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Abstract
The article presents a comprehensive study of online discourse on Russia's war against Ukraine on the 
Reddit platform using natural language processing (NLP) techniques. A multilingual information system 
is proposed, which collects, cleanses, and analyses the sentiment of comments in English, Ukrainian, and 
Russian through thematic clustering. Particular attention is paid to the definition of a political position 
(stance detection): pro-Ukrainian, pro-Russian or neutral. The model is based on the multilingual embeder 
multilingual-e5-base, complemented by manual data markup and specialised dictionaries of manipulative 
and propaganda vocabulary. The paper also provides a comparative analysis of modern NLP solutions 
(Perspective API, MonkeyLearn, Watson NLU, BERT architectures). It substantiates the advantages of the 
proposed approach in  the  context  of  information security.  The results  of  the  study demonstrate  the  
effectiveness of the system in identifying information narratives, dominant topics of discussion and the 
structure of users'  emotional reactions.  The created system can be used to monitor public sentiment,  
detect propaganda and analyse information operations in social networks.
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1. Introduction

In today's world, social media has become the main arena of the struggle for public opinion. In the  
context  of  Russia's  war  against  Ukraine,  the  information space  is  a  critical  element  of  hybrid 
warfare. In particular, the Reddit platform, which is characterised by an active and global English-
speaking  community,  has  become  one  of  the  tools  for  shaping  the  views  of  an  international  
audience. Thousands of comments related to events in Ukraine are published on Reddit every day. 
These  statements  are  a  direct  reflection of  public  sentiment,  encompassing emotions,  support, 
criticism,  and  deliberate  misinformation  [1–3].  The  analysis  of  these  comments  enables  us  to 
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understand precisely how the image of war is perceived by a global audience [3–6]. The relevance 
of this topic is also due to [6–12]:

1. The rapid spread of fake news, memes, and propaganda clichés needs to be identified and 
addressed.

2. Insufficient study of Reddit as a source of data for the Ukrainian context.
3. A need for prompt monitoring of public sentiment outside Ukraine.
4. The availability of large data sets for NLP research.

Thus,  the  combination  of  comment  sentiment  analysis  and  the  detection  of  manipulative 
vocabulary  on  Reddit  is  not  only  relevant  but  also  a  socially  significant  area  of  research  in 
computational linguistics.

The purpose of this study is to develop an information technology for a comprehensive analysis 
of comments in different languages on Reddit related to Russia's war against Ukraine, using natural 
language processing methods. It is envisioned to identify the emotional colouring of statements 
(tonality) and the frequent use of vocabulary, which may indicate manipulative influence. It will 
enable us not only to establish the prevailing public emotions but also to identify the structural  
features of information campaigns and propaganda narratives. Research objectives:

1. Download and prepare a selection of Reddit comments on the war in Ukraine.
2. Clean up texts (remove noise, duplications, unwanted characters).
3. Conduct  a  preliminary  analysis  of  the  comment  language  and  determine  the  comment 

languages to distribute into groups.
4. Apply sentiment analysis tools (TextBlob, VADER, or others) to classify sentiment.
5. Build a distribution of comments by tone.
6. Highlight negative and neutral comments for more detailed analysis.
7. Conduct lexical analysis and build a TF-IDF model to identify key terms.
8. Visualise common vocabulary (wordcloud).
9. Form a dictionary of potentially manipulative vocabulary.
10. Analyse examples of comments containing propaganda frames or disinformation narratives.

The object of the study is the process of forming online discourse around Russia's war against  
Ukraine  on  English-language  social  media  platforms  (including  Reddit),  as  well  as  the 
dissemination of manipulative and emotionally colored messages among users. The subject is the 
methods  and  means  of  analysing  text  statements  (comments)  from  Reddit  users  that  contain 
emotionally charged or potentially manipulative language related to Russia's war against Ukraine. 
The presence of typical propaganda narratives ("denazification", "liberation", "NATO provocation", 
etc.) is also investigated. The scientific novelty of the study is reflected in the following:

1. Using Reddit as a source to research information warfare in the context of Ukraine.
2. combination of classical methods of sentiment analysis with thematic and frame analysis of 

manipulations.
3. Identifying keywords and patterns used for propaganda.
4. Creation of a frequency dictionary with examples of manipulative vocabulary.
5. Approbation  of  NLP  methods  on  the  corpus  of  informal  English-language  online 

commentaries.

The results of the study can be used [6–12]:

1. To create automated systems for monitoring public sentiment.
2. To detect new waves of information attack or propaganda.
3. In the work of state think tanks, journalists, and public organisations.
4. To train models for detecting disinformation and bot activity.



5. As part  of  an interactive public  opinion dashboard with visualisation elements  (e.g.  via 
Streamlit or Gradio).

For  the  study,  a  relevant,  interdisciplinary  topic  was  chosen  that  combines  computational 
linguistics, analysis of public sentiment, elements of information security, and NLP. The purpose, 
objectives,  scientific novelty and practical  value of  the project are detailed.  The results can be 
helpful in both academic and applied environments for understanding the influence of information 
in wartime.

2. Related works and comparative analysis of similar solutions

In the context of modern information warfare, a crucial task is to automatically identify users' 
political  positions  based on their  comments  [12–18].  Comments  on platforms like  Reddit  may 
contain signs of manipulative language, toxicity,  or overt political leanings. There is a need to 
create systems capable of detecting neutral, pro-Russian or pro-Ukrainian positions [18–21]. The 
urgency of the problem stems from the need to counter disinformation, combat fake news, and 
enhance information security [21–30]. The modern landscape of natural language processing tools 
offers a wide range of solutions for analysing textual content; however, the vast majority of them 
focus on traditional tasks, such as determining emotional tone, detecting toxicity, or performing 
general sentiment analysis.  The specific task of defining a political position, particularly in the 
context  of  the  armed  conflict  in  Ukraine,  remains  a  largely  untapped  area,  creating  unique 
opportunities for the development of specialised technological solutions. Automatic identification 
of  a  political  position is  an interdisciplinary task that  combines approaches  from the fields  of 
machine learning, natural language processing (NLP), sociolinguistics, and media studies [1–12]. 
Let us review and analyse the leading publications that have influenced the development of these 
approaches [13–20]. In [13], the authors present a detailed methodology for analysing position in 
social  networks,  highlighting  the  difference  between  emotional  assessment  (sentiment)  and 
position on a particular topic.  The study [14] is devoted to fact-checking with an emphasis on 
contextual verification of statements, accompanied by the analysis of rhetorical techniques. The 
work [15] is an overview of methods for detecting disinformation, including classification, graph 
approaches,  and  argumentation  models.  The  authors  in  [16]  propose  an  explainable  NLP that 
explains the reasons why a statement is deemed true or false. In [17] the authors develop models 
for detecting propaganda, hostile messages, and ideologically colored statements. The work [18] 
provides an overview of classical and modern methods for sentiment analysis, including rule-based, 
statistical, and deep learning approaches. A study [19] describing the implementation of the BERT 
architecture was a revolutionary step in NLP and provided a basis for further training in stance  
detection problems. In [20], an overview of the use of transformers in social analysis problems, 
including hate speech, misinformation, and stance classification, is carried out. Modern methods 
include [21–30]:

1. Using BERT, DistilBERT for stance classification (with fine-tuning).
2. Transformers with a special position token ("[STANCE]").
3. Multilingual  models  (XLM-RoBERTa)  –  especially  relevant  for  multilingual  data  (e.g. 

English-Ukrainian-Russian contexts).
4. Use of unsupervised approaches (topic modelling, clustering) for preliminary analysis.
5. Use of manipulative or propagandistic vocabulary in dictionaries.

We will carry out a detailed review of existing approaches and their functional limitations.
Google Jigsaw developed the Perspective API as a cutting-edge machine learning tool designed 

to  automatically  identify  problematic  content  in  online  discussions.  The  system is  focused  on 
identifying a wide range of negative manifestations in texts, which makes it popular among social 
platform moderators. The system is capable of evaluating a variety of text characteristics, including 



overall toxicity, insult, profanity, threats, identity-based attacks, and severe toxicity. The API offers 
a user-friendly interface for seamless integration with various platforms and research projects,  
making it accessible to a broad range of users. Critical shortcomings for political analysis:

1. Lack of understanding of the political context. 
2. Contextual errors in estimation.
3. Language and cultural barriers.
4. Western-centricity of algorithms.

The  Perspective  API  is  not  fundamentally  intended  to  analyse  the  political  positions  of 
participants in discussions. Instead of determining whether the user supports a particular side of 
the conflict, the system only assesses formal signs of aggressiveness or resentment, which can lead 
to serious interpretation errors. Real-world examples show that phrases like "I support the heroic 
defence of Ukraine" can get high toxicity ratings simply because of mentioning military actions,  
despite their obviously positive nature in the context of supporting the victim of aggression. The 
system demonstrates  a  critically low quality of  work in the Ukrainian and Russian languages, 
which  is  manifested  in  incorrect  recognition  of  Cyrillic  characters,  tokenisation  errors,  and  a 
misunderstanding of culturally specific expressions and idioms. The educational data of the system 
are  primarily  based  on  English-language  content  from  Western  countries,  which  makes  it 
unsuitable for an accurate assessment of the specifics of the post-Soviet information space, with its  
unique forms of political discourse.

Leading  commercial  platforms  such  as  MonkeyLearn,  IBM  Watson  Natural  Language 
Understanding, and Amazon Comprehend are comprehensive solutions for the enterprise segment. 
These systems provide ready-to-use tools for a wide range of text processing tasks, from analysing 
customer feedback to automatically categorising documents. Functionalities of leading platforms:

1. MonkeyLearn stands out for its customisation flexibility, allowing users to train their own 
classifiers  for  specific  tasks,  conduct  multivariate  sentiment  analysis,  and  automatically 
detect topic categories in large arrays of text.

2. IBM Watson NLU offers a comprehensive approach to analysis, including the extraction of 
emotional markers, conceptual connections, and named entities, and also provides advanced 
means of visualising results for business intelligence.

3. Amazon Comprehend specialises  in  automatically  analysing large documents,  efficiently 
identifying  text  language,  key  phrases,  dominant  topics,  and  emotional  characteristics 
without requiring pre-tuning.

System limitations for research purposes:

1. The problem of the "black box".
2. Limited control over learning.
3. Economic barriers.
4. Inferior multilingualism.
5. Lack of political categories.

The closed nature of the algorithms used by these platforms makes it impossible to gain a deep 
understanding of the decision-making processes, which is critical for scientific research. Users do 
not have the opportunity to fine-tune the systems to the specific needs of the Ukrainian-Russian 
political discourse. Procedures for further training models on their own data are either inaccessible 
or highly complex and costly, making them impractical for academic or volunteer projects. The 
cost of processing large amounts of social media (hundreds of thousands or millions of comments)  
through the APIs of these services can become prohibitive for research budgets, especially in the  
context of long-term monitoring. Despite the declared support for multiple languages, the quality 
of work with Ukrainian and Russian is significantly inferior to that of English, as evidenced by  



incorrect recognition of specific vocabulary, misunderstanding of synonymous series, and errors in 
processing  morphologically  complex  constructions.  None  of  the  platforms  offers  ready-made 
classifiers for determining a political  position,  such as "pro-Ukrainian" or "pro-Russian",  which 
requires the creation of entirely custom solutions on top of the basic functionality.

A family of transformer models, including BERT, RoBERTa, XLM-RoBERTa, and DistilBERT, 
has  revolutionised  the  field  of  natural  language  processing  by  offering  a  fundamentally  new 
approach to understanding context in texts. These architectures have become the foundation for 
most  advanced  NLP  systems  due  to  their  ability  for  deep  contextual  analysis.  Technical 
characteristics of key models:

1. BERT  (Bidirectional  Encoder  Representations  from  Transformers)  has  implemented  the 
revolutionary  principle  of  bidirectional  context  analysis,  which  enables  the  model  to 
consider both previous and subsequent words when interpreting each element of the text.

2. RoBERTa  introduces  an  optimised  version  of  BERT  with  improved  learning  strategies, 
resulting  in  higher  accuracy  on  most  benchmarks  while  maintaining  architectural 
compatibility.

3. XLM-RoBERTa  extends  the  capabilities  of  the  base  model  to  more  than  a  hundred 
languages, theoretically providing multilingual functionality for global applications.

4. DistilBERT offers  a  compromise solution between performance and precision,  providing 
significantly faster machining at the expense of some reduction in result quality.

Challenges of practical application:

1. There is a need for specialised additional training.
2. The problem of the interpretation of decisions.
3. Superficial contextual analysis.
4. Language imbalances in educational data.
5. High requirements for computing resources.

Basic transformer models lack a built-in understanding of the concept of political position. After 
downloading from repositories such as Hugging Face, they require painstaking additional training 
on  specially  prepared  and  marked  data,  which  requires  significant  technical  resources  and 
expertise. Transformer models function as complex "black boxes", which makes it challenging to 
understand the logic of their solutions without using specialised explanation methods such as LIME 
or  SHAP,  which  are  resource-intensive  in  themselves.  Without  the  integration  of  thematic 
dictionaries or specialised analysis modules, models can classify texts according to formal patterns, 
without understanding the deep meaning of key terms such as "de-occupation", "collaboration", and 
"militarisation" in the Ukrainian context.  Even the most advanced multilingual models,  such as  
XLM-RoBERTa,  demonstrate  uneven  quality  of  work  across  different  languages  due  to  an 
imbalance in educational resources, where Ukrainian is significantly underrepresented compared to 
English. Effective retrotraining and application of transformer models on large datasets requires 
access to powerful GPUs or cloud computing platforms,  which may not be available for many 
research projects.

Specialised research initiatives:

1. The TWEETSBK (Knowledge Base for Political Tweets) project represented an ambitious 
attempt to create a centralised knowledge base for classifying politically oriented messages 
on Twitter. The developers attempted to systematise the patterns of political discourse and 
develop  universal  tools  for  recognising  them.  The  study  focused  exclusively  on  the 
American political context and English-language data, making its results of little use for 
analysing other regional conflicts or multilingual environments.



2. The  PHEME  project  (dataset  and  position  detection  on  rumours)  proposed  interesting 
methodological approaches for analysing how users support or refute circulating claims on 
social  networks,  which  have  some  similarities  with  stance  detection  tasks.  Despite  the 
conceptual  proximity,  the  methods  of  this  project  are  not  fully  adapted  for  the 
comprehensive  identification  of  political  positions  in  multifaceted  conflicts,  particularly 
without considering the specific regional context.

3. Explanatory NLP models (LIME, SHAP with BERT) – the integration of machine learning 
explanation  methods  with  transformer  architectures  opens  up  opportunities  for 
understanding the logic of decision-making by models, which is especially important for 
political analysis tasks. The implementation of such systems requires significant computing 
resources  and  deep  technical  expertise;  however,  there  are  no  standardised  solutions 
specifically adapted to the task of stance detection in the political context.

3. Statement of the research task

The central  problem our system addresses is  the critical  lack of reliable tools  to automatically 
determine the political stance of social media users in the context of the Russian-Ukrainian conflict. 
Existing  methods  on  the  market  are  unable  to  fully  identify  and  classify  pro-Russian  or  pro-
Ukrainian narratives, especially when they are presented in complex, multi-layered or deliberately 
veiled formulations. The main goal of the project is to create a comprehensive tool that is capable :

1. Accurately  recognise  a  political  position  based  on  the  textual  content  of  comments, 
regardless of their stylistic design.

2. Conduct an in-depth analysis of the thematic structure and lexical composition of the texts 
under study.

3. Efficiently handle multilingual content, including English, Ukrainian, and Russian.
4. Adapt  to  new  types  of  content  through  additional  training  mechanisms  using  fresh 

examples.
5. Ensure transparency of classification through detailed analysis of the most significant words 

and phrases.

The development faces a number of serious challenges:

1. Linguistic diversity of online communication.
2. Technical limitations of the platforms.
3. The problem of artificial content.
4. The complexity of political discourse.

Social networks are characterised by an extremely high level of linguistic variability, including 
transliteration,  informal  abbreviations,  dialectisms,  and new forms of  slang that  are constantly 
evolving. The APIs of most social platforms have significant limitations on data collection, which 
makes it challenging to form representative samples for analysis. The widespread use of bots and  
automated systems for content generation presents substantial challenges to the accurate analysis 
of  public  opinion.  The  high  level  of  irony,  sarcasm,  and  manipulative  techniques  in  political  
discussions  makes  automatic  interpretation  a  challenging  task  even  for  the  most  advanced 
algorithms. To overcome these challenges, it is necessary to implement an integrated approach:  
pre-processing  improvements,  vectorisation  optimisation  and  development  of  analytical 
dashboards.  Development  of  specialised  algorithms  for  text  cleaning,  normalisation  of  various 
writing  forms,  automatic  error  correction,  and  creation  of  slang  and  colloquial  vocabulary 
dictionaries for each supported language. Maximise the use of multilingual-e5-base capabilities to 
ensure  high-quality  representation  of  multilingual  texts  in  vector  space,  taking  into  account 
cultural and contextual features. Creation of interactive visualisation tools that will allow you to 



compare the distribution of political positions according to various criteria: thematic categories, 
social  platforms,  time  periods,  and  demographic  characteristics  of  users.  Advantages  of  our 
approach (in the context of the disadvantages mentioned above):

1. Focus on stance detection in political discourse.
2. Multilingual support thanks to multilingual-e5-base.
3. Manual data markup is the basis of accuracy.
4. Thematic and lexical analysis is not only a matter of classification.
5. Flexible architecture, core open to additional learning.
6. A balanced combination of statistical and linguistic methods.

The system being developed is fundamentally different from traditional tonality analysis tools in 
that  it  focuses  on  identifying  the  user's  political  stance  regarding  the  Russia-Ukraine  conflict. 
Instead of  simply determining the positive or negative colour of the text,  the system classifies 
comments  into  three  categories:  pro-Ukrainian,  pro-Russian,  and  neutral.  Such  specialisation 
proves  to  be  critically  important  when  analysing  the  information  space  in  wartime,  where  a 
seemingly positive comment may actually contain manipulative or disinformation messages.

The use of the multilingual-e5-base model enables our system to efficiently work with texts in 
Ukrainian, Russian, and English simultaneously. This solution provides comprehensive coverage of 
the entire range of comments found on international platforms, including Reddit, YouTube, and 
other social networks. Traditional models, such as BERT, or commercial solutions, like Perspective 
API, show significantly lower efficiency in this aspect, as they are primarily configured to work 
with the English language.

Creating your own case of  manually  marked comments  has  become the basis  for  the high 
accuracy of our system. This corpus contains real-world examples of texts from various social  
platforms representing the full range of political positions in their natural context. This approach 
enables the system to learn to recognise not only direct statements, but also complex forms of  
expression of position, such as sarcasm, metaphors, specific jargon, and other linguistic features 
characteristic of the Ukrainian information space.

The  proposed  system  goes  far  beyond  a  simple  classification,  offering  a  comprehensive 
analytical  toolkit.  It  is  capable  of  generating  TF-IDF  models  and  visual  representations  of 
vocabulary (word clouds) for each language separately, conducting detailed analyses of keywords 
in  comments  based  on  the  identified  political  position,  and  identifying  manipulative  patterns 
through  the  study  of  frequency  dictionaries.  This  level  of  analytical  depth  is  fundamentally 
unavailable in commercial "black boxes" like IBM Watson or MonkeyLearn.

The  use  of  open models  from the  Hugging Face  ecosystem,  combined  with  its  proprietary 
preprocessing and analytics logic, creates a flexible system that can be easily adapted to analyse 
other conflicts or regional discourses. For example, the system can be configured to work with the  
Middle East or the Balkan region. The ability to expand dictionaries, topic modules, and analytical 
frames makes the system scalable and suitable for long-term use.

The  proposed  approach  combines  the  advantages  of  modern  machine  learning  (classifiers, 
clustering)  with  time-tested  methods  of  natural  language  processing  (lexical  analysis,  noise 
filtering,  specialised  dictionaries).  This  combination  provides  reliable  results  even  with  limited 
computing resources. For example, when working with neutral comments, the additional use of 
vocabulary  visualisation  and  TF-IDF  filtering  made  it  possible  to  identify  hidden  political 
connotations that implicitly express the author's position. 

Disadvantages and limitations of the developed system:

1. Insufficient amount of training data.
2. Difficulty in interpreting ambiguous statements.
3. Critical dependence on the quality of pre-treatment.
4. Lack of bot identification mechanisms.



5. Real-time processing restrictions.
6. The need for constant updating of dictionaries.

Despite the high quality of  manual markup, the size of our case remains relatively limited,  
which can negatively affect the model's ability to generalise to new data. To fully scale the system,  
a  significant  expansion  of  the  corpus  is  necessary,  especially  for  languages  that  are  currently 
represented by fewer examples. A large part of the comments on social networks are characterised 
by ambiguity, irony, or neutrality in wording. Such texts pose challenges for interpretation, even 
for experienced analysts,  let  alone automated systems.  It  is  especially true for texts where the 
political  position  is  expressed  through  allusions  or  cultural  references.  The  stage  of  data 
preprocessing has a significant impact on the system's final results. Errors in automatic language 
detection,  tokenisation,  or  removal  of  noise  elements  can  significantly  reduce  classification 
accuracy and lead to incorrect conclusions.

The current version of the system does not distinguish between content created by real users  
and content  generated by bots  or  automated systems.  It  can lead  to  a  distortion of  analytical 
conclusions,  especially  given  the  active  use  of  bots  in  information  operations.  Currently,  the 
system operates with local datasets and lacks the functionality to automatically collect and process 
new comments from platforms like Reddit in real-time. It limits its use for monitoring current 
information trends.  Dictionaries  of  terms,  emotional  markers,  propagandistic  and manipulative 
constructions need to be regularly updated in accordance with the evolution of the information 
field and the emergence of new narratives and formulations.

Despite  the active development of  NLP tools,  most  approaches either  overlook the political 
context or require significant adaptation to it. A combination of manual markup, thematic analysis,  
and manipulation detection distinguishes our project. It makes the task relevant and innovative in 
the context of information warfare.

4. System Software Analysis

Comments are collected from Reddit, which allows you to cover different points of view regarding 
the war in Ukraine. For data preparation, CSV files with pre-collected messages were used. Each 
message contains text, language, source, and other metadata. For accurate analysis, messages are 
processed in at least three languages: English, Ukrainian, and Russian. At the first stage, the data is  
cleared of noise, removing links, special characters, repetitions, and unnecessary spaces. Speech 
detection (langdetect) is also performed.

Based on the sentence-transformers/multilingual-e5-base model, vectorisation is performed for 
all messages. This model enables you to represent texts in a single multidimensional vector space,  
regardless of language. It is critically vital for multilingual analysis. The resulting embeddings are 
used to cluster thematic comment groups, allowing you to identify the most discussed topics (such 
as weapons, referendums, aid, refugees, economy, etc.).

For English-language messages, the VADER library is utilised to determine the sentiment as 
positive, negative, or neutral. For Ukrainian and Russian texts, an extension with support for a  
custom  dictionary  is  provided.  Additionally,  a  hand-compiled  dictionary  of  potentially 
manipulative vocabulary was compiled. It includes words like "fascists", "Nazis", "liberation", and 
"ukroregime",  which are often used in propaganda narratives.  Counting the frequency of  such 
terms enables you to identify comments that may contain potential misinformation.

The classification of the commentary's political position as Pro-UA, Pro-RU or Neutral has been 
implemented.  For  this  purpose,  an  approach  using  poorly  labelled  data  and  heuristics  was 
employed, based on keywords and frames inherent to a particular position. An extension with 
additional training of the BERT or XLM-RoBERTa model on the marked dataset is provided. At the  
same time, even the basic heuristics showed promising results for identifying extreme positions.  
Each comment group (language,  cluster,  stance).  A calculation of  the number of  comments by 
political positions and tone has also been implemented. To reduce the dimensionality of vector 



representations, PCA and t-SNE were employed to visualise the clusters. The purpose of the system 
is to analyse the political position and sentiment of Reddit users' comments on the war in Ukraine:

1. Automated collection and aggregation of Reddit comments.
2. Detection of the language of texts and pre-processing (cleaning, normalisation).
3. Thematic grouping of comments (clustering).
4. Analysis of the emotional tone of comments.
5. Definition of political position (Pro-UA, Pro-RU, Neutral).
6. Visualisation of results in a format that is convenient for analysis.

We will  describe  in  detail  the  functional  requirements  for  each module  of  the information 
system, which analyses the political position and tone of Reddit users' comments on the war in 
Ukraine.

Data collection and preparation module:

1. Uploading and preprocessing Reddit comments.
2. Definition of the language of comments (English, Ukrainian, Russian).
3. Cleaning texts from noises, symbols, emojis, and links.
4. Saving data in a structured form (CSV).

Word Processing Module:

1. Tokenisation, lemmatisation of texts.
2. Elimination of grammatical and stylistic errors.
3. Support for custom vocabulary (slang, propaganda templates).

Thematic clustering module:

1. Vectorisation using sentence-transformers.
2. Building thematic clusters (HDBSCAN).
3. Visualisation of clustering results.

Sentiment analysis module:

1. Analysis of the emotional component of comments (Stanza, custom methods).
2. Division into positive, negative, and neutral messages.

Political position classification module:

1. Heuristic definition of stance based on keywords.
2. Additional training of the model on a manual dataset to improve accuracy.
3. Building and testing models (SVM, XGBoost, BERT).

Visualisation module:

1. Building graphs, word clouds, and PCA visualisations.
2. Interface to view classification results and statistics.

Non-functional requirements for the system for analysing the political position and sentiment of 
Reddit users' comments on the war in Ukraine:

1. Modular system structure for flexible adaptation.
2. Scalability for different languages or data sources.
3. Open source that allows reuse.



4. Use of open source software (Python, Jupyter, Streamlit).

Limitations  of  the  system  for  analysing  the  political  position  and  tone  of  Reddit  users' 
comments on the war in Ukraine:

1. The  primary  source  of  data  is  Reddit  (without  integrating  the  APIs  of  other  social 
networks).

2. Heuristics – the initial method for classifying stance.
3. Partial analysis support for only three languages.

Python 3.11.9  was  used to  implement the system,  specifically  the libraries  Pandas,  NumPy, 
Scikit-learn,  Matplotlib,  Seaborn,  Stanza,  XGBoost,  sentence_transformers,  tqdm,  joblib,  UMAP, 
hdbscan, and langdetect, as well as Matplotlib and Seaborn for visualisation. The environments are 
Jupyter  Notebook  (for  EDA,  clustering,  and  hypothesis  testing)  and  VS  Code  (for  modular 
programming,  deployment,  and  integration).  The  architecture  of  the  system for  analysing  the 
political position and sentiment of Reddit users' comments on the war in Ukraine:

1. src/data/ – modules for collecting and saving comments.
2. src/preprocessing/ – cleanup, tokenisation, normalization.
3. src/embedding/ – vectorisation of texts.
4. src/clustering/ – clustering.
5. src/classification/ – stance classification.
6. src/visualisation/ – plotting.
7. notebooks/ – experiments and analyses.

Expected results from the functioning of the system for analysing the political position and 
sentiment of Reddit users' comments on the war in Ukraine:

1. Structured multilingual Reddit comment data.
2. The language, tone and political position of each message are defined.
3. Thematic clusters have been built.
4. Web interface to visualise results.

The developed information system comprises several main functional subsystems that together 
provide a full cycle of data work, from collection to visualisation of results.

The data collection subsystem is responsible for obtaining information from Reddit. It provides 
the download of pre-compiled comments in CSV file format. Each entry contains the text of the 
message, user ID, language, date, and metadata about the subreddit. In the future, integration with 
the official Reddit API will enable the extension of functionality and automatic database updates.

The data preprocessing subsystem encompasses  cleaning,  normalisation,  noise  removal,  and 
language  detection,  utilising  the  langdetect  module.  It  integrates  modules  for  tokenisation, 
lemmatisation,  and  cleaning,  as  well  as  dictionaries  for  abbreviations,  slang,  and  propaganda 
vocabulary.  Particular  attention  is  paid  to  interlingual  normalisation  for  the  comparability  of 
analysis results in different language groups.

The  modelling  subsystem implements  multi-stage  processing,  including  clustering  of  topics 
using HDBSCAN (with visualisation via PCA/t-SNE), analysis of emotional tonality through Stanza 
and user dictionaries, and determination of a political position. Classification is carried out both on 
the basis of heuristic rules and using machine learning (BERT, XGBoost).

The visualisation subsystem provides the construction of graphs,  word clouds (WordCloud), 
clustering and classification results. Additionally, it provides users with a Streamlit web interface 
to view and filter results by language, topic, political position, and date.

System user roles:



1. Administrator – configures system settings, re-trains models,  adds new dictionaries,  and 
monitors  the  safety  and  relevance  of  data.  Can  perform  complete  reconfiguration  of 
classification and processing modules.

2. User – interacts through the Streamlit web interface, chooses a language, topic, or position 
to view analytics. Can compare results by different parameters and export graphs.

Interconnections of components:

1. Data  collection  modules  (data_loader.py)  read  messages  from CSV sources  and  form a 
primary database.

2. Preprocessing (clean_text.py,  langdetect,  preprocessing.py)  normalises  and cleans up the 
text.

3. The embedding/clustering modules vectorise the texts and store the coordinates for PCA/t-
SNE.

4. The classification/ modules determine the political position and tone.
5. Visualisation modules form graphs, word clouds, and interactive comparisons.
6. The Streamlit interface provides user interaction with the results and allows you to save 

them as reports.

Information flows:

1. Collection flow – data comes from Reddit or saved CSV files → data/raw/.
2. Processing  flow  –  data  is  cleaned,  normalised,  and  distributed  by  languages  → 

data/processed/.
3. Clustering flow – embeddings are created, topics are grouped → data/clusters/.
4. Analysis flow – texts are classified by stance and tonality → data/results/.
5. Visualisation  flow  –  the  results  are  aggregated,  metrics  and  graphs  are  generated  → 

Streamlit.

The system's architecture is implemented on a modular principle,  with a clear division into  
functional components corresponding to the main stages of data processing and analysis,  from 
collection to visualisation of results. Each module can function autonomously, which allows you to 
scale the system when changing input data, expanding languages or sources, or introducing new 
analytical approaches. Each module corresponds to a separate processing stage, making it easy to  
scale  the  system,  add  new  sources  or  languages,  and  deploy  individual  parts  of  the  project 
independently. The entire architecture is designed with a focus on reproducibility, transparency, 
and modularity. Having separate directories for models, dictionaries, results, and raw data makes it  
easy to debug and retrain individual components. To start the project,  install  the dependencies 
listed in requirements.txt and run the Gradio interface using the Python command src/app.py.

The main user interactions with the system (scenarios):

1. View and filter visualisations.
2. Data upload and processing.
3. Running clustering and modelling.
4. Counting manipulative vocabulary.
5. Training or additional training of the model.
6. Updating dictionaries or parameters.

The sequence of the main stages of data processing:

1. Downloading dataset (CSV files) from Reddit (comments).
2. Text cleaning and normalisation.
3. Definition of the message language (langdetect).



4. Lemmatisation and noise removal
5. Vectorisation (embeddings) using the multilingual-e5-base (sentence-transformers) model.
6. Search for manipulative vocabulary.
7. Counting terms from the dictionary.
8. Clustering messages (e.g. HDBSCAN).
9. Classification of political position or tonality, 
10. Heuristics/ML model.
11. Combining results.
12. Graphing and word cloud.
13. Output of results and visualisation in the Gradio interface.

It enables you to comprehend the system's logic, from data receipt to result display for the end 
user. The following diagram describes the structure of our system's program classes. Each class has 
its own responsibility (Fig. 1):

1. DataLoader – Responsible for reading raw data from CSV.
2. TextPreprocessor – processes text, including cleansing, lemmatisation, and normalisation.
3. Embedder – forms a vector representation of the text.
4. ClusterBuilder – performs thematic clustering.
5. Classifier – determines the political position (pro_Ukraine, pro_russia, neutral).
6. Lexicon Analyser – analyses the presence of manipulative/propagandistic vocabulary.
7. Visualizer – generates output in the form of graphs, tables, and word clouds.
8. GradioInterface is an interactive interface for user interaction.
9. OpinionAnalysisSystem is the main class that coordinates the work of other components.

It allows you to better structure the code logic and relationships between objects.

Figure 1: Class Diagram.

The component diagram displays the architectural structure of the system at the component 
level (Fig. 2):

1. Gradio is a client interface.
2. Core System – implemented in the form of Python modules.
3. The propaganda dictionary is  a separate component that is  used to detect manipulative 

messages.
4. CSV source (Reddit Dataset) – input.
5. Data Storage – raw/processed/clusters/results.
6. Visualisation Module – creating graphs, cluster diagrams, and word clouds.

Each component communicates through a specific interface/function, ensuring the scalability 
and maintainability of the system.



Figure 2: Component Diagram.

A systematic approach to building an information system for analysing public opinion in Reddit  
social  networks  has  been  implemented,  with  a  focus  on  classifying  political  positions  (stance 
detection),  analysing discussion topics,  and identifying manipulative vocabulary. We have gone 
through a complete cycle:

1. From collecting and preprocessing multilingual comments.
2. To vector representation and thematic clustering.
3. To the classification of political orientation.
4. And building analytical visualisations through the Gradio interface.

The developed system supports multilingual analysis,  is tailored to the specific needs of the 
Ukrainian context, and features a modular architecture that provides flexibility and the potential  
for further scalability. The results of the work demonstrate that even within a limited dataset, it is 
possible to build a system capable of effectively analysing political narratives, which is of practical 
value in the context of media literacy, combating disinformation, and researching the impact of  
information in wartime.

5. Selection of methods and means of the product being developed

When creating  a  system for  analysing  public  opinion  in  social  networks,  it  was  necessary  to 
carefully select the tools and methods for each stage of data processing. Particular attention was  
paid to the specifics of the Ukrainian language and available computing resources.

Python became the primary programming language, and this decision had sound reasoning. 
According to the TIOBE Index for June 2025, Python ranks first among programming languages, 
with a score of 25.87%, which is particularly notable in the field of data analysis. When compared to 
alternatives,  Python  showed  the  best  balance  of  characteristics.  If  R  is  traditionally  strong  in 
statistical analysis, but loses in development speed, and Java demonstrates high performance, but  
requires significantly more time to write code, then Python combines development speed with 
sufficient functionality. The main advantage of Python turned out to be its ecosystem. The Pandas 
library for working with data, scikit-learn for machine learning, Transformers for working with 
modern language models, spaCy for text processing, and Gradio for creating interfaces have greatly 
simplified development. The interpreted nature of the language allowed for quick testing of ideas  
and  making  changes  without  a  lengthy  compilation  process.  This  choice  proved  especially 
successful for working with Ukrainian text, as many specialised libraries offer robust support for 
multilingualism and the ability to fine-tune models for specific tasks.

Reddit was chosen as a source of information for analysing public opinion. It is a platform with 
active discussions and a substantial amount of Ukrainian-language content, making it an ideal fit 
for our task. However, there were problems with the official Reddit API. Firstly, there are stringent 
restrictions on the number of requests – you can only get a limited number of posts in a specific 



time. Secondly, a complex authentication procedure that requires registering an application and 
obtaining special  keys.  And finally,  the data comes in the form of bulky JSON structures that  
require additional processing. Therefore, we decided to go the other way – to use ready-made CSV 
files with Reddit data. Such files can be obtained through third-party services or pre-assembled 
independently.  This  approach  made  it  possible  to  focus  on  the  main  thing  – qualitative  data 
analysis, and not the fight against technical limitations. The CSV files collected all the necessary 
information: the text of the comment itself, the language of the message, the name of the subreddit,  
the publication time, and the author's unique identifier. It is pretty enough for a thorough analysis  
of sentiment. Comparing the two approaches, CSV files emerge as the more straightforward and 
more  accessible  option.  There  are  no  restrictions  on  requests,  no  need  to  set  up  complex  
authentication, and full access to historical data is available. The only drawback is that the data is  
not updated in real time, but this is not critical for our analysis.

Text processing before analysis is probably the most crucial stage of work. The accuracy of all  
further conclusions depends on how well we clean and prepare the data. And with Ukrainian texts 
in social networks, this is especially challenging  – there are slang terms, abbreviations, surzhyk 
with Russian, and various types of jargon. We had to collect a whole arsenal of tools. To determine 
the  language,  we  used  the  langdetect  library,  which  recognises  Ukrainian  well  among  other 
languages. With the help of NLTK and ordinary regular expressions, links, user mentions, emojis 
and  other  "digital  garbage"  were  removed.  However,  the  most  challenging  aspect  was  the 
morphology of the Ukrainian language. NLTK works well  with English,  but its  capabilities are 
limited for Ukrainian. spaCy is fast, but also not very friendly with our language. I had to look for a 
specialised  solution.  The  use  of  Stanza  was  considered  because  it  provides  a  complete 
morphological  treatment  of  the  Ukrainian  language.  However,  due  to  the  complexity  of 
integration, most of the processing is implemented manually or using its own dictionaries and 
regular expressions.

A  particular  challenge  in  analysing  texts  from social  networks  is  the  presence  of  spelling 
mistakes, informal word forms, and slang. Therefore, a separate subsystem has been implemented 
to correct and normalise such cases.

At the planning stage, there was a choice: use large ready-made dictionaries or develop your 
own approach. Many text analysis systems rely on massive lexical databases – dictionaries with 
millions of words, corpora of texts,  and complex error correction algorithms. But we went the 
other way. We decided to create a minimalist text cleaning system that does not require external 
dictionaries.  First,  large  dictionaries  occupy  a  significant  amount  of  space  and  slow  down 
processes. Secondly, they often fail to take into account the specifics of social networks, such as 
new slang, abbreviations, and meme vocabulary. Third, it is more critical for our sentiment analysis 
task to preserve the overall context than to correct every word ideally.

Instead of  complex spelling correction algorithms,  they focused on the effective removal  of 
"noise" – everything that interferes with the analysis of the content. We have developed a system 
for step-by-step text cleaning. First, we remove technical junk: URLs that convey nothing about the 
author's  mood;  mentions  of  users  of  the  form  @username  that  are  just  links;  numbers  and 
numbers, if they do not carry an emotional load; and excessive punctuation, which can confuse the  
analysis. Then we work with the case  – bring the entire text to lowercase. It avoids a situation 
where the words "GOOD" and "OK" are perceived by the system as different. At the same time, we 
remove  unnecessary  spaces  and  emojis  – although  emojis  can  carry  an  emotional  load,  their 
analysis  requires  separate  algorithms.  Separately,  we  process  stop  words  –  prepositions, 
conjunctions, and pronouns, which occur in each sentence, but do not affect the mood. So far, we 
are using the standard English list, but we plan to add a Ukrainian version.

One of the most important steps is to determine the language of the text.  In the Ukrainian 
segment of Reddit, posts in Russian, English, and Polish are often encountered. For our analysis of  
public opinion in Ukraine, such content may be irrelevant or even noise in the results. Therefore, at  
the very beginning of the processing, each text is run through langdetect. This library accurately 



determines the language, even for short messages. If the text is not in Ukrainian, we immediately  
discard it, without wasting time on further processing. It significantly speeds up the system.

When you process thousands of messages, every millisecond counts. Therefore, we compile all  
regular expressions in advance using the re.compile function. It means that Python "understands"  
the search pattern once and then applies it to each text. The sequence of processing also matters.  
First, a quick language check – if the text does not fit, we immediately move on to the next one. 
Then the fastest operations are to remove URLs and mentions. And only at the end more complex 
transformations.  The result  of  this  approach is  that  the  system can process  a  case  of  tens  of  
thousands of messages in a matter of minutes on a regular computer. At the same time, you do not 
need to download and store large dictionaries in memory.

The simplicity of the architecture makes it easy to understand what is happening at every step. 
If something doesn't work as expected, it's easy to identify and resolve the issue. There are no  
"black boxes" in the form of complex linguistic algorithms. The speed of work remains high even 
with  an  increase  in  the  amount  of  data.  The  system  does  not  rely  on  external  resources  –  
dictionaries that require constant updates. Flexibility for expansion – if you need to add new types 
of processing in the future, this can be done in stages, without rewriting the entire system from 
scratch. Of course, this approach has its limitations. We do not correct typographical errors, do not 
recognise complex grammatical constructions, and do not analyse syntax. However, for the task of  
analysing moods, this is reasonably sufficient – the main thing is to preserve the general meaning 
and emotional tone of the text.

The task is how to convert words into numbers that can be processed by machine learning.  
After all, the computer does not understand what "good" or "bad" is – it works only with numbers. 
Therefore, it is necessary to find a way to represent each text in the form of a vector of numbers so  
that  texts  similar  in  content have identical  numerical  representations.  We tested two radically 
different approaches to this problem – the classical statistical method and modern neural networks. 
Each has its own advantages and disadvantages.

We  started  with  TF-IDF,  which  is  an  abbreviation  for  Term  Frequency-Inverse  Document 
Frequency. It may not sound very easy, but the logic is actually elementary. Imagine that you are 
analysing  political  commentary  and  want  to  understand  which  words  are  most  important  to 
determine the author's position. TF-IDF works according to the principle: if a word is often found 
in a particular document but rarely in the entire collection, then it is likely vital for that document.  
For example, the word "president" can occur in many political texts,  so its weight will  be less.  
However, some specific words that are characteristic of a particular political position will receive 
higher weight. The advantages of TF-IDF are obvious: speed, ease of implementation, and clarity of 
results. You can easily see which words the system considers most important for each class. No 
powerful graphics cards or special computing resources are required. But there are also serious 
drawbacks. TF-IDF does not understand the context at all. For him, the phrases "Ukraine defeated 
Russia" and "Russia defeated Ukraine" are very similar, as they contain the exact keywords. He 
does  not  take  into  account  the  order  of  words,  does  not  understand  synonyms,  and  fails  to 
recognise semantic connections. When we tested TF-IDF on our data, the results were, to say the 
least,  not impressive. He performed particularly poorly with short comments, where context is 
critical, given the limited number of words to analyse. On social networks, most messages are brief.

Therefore,  they switched to modern methods  – contextual  embeddings.  It  is  a result  of  the 
revolution  in  natural  language  processing  that  has  occurred  in  recent  years,  thanks  to  the 
development  of  neural  networks  of  the  Transformer  type.  The  primary  concept  of  contextual 
embedding is to encode not individual words, but entire sentences, considering the surrounding 
context. A neural network trained on massive corpora of texts "understands" semantics – it knows 
that "good" and "excellent" are similar in meaning, what "not bad" is actually positive, that "Ukraine 
won" and "Russia lost" convey similar information. For our project, we used SentenceTransformer  
– a family of models specially configured to create vector representations of entire sentences. We 
chose a multilingual model that supports the Ukrainian language. It is critically important because  
the most popular models are primarily trained on English text. Each sentence is fed to the input of  



a neural network that consists of hundreds of millions of parameters. At the output, we get a vector 
of several hundred numbers that encode the meaning of the sentence. At the same time, sentences 
with similar meaning will have similar vectors  – they can be compared using cosine distance or 
other metrics.

The difference between TF-IDF and contextual embedding is especially noticeable in examples 
from Ukrainian politics. Let's take two comments: "Zelensky is leading the country well in difficult 
times", "The president is not doing his job well." TF-IDF sees only the words: "Zelensky", "good",  
"leads", "country" in the first and "president", "bad", "copes" in the second. For him, these are two 
different texts with minimal word intersection. Contextual embedding recognises that "Zelensky" 
and "president" in the Ukrainian context often refer to the same person. They hear the opposite  
tone: "leads well" versus "does not do well". Such texts will receive vectors that will be far apart in  
the vector space.

Working with the Ukrainian language added its own difficulties. Most of the best models are 
trained on English text. Although multilingual models exist, their quality for Ukrainian may be 
worse than for more "popular" languages. I had to experiment with different models and test their 
behaviour on the Ukrainian text. It turned out that some models confuse Ukrainian with Russian or 
Polish, especially when there are many borrowings in the text. But when a suitable model was 
found,  the result  exceeded expectations.  The system began to understand subtle  differences in 
political vocabulary, recognise sarcasm, and consider the context of Ukrainian realities.

Ultimately, it was decided not to abandon the TF-IDF entirely. Although contextual embedding 
produces better quality, it is also much slower. For the initial selection and rapid analysis of large 
datasets, TF-IDF remains useful. We created a hybrid system: first, TF-IDF helps to filter out clearly 
irrelevant  texts  and  make  a  rough  classification.  Contextual  embeddings  then  provide  subtle 
analysis for the most critical messages. This approach enabled the achievement of the best of both 
worlds: the speed of classical methods and the accuracy of modern neural networks. Additionally, 
the system has become more stable; if complex models fail for any reason, you can always revert to 
reliable yet straightforward methods.

Contextual embedding has proven to be useful not only for classifying political positions but 
also for other applications. We also used them for clustering, which involves finding hidden groups 
of users with similar views. When you have high-quality vector representations of texts, a variety 
of machine learning algorithms can be applied: from simple classification to complex analysis of 
social networks. Vector space allows not only to classify texts, but also to search for similar ones,  
identify anomalies, and track changes in public opinion over time. It opens up vast opportunities  
for further development of the system.

Several models from the scikit-learn library were used to classify the political position. The 
main goal is to find a balance between learning speed, accuracy, and interpretation.

1. The Logistic Regression model has become the basis of our project. It is easy to implement, 
provides good accuracy on small amounts of data, and is easy to interpret. It has been tested 
with both TF-IDF and SentenceTransformer vectors.

2. K-Nearest  Neighbours  (KNN)  —  this  approach  allowed  you  to  work  better  with  data 
clusters. Its advantage is intuitiveness and the ability to process new points by similarity to 
known ones. It was used mainly with TF-IDF vectors.

3. The XGBClassifier model (an ensemble method — gradient boosting) yielded the highest 
accuracy, but required more time to learn. Due to its good generalisation, XGBoost was 
effective on contextual vectors.

We evaluated the quality of the classification according to the following metrics:

1. Accuracy – the overall accuracy of the classification.
2. Precision and Recall – for each class (pro-Ukraine, pro-Russia, neutral).
3. F1-score is the harmonic mean of Precision and Recall.



Technical metrics:

1. Confusion Matrix – to identify common classification errors.
2. Cosine Similarity – to check the quality of vectorisation between similar messages.
3. Loss curve graph – to monitor learning and avoid overlearning.
4. Execution time – to evaluate the effectiveness of each approach (TF-IDF vs transformers).

These metrics enabled a comprehensive assessment of the effectiveness of both classical models 
and modern transformer approaches.

To visualise the results of the classification, the following libraries were used:

1. Matplotlib – for plotting basic graphs, including PCA visualisation of clusters.
2. Seaborn – for building Confusion Matrix heatmaps and distribution graphs.
3. Pandas – for building tables with analysis of results.

The main objective was to depict the spatial structure of clusters and the distribution of classes.  
The libraries were chosen because of their flexibility and ease of integration with other parts of the 
pipeline. Streamlit was not used in this project, as the focus was on offline analytics, clustering, and 
graphical interpretation of results in Jupyter Notebook.

The project was developed in the Jupyter Notebook environment, utilising Visual Studio Code 
as the editor. The combination of these tools made it possible to effectively:

1. Develop, run and test code in stages.
2. Visualise the results of the classification.
3. Save the model's logic and conclusions in a format convenient for presentation.

VS  Code  provided  advanced  autocompletion,  debugging,  project  navigation,  and  GitHub 
synchronisation. Jupyter has been the primary medium for experimentation and model testing. It 
offered a  transparent project  structure,  convenient scheduling,  and a  step-by-step recording of 
results.

Various  approaches  to  vectorisation  (TF-IDF  and  transformers),  classification  (logistic 
regression, XGBoost, KNN), and evaluation of results (F1 score, accuracy, confusion matrix) were 
analysed. Selected Python platform tools, such as scikit-learn, transformers, matplotlib, and pandas,  
made  it  possible  to  achieve  high  classification  accuracy  while  maintaining  the  simplicity  of 
implementation and the ability  to  scale  the system. The project  demonstrated the potential  of  
automated analysis of public opinion in social networks, opening up opportunities for further use 
of models in media monitoring, political analytics and digital sociology.

6. Software Development

The development of the Reddit comment sentiment analysis system required the integration of 
natural  language  processing  (NLP)  methods,  machine  learning  algorithms,  and  specialised 
approaches to handling content that contains political and emotionally charged language, as well 
as potential manifestations of manipulative rhetoric. A notable feature of Reddit comments is their 
linguistic  variability,  encompassing  multiple  languages  (English,  Ukrainian,  Russian),  diverse 
communication styles, the presence of spelling errors, abbreviations, Internet slang, and memetic 
elements. As a result, the system had to be adapted to accommodate multilingual content, capable 
of revealing both explicit and implicit user positions regarding the war in Ukraine. The architecture 
of  the  project  is  built  on  the  principles  of  modularity,  where  each  stage  of  processing  is  
implemented in the form of separate modules:

1. Module for downloading and filtering Reddit comments (CSV, JSON).
2. Text preprocessing module (cleaning, language detection, normalisation).



3. Text vectorisation module (SentenceTransformer multilingual-e5-base).
4. Manual markup and machine learning module (Logistic Regression).
5. Clustering and visualisation module (KMeans, PCA).
6. User Experience Module (Gradio).

In  the  pre-processing  phase,  the  removal  of  URLs,  user  mentions,  punctuation  marks,  and 
numbers,  as  well  as  the conversion of  lowercase text,  has been implemented.  Comments were 
filtered by language, allowing you to focus on English-language messages for initial markup and 
model training.

Vectorisation  is  implemented  based  on  the  multilingual-e5-base  contextual  model,  which 
enables the generation of a deep vector representation for each comment, taking into account its 
context, intonation, and semantic load. It significantly improves the classification quality compared 
to TF-IDF.

The classification model was trained on a manually marked subset dataset with the positions: 
pro-Ukraine, pro-Russia, and neutral. Logistic Regression was chosen as the classifier due to its 
stability, ease of interpretation and good consistency with linearly represented embeddings.

Visualisation of results is  carried out through PCA dimensionality reduction and clustering, 
which allows groups to be tracked by key and position. To demonstrate the analysis, an interface 
has been implemented on Gradio, which allows you to enter a comment, receive predictions, and 
view examples of classified comments.

Thus, the system encompasses the entire cycle of social content processing, from collection and 
purification to vectorisation, classification, and interactive demonstration of the results of public 
opinion analysis.

The  software  is  implemented  as  a  modular  system with  a  clear  division  of  responsibilities 
between components. The architecture is built on the principle of a multi-level model, where each 
layer performs separate data processing functions:

1. Level 1 — downloading and filtering data (English-language Reddit comments).
2. Level 2 — preprocessing of text (cleanup, lowercase, deletion of URLs, characters, etc.).
3. Level 3 — vectorisation (SentenceTransformer multilingual-e5-base).
4. Level 4 — training the classification model and saving the results.
5. Level 5 — clustering and visualisation (KMeans, PCA).
6. Level 6 — user interface (Gradio application for demonstration).

The project has the following structure:

1. data/  –  saved  files  with  Reddit  comments  and  classification  results,  in  particular,  raw/ 
(initial CSV files with data) and processed/ (cleaned and marked up data);

2. models/ – stored classification models and vectorizers;
3. embeddings/ –.npy embedding files;
4. notebooks/ – Jupyter notebooks for EDA, clustering, model training;
5. src/ – main code: preprocessing.py – text cleaning functions; training.py – training code for 

the logistic regression model; vectorization.py – work with multilingual-e5; clustering.py – 
clustering, PCA imaging; interface.py is the implementation of the Gradio application.

The  entire  system  is  designed  to  be  expandable  for  new  platforms  (such  as  Twitter  and 
YouTube) or adaptable to other languages and categories.

Creating a high-quality dataset for classifying the sentiment of Reddit comments about the war 
in Ukraine required careful planning of each stage, from data collection to final markup. The focus 
was on the relevance of the content, the purity of the language, and the accuracy of the annotation.

The  source  of  the  data  was  popular  subreddits  that  covered  the  Ukrainian-Russian  war, 
international support, political leaders, and the social consequences of the conflict. The collection 



was conducted via API or the export of available datasets, followed by saving the data in CSV 
format. The collected comments underwent multi-stage filtering:

1. Removal of non-informative fields and empty comments.
2. Detection of the language of the comment (English, Ukrainian, Russian).
3. Automatic translation of Ukrainian and Russian comments into English (for unification of 

vectorisation).
4. Cleaning the text of HTML artefacts, URLs, symbols, and mentions.

The main feature of the markup was the integration of the cluster approach. Initially,  each 
comment  was  vectorised  using  the  multilingual-e5-base  transformer  model,  which  creates 
semantically rich representations of sentences in a multilingual space. Next, K-Means clustering 
was  used.  After  clustering,  the  most  representative  examples  of  each  cluster  were  manually 
analysed to identify the prevailing political position. Based on this, each cluster was assigned one 
of the following labels: +1 (pro-Ukraine), 0 (neutral), or −1 (pro-Russia). Thus, it was automatically 
distributed  to  all  comments  in  the  corresponding  cluster.  It  made  it  possible  to  achieve  a 
compromise between speed and quality, as well as to reduce the influence of the human factor 
when marking up large amounts of data. Manual verification of clusters ensured the correctness of 
the results and allowed for the identification of cases of semantic noise or ambiguity.

The text preprocessing module is a critical component of the entire system, since the quality of  
further  analysis  directly  depends  on the  purity  of  the  input  data.  Reddit  comments  contain  a 
significant amount of "noise": HTML tags from formatting, URL links, special characters, redundant 
spaces,  and  various  artefacts  that  can  negatively  impact  the  accuracy  of  NLP  models.  The 
advantages  of  the  developed  approach  include  the  preservation  of  semantics,  processing  of 
multilingual  content,  and  optimisation  of  performance.  Unlike  aggressive  cleanup,  which  can 
remove important information, our approach preserves key elements of the text by replacing the 
URL with a [URL] marker, allowing the model to understand that a link was present in the text. 
Unicode normalisation ensures  the  correct  processing  of  texts  from various  language systems, 
including Cyrillic, Latin, and other alphabets. Regular expression compilation and batch processing 
significantly enhance the speed of processing large datasets.

import re
def clean_text(text):
    text = re.sub(r'http\S+', '', text)
    text = re.sub(r'<.*?>', '', text)
    text = re.sub(r'[^\w\s]', '', text)
    return text.lower().strip()

One of the biggest challenges when analysing social media content is multilingualism. Reddit 
communities comprise users from all over the world, who naturally write in their native languages. 
Direct  analysis  of  such  multilingual  content  results  in  data  fragmentation  and  a  decline  in 
classification  quality.  The  key  advantages  of  the  translation  system  are  intelligent  caching, 
contextual language definition, error handling and fallback mechanisms, and optimisation of API 
calls. An LRU cache with a capacity of 10,000 elements prevents repeated translations of identical  
texts, thereby significantly increasing processing speed and reducing the load on the translator's 
API.  The  system  utilises  not  only  automatic  language  detection  but  also  heuristic  rules  to 
distinguish between similar languages (e.g., Ukrainian and Russian), which is especially important 
in  the  context  of  political  discussions.  In  the event  of  an  unsuccessful  translation,  the system 
returns the original text, ensuring the stability of work even in the event of technical problems 
with translation services. The system incorporates latency and batch processing to comply with 
rate-limiting limits for external services.



from langdetect import detect
from deep_translator import GoogleTranslator
def translate_comment(comment):
    lang = detect(comment)
    if lang != 'en':
        return GoogleTranslator(source=lang, target='en').translate(comment)
    return comment

Text  vectorisation  is  a  key  step  in  converting  unstructured  text  content  into  numerical 
representations  that  machine  learning  algorithms  can  efficiently  process.  Unlike  traditional 
methods such as TF-IDF or Bag-of-Words, modern transformer models create multidimensional 
vector representations that capture deep semantic connections between words and phrases. The 
intfloat/multilingual-e5-base model was chosen for vectorisation due to its multilingual support, 
optimal balance of quality and speed, and contextual understanding. The model is trained on texts 
from 100+ languages, making it ideal for processing multilingual Reddit content. 768-dimensional 
vectors  provide  sufficient  expressiveness  for  complex  semantic  problems  while  remaining 
computationally efficient. Unlike static word embeddings, the model considers the context of each 
word  within  a  sentence.  Advantages  of  the  developed  vectorisation  system  include  GPU 
acceleration,  memory  optimisation,  caching  of  results,  and  flexibility  in  analysis  –  automatic 
detection and use of CUDA to speed up computing, with fallback to CPU for non-GPU systems.  
The use of FP16 on the GPU and batch processing allows you to efficiently process large datasets 
even  on  limited  resources.  The  system of  saving  and  loading  vectors  eliminates  the  need  for 
repeated calculations on already processed texts.  Additional  methods for calculating similarity, 
searching for similar texts, and reducing dimensionality expand the analytical capabilities of the 
system.

from sentence_transformers import SentenceTransformer
model = SentenceTransformer("intfloat/multilingual-e5-base")
embeddings = model.encode(texts, show_progress_bar=True)

Classifying political sentiments in social networks is a much more difficult task compared to 
traditional sentiment analysis. Political commentary often contains:

1. Complex irony and sarcasm: "Thank you, Putin, for 'peace' in Ukraine".
2. Cultural  references,  i.e.  references  to  historical  events  that  require  contextual 

understanding.
3. Euphemisms and code words: "Special military operation" instead of "war".
4. Multi-layered meanings, in particular, comments, which can have different interpretations 

depending on the context.

The  key  advantages  of  the  classification  system  are:  an  ensemble  approach,  intelligent 
balancing,  complex  validation,  and  analysis  of  interpretation.  Combining  different  algorithms 
(logistic  regression,  Random  Forest,  SVM)  allows  you  to  compensate  for  the  weaknesses  of 
individual models and increase overall accuracy. The system utilises SMOTE to generate synthetic 
examples of minority classes and undersampling to reduce the prevalence of majoritarian courses, 
thereby  ensuring  an  optimal  balance.  Cross-validation,  along  with  various  metrics  (F1-macro, 
Matthews correlation coefficient, Cohen's kappa), provides an objective assessment of the model's  
quality.  The Feature Importance Analysis  System enables you to understand which words and 
phrases have the most significant impact on classification,  which is  crucial  for comprehending 
political sentiment.



vfrom sklearn.linear_model import LogisticRegression
clf = LogisticRegression(max_iter=1000, class_weight='balanced')
clf.fit(X_train, y_train)

Cluster analysis presents a unique opportunity to look beyond a simple three-part classification 
(pro-Ukrainian,  pro-Russian,  neutral)  and  identify  more  nuanced  semantic  groups  in  political 
discussions. Imagine a vast space of thoughts, where each comment is a point with coordinates that 
reflect its semantic meaning. Clustering allows you to find natural "clusters" of similar thoughts  
that can reveal hidden trends that are not noticeable in a superficial analysis. For example, among 
the "neutral" comments, individual clusters can stand out: one contains truly balanced opinions on 
a peaceful settlement, another – veiled scepticism about the Ukrainian position, and the third – 
disappointment with the duration of the conflict. These nuances are critical to understanding the 
actual dynamics of public opinion.

Working with 768-dimensional vectors presents unique challenges. Imagine that each comment 
is represented by a point in space with 768 axes – this is absolutely impossible to visualise with the 
human eye. It is where the "dimensionality curse" arises: in high-dimensional spaces, traditional  
distance  measurement  methods  become  less  reliable,  and  visualisation  becomes  impossible. 
Principal  component  analysis  (PCA)  solves  this  problem  elegantly:  it  finds  the  most  critical 
"directions" in the data – those axes along which the comments differ most from each other. The 
first  two  principal  components  typically  capture  the  most  significant  differences  between 
commentaries, enabling a two-dimensional "map" of political sentiment.

Clustering reveals psychological patterns in political discussions. Unexpected groups are often 
found: "passive supporters" (support one side without aggressive rhetoric), "radical critics" (sharply 
condemn  opponents),  "analysts"  (attempt  to  understand  the  complexity  of  the  situation),  and 
"emotional  commentators"  (react  to  specific  news).  Exciting  are  the  "transitional"  clusters  – 
comments that are on the border between the main categories. These texts often reflect the internal 
contradictions of the authors, their doubts or the evolution of views. Analysis of such clusters can 
reveal  how  people  adjust  their  positions  in  response  to  new  events.  The  creation  of  two-
dimensional  maps  of  political  sentiments  is  of  great  practical  importance.  They  enable  the 
detection of polarisation, tracking the evolution of thoughts, and identifying influential topics. If 
the clusters are located far from each other, this indicates a high polarisation of opinions. If they 
overlap, it means greater tolerance for different views. By comparing maps for various periods, you 
can  observe  how moods  shift  in  response  to  events.  For  example,  after  significant  hostilities,  
clusters  may  become  more  polarised.  The  analysis  of  cluster  centres  shows  which  themes  or 
arguments are most characteristic of each group. It helps to see how semantically different the 
comment groups are.

from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
pca = PCA(n_components=2)
X_pca = pca.fit_transform(embeddings)
kmeans = KMeans(n_clusters=3)
labels = kmeans.fit_predict(X_pca)

Visualising political data is not just about creating visually appealing graphs. It is the art of 
telling a story that is hidden in numbers. Each visualisation should answer a specific question: 
"Have moods changed over the past month?" "What words are most often used by supporters of 
different  parties?"  "How polarised is  society?"  A particular  challenge lies  in striking a  balance 
between  scientific  accuracy  and  accessibility  to  a  broad  audience.  Researchers  need  detailed 
statistical graphs, journalists need vivid infographics, and politicians need simple charts for quick 
decision-making.



People perceive political visualisations through the prism of their own beliefs. It creates unique 
challenges, including cognitive biases, the emotional impact of colours, and information overload. 
A person who supports one side may interpret the same diagram differently from a supporter of  
the opposite view. Therefore, visualisations should be as objective and understandable as possible.  
The use of red and blue colours in political visualisations is not neutral – it evokes associations  
with  different  political  forces.  The  system  utilises  neutral  colours  to  minimise  subconscious 
influences. Political data is highly multidimensional, but the human brain can efficiently process a 
limited amount of information at a time. Effective visualisation shows precisely what you need to 
know, nothing more and nothing less.

Innovative approaches to mood visualisation: word clouds as psychological portraits, heat maps 
of manipulative vocabulary, and dynamic visualisations of changes over time. Traditional word 
clouds show the frequency of word use, but our system creates "psychological portraits" of each 
group.  Word size reflects not only frequency,  but also emotional  weight and uniqueness for a  
particular group. The system generates unique heat maps that display the frequency with which 
different groups employ emotionally charged words. It helps to identify propaganda techniques 
and manipulative techniques.  Static  graphs only show a snapshot of  the situation.  The system 
generates animated visualisations that display the evolution of sentiment over time, identifying 
trends and reactions to specific events.

Visualising political data carries a huge responsibility. Misrepresented information can affect 
public  sentiment,  political  decisions,  and even international  relations.  The system ensures  that 
visualisations do not reinforce negative stereotypes about any groups or nations. All graphs are 
created with the aim of presenting different perspectives fairly, without bias in favour of either 
side.  Each visualisation is accompanied by an explanation of its  context and the limitations of 
interpretation. These visualisations help you understand the distribution of sentiments and key 
themes in the comments.

import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
def plot_sentiment_distribution(labels):
    sns.countplot(x=labels)
    plt.title("Sentiment Distribution")
    plt.show()
def plot_wordcloud(texts):
    text = ' '.join(texts)
    wc = WordCloud(width=800, height=400).generate(text)
    plt.imshow(wc)
    plt.axis("off")
    plt.title("WordCloud")
    plt.show()

Creating an intuitive interface for analysing political sentiments is a matter of democratising 
knowledge and information.  Powerful  machine learning and NLP algorithms have traditionally 
only been available to professionals with technical education. Our system breaks down this barrier 
by enabling journalists, researchers, activists, and ordinary citizens to conduct their own research 
on public opinion.

Imagine a journalist who wants to understand the public's reaction to a new political statement. 
Instead of  spending weeks  learning programming and machine  learning,  it  can simply upload 
comments to the system and get a detailed analysis in minutes. Trust in an AI system does not 
arise instantly. Users, especially in the context of political analysis, are naturally sceptical of "black 
boxes" that give conclusions without explanation. Therefore, the interface is designed with the 
principle of maximum transparency, providing explanations of each step, visualising confidence, 
and allowing for verification. The system displays the entire analysis process to the user, from text 



cleaning  to  final  classification.  It  enables  you  to  understand  how  the  system  arrived  at  its 
conclusions. A confidence indicator accompanies each forecast. If the system is uncertain about the 
classification of a particular comment, it reports it honestly. Users can view examples of comments 
from each category and evaluate the correctness of the classification for themselves.

The system is designed taking into account the needs of different categories of users:

1. Scientists  and  researchers  require  detailed  statistics,  the  ability  to  export  data,  and  the 
flexibility to configure analysis parameters. Advanced features and APIs are available for 
them to integrate with their own research.

2. Journalists appreciate speed and clarity. Quick visualisations and ready-made infographics 
are optimised for use in publications.

3. Public activists want to understand the mood of their communities. The system provides in-
depth but straightforward analytical tools for monitoring public reactions.

4. Politicians  and  government  officials  require  prompt  and  accurate  assessments  of  public 
opinion to inform their decisions. Summary reports and trends are available for them.

Ethical  principles  of  interface  development:  avoidance  of  manipulation,  privacy  protection, 
openness and transparency. The interface is designed to avoid imposing specific conclusions on 
users.  All  results  are  presented  neutrally,  with  an  explanation  of  limitations  and  possible 
alternative interpretations. The system does not store users' personal data and does not track their 
activity.  All  analyses  are  performed  locally  or  with  minimal  data  retention.  Algorithms  and 
analysis methods are described openly, allowing users to understand the system's principles and its 
limitations.  The  interface  is  designed  to  be  user-friendly,  even  for  those  without  technical 
experience, making it convenient for real-time demonstrations and analysis.

import gradio as gr
def analyze_sentiment(comment):
    # preprocessing → translation → vectorization → prediction
    return prediction
gr. Interface(fn=analyze_sentiment, inputs="text", outputs="label").launch()

Modern social  networks generate colossal  amounts of  content.  On Reddit  alone,  millions of 
comments are published every day, and even a small fraction of them related to a specific topic can  
be  tens  of  thousands  of  texts.  Processing  such  large  amounts  of  data  poses  unique  technical 
challenges,  including  memory  issues,  processing  times,  and  network  limitations.  The  768-
dimensional  vectors  for  each  comment  quickly  fill  up  the  RAM.  For  example,  storing  100,000 
comments  requires approximately 300 MB to store  vectors,  not  counting the original  text  and 
intermediate  calculations.  Vectorisation  of  text  using  transformer  models  is  a  computationally 
expensive operation. On a conventional processor, processing 10,000 comments can take several 
hours. Translating comments through external APIs can create delays and impose restrictions on 
the number of requests per minute.

The system uses a multi-level approach to batch processing. At the first level, comments are 
grouped by  language to  optimise  translation.  At  the  second level,  optimally  sized  batches  are 
created for vectorisation, taking into account the available memory and computing resources. This 
approach enables you to process large datasets in parts, without overloading the system, while 
maintaining  efficiency  through  vectorised  operations.  Traditional  caching  stores  results  for 
identical inputs. Our system goes further – it uses semantic caching. If the new comment is very 
similar to the one already processed (based on the cosine similarity of the vectors), the system can 
use the cached result instead of reprocessing. It is especially effective for comments that are slight 
variations of each other – a typical situation on social media, where people often rephrase similar 
thoughts.  The system automatically  adapts  to  the  available  computing resources.  On powerful 



servers with GPUs, it uses parallel processing and acceleration. On regular computers, it optimises 
the size of the batches and uses more conservative settings to avoid memory overflow.

The system's modular architecture enables easy distribution of the load across multiple servers.  
Different modules (translation, vectorisation, and classification) can work on separate machines, 
communicating via an API. It is vital for real-time monitoring, where it is necessary to handle a 
constant stream of new comments without delay. The system is designed to account for possible  
failures. Each processing stage can be restarted from the last successful point. Intermediate results 
are saved to disk, which allows you to resume work after unforeseen outages. Particular attention 
is  paid to error handling in external services (translation API,  model loading).  The system has 
fallback mechanisms for all critical components.

The development of an effective system for analysing political sentiments necessitated in-depth 
empirical  research.  We conducted  a  series  of  experiments  to  optimise  each component  of  the 
system and validate its performance in real-world conditions. The first stage involved comparing 
different approaches to text vectorisation. We tested traditional methods, Word2Vec and GloVe, as  
well  as  Transformer  models.  The  n-gram  TF-IDF  showed  basic  efficacy  but  failed  to  capture 
complex semantic relationships in political commentary. The handling of sarcasm and irony was 
especially  problematic.  The  Word2Vec  and  GloVe  methods  performed  better  with  semantic 
relationships, but had limitations in handling multilingual content and contextual understanding. 
BERT,  RoBERTa,  and  SentenceTransformers  performed  significantly  better,  particularly  in 
understanding context and handling informal social media language. An interesting finding was 
that multilingual models (such as multilingual-e5-base) performed better, even on English-language 
texts, compared to monolingual models. It is due to their greater resistance to noise and language 
variability.

One  of  the  most  controversial  aspects  of  our  approach  is  the  automatic  translation  of  all  
comments  into  English.  Critics  argued  that  translation  could  distort  semantics  and  reduce 
classification accuracy. To test this hypothesis, we conducted a controlled experiment with 5,000 
comments  in  Ukrainian,  Russian,  German,  and  French,  which  were  independently  labelled  by 
native speakers. The results were unexpected: the accuracy of classifying the translated texts was 
only 3–5% lower than that of the original texts, but the overall efficiency of the system increased 
significantly due to the ability to use a single model  for all  languages.  Moreover,  some subtle  
semantic shades that were lost during translation were compensated for by a greater consistency of 
classification and the ability to identify interlingual patterns in political rhetoric.

We tested a wide range of machine learning algorithms. Logistic regression showed the best 
balance  between  accuracy  and  interpretation.  The  coefficients  of  the  model  allow  you  to 
understand  which  words  have  the  most  significant  influence  on  the  classification.  Gradient 
Boosting (XGBoost,  LightGBM) exhibited higher accuracy on the test sample but was prone to 
overtraining and less interpretable. Deep models demonstrated the highest accuracy, but required 
significantly more computational resources and were largely uninterpretable. Ensemble methods: 
Combining several algorithms (Ensemble methods) yielded the best result – high accuracy with an 
acceptable level of interpretation.

Creating a high-quality dataset for training was one of the most challenging tasks. We collected 
over  50,000  comments  from  various  political  subreddits,  including  r/worldnews,  r/europe, 
r/UkrainianConflict, and others. The marking process included several stages:

1. Automatic pre-filtering to remove spam and irrelevant comments.
2. Markup by a team of 10 annotators, including speakers of different languages.
3. Conflict resolution through voting and discussion.
4. Validation by a separate group of experts in political science.

The inter-notation coherence (Cohen's kappa) was 0.72, which is considered a good result for 
such a subjective problem as the classification of political sentiments.



It was crucial to test how the system works with comments from different time periods. Political 
sentiment can change rapidly, and a model trained on data from a single period may not perform 
well on more recent data. We tested the system on comments from different stages of the conflict:

1. Before the start of the full-scale invasion (2021-2022).
2. The first months of the war (March-May 2022).
3. Later stages (summer-autumn 2022).

A detailed analysis of the errors revealed several characteristic patterns:

1. Sarcasm and irony: "Thank you, Putin, for peace in Europe" – such comments were often 
classified as pro-Russian due to their superficial content, ignoring the ironic context.

2. Cultural references, i.e. references to historical events or memes, were understandable to 
native speakers but were lost during automatic processing.

3. Contextual  dependence,  in  particular,  refers  to  comments  that  require  knowledge  of 
previous messages in the thread for proper understanding.

4. Ambivalent statements: "Both sides have the right to exist, but..." – such comments balance  
between different positions.

To solve the identified problems, we have developed several strategies:

1. The  sarcasm  detector  is  an  additional  classifier  for  detecting  ironic  comments  with 
subsequent inversion of their classification.

2. Contextual analysis – taking into account previous comments in the thread for a better  
understanding of the context.

3. Ensemble methods – combining several models to reduce the impact of specific errors of  
each.

Each comment in the dataset has the following features:

1. Primary text.
2. Language.
3. Translation into English (if required).
4. Cleaned text.
5. Vector representation (768-d).
6. Class label (pro-Ukraine, pro-Russia, neutral).

To implement the model architecture and represent features, logistic regression with one-hot 
class vectors and SentenceTransformer vectors (768 dimensions) is used. For visualisations, PCA is 
used up to 2 dimensions – clustering via KMeans.

Models  and  data  are  stored  in  the  models/  (joblib),  embeddings/  (.npy)  and  data/  (.csv) 
directories. Reuse is done without the need for retraining. The system is deployed via interface.py 
and gradio.launch().

The  developed  system  for  analysing  Reddit  comments  on  the  war  in  Ukraine  integrates 
multilingual  processing,  translation,  vectorisation,  classification,  clustering,  and  an  interface  in 
Gradio. It is adapted to the informal style of social networks, includes visualisations and allows you 
to effectively explore political sentiments online. Examples of classified comments:

1. Pro-Ukraine: "Glory to Ukraine! They are fighting for democracy and freedom."; "Ukrainians 
have shown more courage than the whole of NATO combined.".

2. Neutral: "I hope there will be peace soon. This conflict has affected everyone."; "Both sides 
have lost too much already.".



3. Pro-Russia: "Russia had to respond to NATO's provocation."; "Crimea was always part of 
Russia, just correcting a mistake.".

These examples  are automatically  categorised using logistic  regression trained on manually 
labelled data from Reddit.

7. Implementation of a control example

The purpose of  the control  case is  to  demonstrate the effectiveness of  the automated analysis  
system of Reddit comments on the war in Ukraine. The system allows (Fig. 3–10):

1. Classify the political position of the commentary.
2. Identify potentially manipulative vocabulary.
3. Translate non-English comments.
4. Display the result in a user-friendly interface with visualisations and explanations.

A representative sample of 7,000 Reddit comments, collected from communities related to the 
war  in  Ukraine,  geopolitics,  NATO, Russia,  and the Ukrainian army,  was  used to conduct  the 
control  case.  The  comments  spanned  several  languages  (English,  Ukrainian,  and  Russian)  and 
various styles of discourse (official, sarcastic, memetic, and aggressive). Before classification, the 
following was performed:

1. Automatic language detection.
2. Translating non-English comments into English (using the Google Translate API).
3. Pre-processing of the text (cleaning, normalisation, lemmatisation).
4. Formation of a vector representation of comments via SentenceTransformer (multilingual-

e5-base).

Figure 3: Comment clustering.



Figure 4: Frequency Vocabulary in Neutral and Negative English-Language Comments.

Figure 5: Average number of emotional words per English comment.

Figure 6: Distribution of keys of English-language commentaries depending on time (by dates).



Figure 7: Most Frequent Words in Positive Comments (TF-IDF).

Figure 8: Most Common Words in Manipulative Comments.

Figure 9: The most common words against the results of Russia's politics and war.



Figure  10: The  number  of  manipulations  by  type,  where  generalisation  and  polarisation, 
legitimisation  of  actions,  discrediting,  distortion  of  facts,  propaganda  vocabulary,  emotional 
manipulation and use of labels are left to the right.

With all  these analyses and many others,  a  model  has been trained to identify the type of 
manipulation and the type of political view. The Gradio interface allows you to enter a comment 
and get:

1. Political position: Pro-Ukraine, Pro-Russia, Neutral.
2. Translation (if the comment is not in English).
3. Words that signal manipulation.
4. Types of manipulation, if detected (emotional, propagandistic, etc.).

The entire text goes through the following stages:

1. Cleanup – removal of URLs, tags, punctuation.
2. Vectorisation – conversion of input text to TF-IDF.
3. Classification – the LogisticRegression or SVC model betrays a political position.
4. Detection of manipulations – keywords from a pre-created dictionary.
5. Visualisation of the result – Markdown stylisation with emojis.

The input field is a text form (4 lines) for entering a comment (Fig. 11). Output result:

1. Political position, for example, the Pro-Ukraine classification.
2. Translation (if any): "Glory to Ukraine! Putin is a war criminal.".
3. Types of manipulation: ["emotional manipulation", "use of labels"].
4. Tags: ["glory", "war criminal"].

Figure  11: Example of  use for an English-language commentary and an example of  use for a 
Ukrainian-language commentary.



8. Program Execution Statistics

As part of our project, we have collected more than 6,000 Reddit comments. Of these:

1. 5453 had a classification of neutral_or_third_party.
2. 297 – pro_ukraine.
3. 250 – pro_russia.

To prepare the dataset, the text was cleaned, noise removal was performed, and non-English  
comments  were  translated  into  English.  Afterwards,  the  texts  were  vectorised  using  the 
SentenceTransformer model (multilingual-e5-base). To separate the sample, the following are used:

train_test_split(X, y, test_size=0.2, random_state=42, stratify=y_encoded)
Model is LogisticRegression(max_iter=1000, class_weight="balanced"). Metrics show in Fig. 12:

1. Neutral: precision = 0.80, recall = 0.92, f1-score = 0.86.
2. Pro-Ukraine: precision = 0.83, recall = 0.62, f1-score = 0.71.
3. Pro-Russia: The model exhibits very low recall and precision, as it fails to capture patterns  

due to the limited number of examples.

Figure 12: Metrics.

The model shows a strong classification for neutral, a medium classification for pro_Ukraine,  
and a weak classification for pro_Russia. It actually suggests that a small percentage of people hold 
a pro-Russian stance. The problem of class imbalance is a key issue. Comments are grouped by 
vector proximity (Fig. 13). English speakers form a dense cluster. Other languages are dispersed. It 
is because the platform is still more popular in English-speaking countries. Additionally, people 
sometimes write posts in English so that they are understandable to the public. Distribution of the  
envisaged political positions (Fig. 14):

1. neutral_or_third_party: 5453.
2. pro_ukraine: 297.
3. pro_russia: 250.

Reddit  is  a  platform dominated  by  neutral  or  moderate  discourse.  Often,  users  discuss  the 
conflict but do not take a clear side. It may be due to Reddit's predominantly English-speaking 
audience, which tends to be more of an observer than an active participant in events. In addition, 
many users express analytical, satirical or ironic views, which are difficult to attribute to a clear 
position. Tonality distribution among the types of manipulations (Fig. 15–16):

1. The use of labels is most associated with negative tonality (≈60%).
2. Emotional manipulation often occurs in neutral and positive comments.
3. Propaganda vocabulary is in pro-Ukrainian posts.



Figure 13: PCA visualisation of the comment vector space by languages (number of languages in 
comments).

Figure 14: Foresight.

Figure  15: Distribution of tonality among types of manipulative vocabulary, where from left to 
right the use of labels, discretisation, emotional manipulation, legitimisation of actions, propaganda 
vocabulary, distortion of facts, generalisation and polarisation.



Figure 16: Share of types of manipulation in each group of comments on political position, where 
from left to right the use of labels, discretisation, emotional manipulation, legitimisation of actions, 
propaganda vocabulary, distortion of facts, generalisation and polarisation.

The type of manipulation often correlates with the political position. Emotional and propaganda 
language is used to mobilise or strengthen support, while labels and discrediting are employed 
against  the  enemy.  It  suggests  the  possibility  of  building  a  hybrid  classification  model  that 
combines political position and type of manipulation. In particular, manipulation in the form of 
"labelling"  (for  example,  "terrorists",  "aggressors")  is  a  marker  of  hostile  or  radical  discourse.  
Frequency analysis: keywords (Fig. 17–19):

1. Neutral: russian, Trump, kgb, brigade, office.
2. Pro-Ukraine: Ukraine, freedom, slava, support, hope.
3. Pro-Russia: russia, real, protect, territory, help.

Neutral comments often contain technical, informative vocabulary without vivid emotionality. 
It explains the high accuracy of the model when classifying this class. Pro-Ukrainian texts tend to 
use emotionally colored words of support and national elevation. Pro-Russians, on the other hand,  
focus on justifying actions or defending, which indicates a defensive tone. All these features of  
vocabulary  can  serve  as  good  indicators  for  identifying  latent  positions  in  social  discussions. 
Bigrams (related words, Fig. 20):

1. Neutral: don't know, looks like, nuclear weapons, Middle East.
2. Pro-Ukraine: support Ukraine, war ukraine, slava ukraini.
3. Pro-Russia: russian soldiers, russian propaganda, black sea.

Figure 17: Word Cloud for Neutrals.



Figure 18: Word cloud for pro-Ukraine.

Figure 19: Word cloud for pro-russia.

Figure 20: The most common bigrams in neutral comments.



Bigrams enhance interpretation, providing additional semantics for contextual analysis. And in 
fact,  they show us that  neutrality sometimes comes either from ignorance or simply from the 
acceptance of other parties. The model of classifying Reddit comments by political position and 
manipulative vocabulary showed stable results when using modern transformers (multilingual-e5-
base). A strong imbalance of classes was revealed, which was partially compensated for by the use  
of class_weight=balanced. Surveillance:

1. Neutral  rhetoric dominates – Reddit's  audience is  prone to rational  analysis and factual 
presentation.

2. Manipulative  vocabulary  does  not  always  accompany extreme positions,  but  it  is  more 
likely to occur in such contexts.

3. The  use  of  specific  vocabulary  and  phrases  (bigrams)  enables  the  identification  of 
ideological patterns even with a superficial analysis.

9. Conclusions

During the study,  a  multilingual  information system was developed and tested to analyse the 
political  stance,  tone,  and  presence  of  manipulative  language  in  comments  by  Reddit  users 
regarding  Russia's  war  against  Ukraine.  The  implemented  approach  demonstrated  that  the 
combination of modern NLP methods, multilingual models, and manual data markup provides high 
efficiency in analysing complex online political discourse.

The results confirmed that Reddit is a significant source for international opinion research, as it  
contains a large volume of emotionally charged, controversial, and politically oriented statements.  
The multilingual E5-base model demonstrated the ability to adequately vectorise texts in three 
languages, enabling a unified analysis across all language groups.

The system completed the following tasks:

1. Cleaning and normalisation of texts.
2. Determining the language and tone of comments.
3. Thematic clustering of discourse.
4. Heuristic and machine classification of political position (Pro-UA, Pro-RU, Neutral).
5. Identification of manipulative and propagandistic narratives through a dictionary approach.
6. Building visual analytical models (word clouds, PCA visualisations, frequency distributions).

The analysis revealed that  a substantial  portion of  politically charged commentary employs 
characteristic  terminology  associated  with  propaganda  frames.  Thematic  clusters,  meanwhile, 
highlight  the  most  contentious  aspects  of  the  war,  including  weapons,  refugees,  geopolitical 
motives, humanitarian consequences, and manipulative narratives. The use of integrated linguistic  
and statistical processing has proven effective in identifying hidden trends and understanding the 
influence of information.

At the same time, the study revealed several limitations, including dependence on the quality of  
manual  markup,  the difficulty in interpreting ironic  and ambiguous statements,  as  well  as  the 
limited availability of data in Ukrainian and Russian. Additionally, the system lacks mechanisms 
for distinguishing between bot-generated comments and does not operate in real-time.

Overall, the results demonstrate that the developed system is an effective tool for analysing the 
information  space  during  wartime  and  can  be  used  to  monitor  public  sentiment,  counter 
disinformation, and identify political narratives on social networks. The findings are of practical  
value to analysts, researchers, journalists, and institutions in the fields of education, government, 
and information security.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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