable to
native speakers but were lost during automatic processing.

3. Contextual dependence, in particular, refers to comments that require knowledge of
previous messages in the thread for proper understanding.

4. Ambivalent statements: "Both sides have the right to exist, but..." – such comments balance
between different positions.

To solve the identified problems, we have developed several strategies:

1. The sarcasm detector is an additional classifier for detecting ironic comments with
subsequent inversion of their classification.

2. Contextual analysis – taking into account previous comments in the thread for a better
understanding of the context.

3. Ensemble methods – combining several models to reduce the impact of specific errors of
each.

Each comment in the dataset has the following features:

1. Primary text.
2. Language.
3. Translation into English (if required).
4. Cleaned text.
5. Vector representation (768-d).
6. Class label (pro-Ukraine, pro-Russia, neutral).

To implement the model architecture and represent features, logistic regression with one-hot
class vectors and SentenceTransformer vectors (768 dimensions) is used. For visualisations, PCA is
used up to 2 dimensions – clustering via KMeans.

Models and data are stored in the models/ (joblib), embeddings/ (.npy) and data/ (.csv)
directories. Reuse is done without the need for retraining. The system is deployed via interface.py
and gradio.launch().

The developed system for analysing Reddit comments on the war in Ukraine integrates
multilingual processing, translation, vectorisation, classification, clustering, and an interface in
Gradio. It is adapted to the informal style of social networks, includes visualisations and allows you
to effectively explore political sentiments online. Examples of classified comments:

1. Pro-Ukraine: "Glory to Ukraine! They are fighting for democracy and freedom."; "Ukrainians
have shown more courage than the whole of NATO combined.".

2. Neutral: "I hope there will be peace soon. This conflict has affected everyone."; "Both sides
have lost too much already.".

3. Pro-Russia: "Russia had to respond to NATO's provocation."; "Crimea was always part of
Russia, just correcting a mistake.".

These examples are automatically categorised using logistic regression trained on manually
labelled data from Reddit.

7. Implementation of a control example

The purpose of the control case is to demonstrate the effectiveness of the automated analysis
system of Reddit comments on the war in Ukraine. The system allows (Fig. 3–10):

1. Classify the political position of the commentary.
2. Identify potentially manipulative vocabulary.
3. Translate non-English comments.
4. Display the result in a user-friendly interface with visualisations and explanations.

A representative sample of 7,000 Reddit comments, collected from communities related to the
war in Ukraine, geopolitics, NATO, Russia, and the Ukrainian army, was used to conduct the
control case. The comments spanned several languages (English, Ukrainian, and Russian) and
various styles of discourse (official, sarcastic, memetic, and aggressive). Before classification, the
following was performed:

1. Automatic language detection.
2. Translating non-English comments into English (using the Google Translate API).
3. Pre-processing of the text (cleaning, normalisation, lemmatisation).
4. Formation of a vector representation of comments via SentenceTransformer (multilingual-

e5-base).

Figure 3: Comment clustering.

Figure 4: Frequency Vocabulary in Neutral and Negative English-Language Comments.

Figure 5: Average number of emotional words per English comment.

Figure 6: Distribution of keys of English-language commentaries depending on time (by dates).

Figure 7: Most Frequent Words in Positive Comments (TF-IDF).

Figure 8: Most Common Words in Manipulative Comments.

Figure 9: The most common words against the results of Russia's politics and war.

Figure 10: The number of manipulations by type, where generalisation and polarisation,
legitimisation of actions, discrediting, distortion of facts, propaganda vocabulary, emotional
manipulation and use of labels are left to the right.

With all these analyses and many others, a model has been trained to identify the type of
manipulation and the type of political view. The Gradio interface allows you to enter a comment
and get:

1. Political position: Pro-Ukraine, Pro-Russia, Neutral.
2. Translation (if the comment is not in English).
3. Words that signal manipulation.
4. Types of manipulation, if detected (emotional, propagandistic, etc.).

The entire text goes through the following stages:

1. Cleanup – removal of URLs, tags, punctuation.
2. Vectorisation – conversion of input text to TF-IDF.
3. Classification – the LogisticRegression or SVC model betrays a political position.
4. Detection of manipulations – keywords from a pre-created dictionary.
5. Visualisation of the result – Markdown stylisation with emojis.

The input field is a text form (4 lines) for entering a comment (Fig. 11). Output result:

1. Political position, for example, the Pro-Ukraine classification.
2. Translation (if any): "Glory to Ukraine! Putin is a war criminal.".
3. Types of manipulation: ["emotional manipulation", "use of labels"].
4. Tags: ["glory", "war criminal"].

Figure 11: Example of use for an English-language commentary and an example of use for a
Ukrainian-language commentary.

8. Program Execution Statistics

As part of our project, we have collected more than 6,000 Reddit comments. Of these:

1. 5453 had a classification of neutral_or_third_party.
2. 297 – pro_ukraine.
3. 250 – pro_russia.

To prepare the dataset, the text was cleaned, noise removal was performed, and non-English
comments were translated into English. Afterwards, the texts were vectorised using the
SentenceTransformer model (multilingual-e5-base). To separate the sample, the following are used:

train_test_split(X, y, test_size=0.2, random_state=42, stratify=y_encoded)
Model is LogisticRegression(max_iter=1000, class_weight="balanced"). Metrics show in Fig. 12:

1. Neutral: precision = 0.80, recall = 0.92, f1-score = 0.86.
2. Pro-Ukraine: precision = 0.83, recall = 0.62, f1-score = 0.71.
3. Pro-Russia: The model exhibits very low recall and precision, as it fails to capture patterns

due to the limited number of examples.

Figure 12: Metrics.

The model shows a strong classification for neutral, a medium classification for pro_Ukraine,
and a weak classification for pro_Russia. It actually suggests that a small percentage of people hold
a pro-Russian stance. The problem of class imbalance is a key issue. Comments are grouped by
vector proximity (Fig. 13). English speakers form a dense cluster. Other languages are dispersed. It
is because the platform is still more popular in English-speaking countries. Additionally, people
sometimes write posts in English so that they are understandable to the public. Distribution of the
envisaged political positions (Fig. 14):

1. neutral_or_third_party: 5453.
2. pro_ukraine: 297.
3. pro_russia: 250.

Reddit is a platform dominated by neutral or moderate discourse. Often, users discuss the
conflict but do not take a clear side. It may be due to Reddit's predominantly English-speaking
audience, which tends to be more of an observer than an active participant in events. In addition,
many users express analytical, satirical or ironic views, which are difficult to attribute to a clear
position. Tonality distribution among the types of manipulations (Fig. 15–16):

1. The use of labels is most associated with negative tonality (≈60%).
2. Emotional manipulation often occurs in neutral and positive comments.
3. Propaganda vocabulary is in pro-Ukrainian posts.

Figure 13: PCA visualisation of the comment vector space by languages (number of languages in
comments).

Figure 14: Foresight.

Figure 15: Distribution of tonality among types of manipulative vocabulary, where from left to
right the use of labels, discretisation, emotional manipulation, legitimisation of actions, propaganda
vocabulary, distortion of facts, generalisation and polarisation.

Figure 16: Share of types of manipulation in each group of comments on political position, where
from left to right the use of labels, discretisation, emotional manipulation, legitimisation of actions,
propaganda vocabulary, distortion of facts, generalisation and polarisation.

The type of manipulation often correlates with the political position. Emotional and propaganda
language is used to mobilise or strengthen support, while labels and discrediting are employed
against the enemy. It suggests the possibility of building a hybrid classification model that
combines political position and type of manipulation. In particular, manipulation in the form of
"labelling" (for example, "terrorists", "aggressors") is a marker of hostile or radical discourse.
Frequency analysis: keywords (Fig. 17–19):

1. Neutral: russian, Trump, kgb, brigade, office.
2. Pro-Ukraine: Ukraine, freedom, slava, support, hope.
3. Pro-Russia: russia, real, protect, territory, help.

Neutral comments often contain technical, informative vocabulary without vivid emotionality.
It explains the high accuracy of the model when classifying this class. Pro-Ukrainian texts tend to
use emotionally colored words of support and national elevation. Pro-Russians, on the other hand,
focus on justifying actions or defending, which indicates a defensive tone. All these features of
vocabulary can serve as good indicators for identifying latent positions in social discussions.
Bigrams (related words, Fig. 20):

1. Neutral: don't know, looks like, nuclear weapons, Middle East.
2. Pro-Ukraine: support Ukraine, war ukraine, slava ukraini.
3. Pro-Russia: russian soldiers, russian propaganda, black sea.

Figure 17: Word Cloud for Neutrals.

Figure 18: Word cloud for pro-Ukraine.

Figure 19: Word cloud for pro-russia.

Figure 20: The most common bigrams in neutral comments.

Bigrams enhance interpretation, providing additional semantics for contextual analysis. And in
fact, they show us that neutrality sometimes comes either from ignorance or simply from the
acceptance of other parties. The model of classifying Reddit comments by political position and
manipulative vocabulary showed stable results when using modern transformers (multilingual-e5-
base). A strong imbalance of classes was revealed, which was partially compensated for by the use
of class_weight=balanced. Surveillance:

1. Neutral rhetoric dominates – Reddit's audience is prone to rational analysis and factual
presentation.

2. Manipulative vocabulary does not always accompany extreme positions, but it is more
likely to occur in such contexts.

3. The use of specific vocabulary and phrases (bigrams) enables the identification of
ideological patterns even with a superficial analysis.

9. Conclusions

During the study, a multilingual information system was developed and tested to analyse the
political stance, tone, and presence of manipulative language in comments by Reddit users
regarding Russia's war against Ukraine. The implemented approach demonstrated that the
combination of modern NLP methods, multilingual models, and manual data markup provides high
efficiency in analysing complex online political discourse.

The results confirmed that Reddit is a significant source for international opinion research, as it
contains a large volume of emotionally charged, controversial, and politically oriented statements.
The multilingual E5-base model demonstrated the ability to adequately vectorise texts in three
languages, enabling a unified analysis across all language groups.

The system completed the following tasks:

1. Cleaning and normalisation of texts.
2. Determining the language and tone of comments.
3. Thematic clustering of discourse.
4. Heuristic and machine classification of political position (Pro-UA, Pro-RU, Neutral).
5. Identification of manipulative and propagandistic narratives through a dictionary approach.
6. Building visual analytical models (word clouds, PCA visualisations, frequency distributions).

The analysis revealed that a substantial portion of politically charged commentary employs
characteristic terminology associated with propaganda frames. Thematic clusters, meanwhile,
highlight the most contentious aspects of the war, including weapons, refugees, geopolitical
motives, humanitarian consequences, and manipulative narratives. The use of integrated linguistic
and statistical processing has proven effective in identifying hidden trends and understanding the
influence of information.

At the same time, the study revealed several limitations, including dependence on the quality of
manual markup, the difficulty in interpreting ironic and ambiguous statements, as well as the
limited availability of data in Ukrainian and Russian. Additionally, the system lacks mechanisms
for distinguishing between bot-generated comments and does not operate in real-time.

Overall, the results demonstrate that the developed system is an effective tool for analysing the
information space during wartime and can be used to monitor public sentiment, counter
disinformation, and identify political narratives on social networks. The findings are of practical
value to analysts, researchers, journalists, and institutions in the fields of education, government,
and information security.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] S. M. Mohammad, 9 - sentiment analysis: Detecting valence, emotions, and other affectual
states from text, Emotion Measurement (2016) 201–237. doi:10.1016/B978-0-08-100508-8.00009-
6.

[2] C. Hutto, E. Gilbert, VADER: A parsimonious rule-based model for sentiment analysis of social
media text, in: Proceedings of the Eighth International AAAI Conference on Weblogs and
Social Media, The AAAI Press, Palo Alto, CA, 2014, pp. 216–225.
doi:10.1609/icwsm.v8i1.14550.

[3] S. Bird, E. Klein, E. Loper, Natural Language Processing with Python: Analyzing Text with the
Natural Language Toolkit, O’Reilly Media, Inc. Sebastopol, CA, 2009.

[4] R. Baly, G. Karadzhov, A. Saleh, J. Glass, P. Nakov, Multi-task ordinal regression for jointly
predicting the trustworthiness and the leading political ideology of news media, arXiv preprint
arXiv:1904.00542 (2019). doi:10.48550/arXiv.1904.00542.

[5] Asaniczka, Public opinion Russia Ukraine war (kaggle dataset), 2025. URL:
https://www.kaggle.com/datasets/asaniczka/public-opinion-russia-ukraine-war-updated-daily

[6] Reddit, Reddit API documentation, 2025. URL: https://www.reddit.com/dev/api/
[7] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, R. Procter, Detection and resolution of rumours

in social media: A survey, ACM Computing Surveys 51 (2) (2018) 1–36. doi:10.1145/3161603.
[8] A. Hanselowski, A. PVS, B. Schiller, F. Caspelherr, D. Chaudhuri, C. M. Meyer, I. Gurevych, A

retrospective analysis of the fake news challenge stance detection task, arXiv preprint
arXiv:1806.05180 (2018). doi:10.48550/arXiv.1806.05180.

[9] A. Hanselowski, I. Gurevych, A framework for automated fact-checking for real-time
validation of emerging claims on the web, in: Proceedings of the Workshop on Prioritising
Online Content, NeurIPS Foundation, Long Beach, CA, 2017, pp. 1–3.

[10] A. Hanselowski, C. Stab, C. Schulz, Z. Li, I. Gurevych, A richly annotated corpus for different
tasks in automated fact-checking, arXiv preprint arXiv:1911.01214 (2019).
doi:10.48550/arXiv.1911.01214.

[11] S. Volkova, K. Shaffer, J. Y. Jang, N. Hodas, Separating facts from fiction: Linguistic models to
classify suspicious and trusted news posts on Twitter, in: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
Association for Computational Linguistics, Stroudsburg, PA, 2017, pp. 647–653.
doi:10.18653/v1/P17-2102.

[12] S. Volkova, E. Ayton, D. L. Arendt, Z. Huang, B. Hutchinson, Explaining multimodal deceptive
news prediction models, in: Proceedings of the Thirteenth International AAAI Conference on
Web and Social Media, AAAI Press, Palo Alto, CA, 2019, pp. 659–662.
doi:10.1609/icwsm.v13i01.3266.

[13] S. M. Mohammad, P. Sobhani, S. Kiritchenko, Stance and sentiment in tweets, TOIT 17 (3)
(2017) 1–23. doi:10.1145/3003433.

[14] A. Hanselowski, H. Zhang, Z. Li, D. Sorokin, B. Schiller, C. Schulz, I. Gurevych, UKP-athene:
Multi-sentence textual entailment for claim verification, arXiv preprint arXiv:1809.01479
(2018). doi:10.48550/arXiv.1809.01479.

[15] K. Shu, S. Wang, D. Lee, H. Liu, Mining disinformation and fake news: Concepts, methods, and
recent advancements, in K. Shu, S. Wang, D. Lee, H. Liu (Eds.), Disinformation,
Misinformation, and Fake News in Social Media: Emerging Research Challenges and
Opportunities, Springer, Cham, Switzerland, 2020, pp. 1–19. doi:10.1007/978-3-030-42699-6_1.

[16] N. Kotonya, F. Toni, Explainable automated fact-checking for public health claims, arXiv
preprint arXiv:2010.09926 (2020). doi:10.48550/arXiv.2010.09926.

[17] S. Volkova, M. Glenski, E. Ayton, E. Saldanha, J. Mendoza, D. Arendt, Z. Shaw, K. Cronk,
S. Smith, M. Greaves, Machine intelligence to detect, characterise, and defend against influence
operations in the information environment, Journal of Information Warfare 20 (2) (2021)
42–66.

https://doi.org/10.48550/arXiv.2010.09926.
https://doi.org/10.1007/978-3-030-42699-6_1.
https://doi.org/10.48550/arXiv.1809.01479.
https://doi.org/10.1145/3003433.
https://doi.org/10.1609/icwsm.v13i01.3266.
https://doi.org/10.18653/v1/P17-2102.
https://doi.org/10.48550/arXiv.1911.01214.
https://doi.org/10.48550/arXiv.1806.05180.
https://doi.org/10.1145/3161603.
https://www.reddit.com/dev/api/
https://www.kaggle.com/datasets/asaniczka/public-opinion-russia-ukraine-war-updated-daily
https://doi.org/10.48550/arXiv.1904.00542.
https://doi.org/10.1609/icwsm.v8i1.14550.
https://doi.org/10.1016/B978-0-08-100508-8.00009-6.
https://doi.org/10.1016/B978-0-08-100508-8.00009-6.

[18] W. Medhat, A. Hassan, H. Korashy, Sentiment analysis algorithms and applications: A survey,
Ain Shams Engineering Journal 5 (4) (2014) 1093–1113. doi:10.1016/j.asej.2014.04.011.

[19] J. Devlin, M. W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional
transformers for language understanding, in: Proceedings of the 2019 Conferance of the North
American Chapter of the ACL: Human Language Technologies, Association for Computational
Linguistics, Stroudsburg, PA, 2019, pp. 4171–4186. doi:10.18653/v1/N19-1423.

[20] S. Shen, J. Liu, L. Lin, Y. Huang, L. Zhang, C. Liu, Y. Feng, D. Wang, SsciBERT: A pre-trained
language model for social science texts, Scientometrics 128 (2023) 1241–1263.
doi:10.1007/s11192-022-04602-4.

[21] V. Vysotska, K. Przystupa, Y. Kulikov, S. Chyrun, Y. Ushenko, Z. Hu, D. Uhryn, Recognizing
fakes, propaganda and disinformation in Ukrainian content based on NLP and
machine-learning technology, IJCNIS 17 (1) (2025) 92–127. doi:10.5815/ijcnis.2025.01.08.

[22] V. Vysotska, Computer linguistic system architecture for Ukrainian language content
processing based on machine learning, in: Proceedings of the Modern Data Science
Technologies Workshop, MoDaST ’2024, CEUR Workshop Proceedings, Aachen, Germany,
2024, pp. 133–181.

[23] S. Mainych, A. Bulhakova, V. Vysotska, Cluster analysis of discussions change dynamics on
Twitter about war in Ukraine, in: Proceedings of the 7th International Conference on
Computational Linguistics and Intelligent Systems. Volume II: Computational Linguistics
Workshop, CoLInS ’2023, CEUR Workshop Proceedings, Aachen, Germany, 2023, pp. 490–530.

[24] V. Vysotska, Computer linguistic systems design and development features for Ukrainian
language content processing, in: Proceedings of the 8th International Conference on
Computational Linguistics and Intelligent Systems. Volume III: Intelligent Systems Workshop,
ISW-CoLInS ’2024, CEUR Workshop Proceedings, Aachen, Germany, 2024, pp. 229–271.

[25] V. Vysotska, M. Nazarkevych, S. Vladov, O. Lozynska, O. Markiv, R. Romanchuk, V. Danylyk,
Devising a method for detecting information threats in the Ukrainian cyber space based on
machine learning, Eastern-European Journal of Enterprise Technologies 132 (2) (2024).
doi:10.15587/1729-4061.2024.317456.

[26] V. Vysotska, A. Chupryna, N. Valenda, O. Konduforov, Evaluating the in-context learning
capabilities of large language models for misinformation detection for Ukrainian news, in:
Proceedings of the Computational Intelligence Application Workshop, CIAW ’2025, CEUR
Workshop Proceedings, Aachen, Germany, 2025, pp. 181–197.

[27] I. Peleshchak, V. Lytvyn, V. Vysotska, O. Khobor, M. Luchkevych, A lightweight cross-
attentive Tinybert with LoRA and Bi GRU for fake news detection, in: Proceedings of the
Computational Intelligence Application Workshop, CIAW ’2025, CEUR Workshop
Proceedings, Aachen, Germany, 2025, pp. 29–43.

[28] V. Vysotska, M. Nazarkevych, Development of an information technology for detecting the
sources and networks of disinformation dissemination in cyberspace based on machine
learning methods, Eastern-European Journal of Enterprise Technologies 4 (2025).
doi:10.15587/1729-4061.2025.335501.

[29] V. Vysotska, L. Chyrun, S. Chyrun, I. Holets, Information technology for identifying
disinformation sources and inauthentic chat users’ behaviours based on machine learning, in:
Proceedings of the Modern Data Science Technologies Workshop, MoDaST ’2024, CEUR
Workshop Proceedings, Aachen, Germany, 2024 pp. 427-465.

[30] V. Vysotska, P. Pukach, V. Lytvyn, D. Uhryn, Y. Ushenko, Z. Hu, Intelligent analysis of
Ukrainian-language tweets for public opinion research based on NLP methods and machine
learning technology, IJMECS 15 (3) (2023) 70–93. doi:10.5815/ijmecs.2023.03.06.

https://doi.org/10.5815/ijmecs.2023.03.06.
https://doi.org/10.15587/1729-4061.2025.335501.
https://doi.org/10.15587/1729-4061.2024.317456.
https://doi.org/10.5815/ijcnis.2025.01.08.
https://doi.org/10.1007/s11192-022-04602-4.
https://doi.org/10.18653/v1/N19-1423.
https://doi.org/10.1016/j.asej.2014.04.011.

	1. Introduction
	2. Related works and comparative analysis of similar solutions
	3. Statement of the research task
	4. System Software Analysis
	5. Selection of methods and means of the product being developed
	6. Software Development
	7. Implementation of a control example
	8. Program Execution Statistics
	9. Conclusions
	Declaration on Generative AI
	References

