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Abstract
This article reviews and analyzes methods and software tools for electroencephalographic (EEG) signal  
classification in finger movement recognition tasks. A systematic review of recent studies and Automated 
Machine Learning (AutoML) solutions in brain-computer interfaces (BCI) was conducted. Attention is  
paid  to  EEG signal  processing  pipelines,  algorithm evaluation,  and  software  implementation.  Typical 
pipeline stages are summarized, and key factors affecting an algorithm's effectiveness are identified. The  
review  found  an  overreliance  on  accuracy  as  a  metric  and  limited  evaluation  criteria,  making  fair  
comparison difficult. Popular AutoML platforms fail to reflect EEG/BCI specifics. The article justifies using 
graph-based  pipeline representation and multi-criteria  optimization with flexible  metric  weighting.  It 
formulates requirements for new software able to provide reliable, reproducible, and efficient EEG-based 
finger movement recognition.
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1. Introduction

Recognizing the motor activity of fingers of the upper limbs from EEG signals is one of the most 
challenging yet promising directions in the development of brain-computer interfaces. EEG allows 
non-invasive  recording  of  brain  activity  related  to  movement  intentions,  but  such  signals  are 
characterized  by  a  high  level  of  noise,  non-stationarity,  and  significant  differences  between 
subjects.  This  makes  it  difficult  to  a  build  universal  algorithm  capable  of  accurately  and 
consistently recognizing fine movements of the hands and fingers. Achieving acceptable accuracy 
requires a careful multi-stage processing pipeline: from filtering and artifact removal to forming 
informative features and classifying the signals. Each stage of this pipeline significantly influences 
the final result, so the system’s effectiveness is determined not so much by individual algorithms as 
by the coordinated combination of all processing components.

At  present,  scientific  studies  present  a  wide  range  of  approaches  to  EEG  signal
classification  – from classical statistical methods to modern deep neural networks and ensemble 
algorithms. Numerous studies focus on motor imagery tasks and demonstrate gradual increases in  
classification accuracy thanks to improved algorithms and their combination. However, the open 
question  remains:  which  specific  combinations  of  preprocessing  methods,  feature  extraction 
techniques, and classifiers are the most effective for recognizing movements of individual fingers. 
The  lack  of  standard  pipelines  for  building  such  systems  makes  it  hard  to  compare  different 
solutions and slows progress in the field. Thus, there is a need for a systematic review of current 
methods and software tools to summarize achievements, identify existing problems, and outline 
promising development paths.
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In  this  study,  we  present  the  results  of  a  review and  analysis  of  EEG-signal  classification  
methods  for  finger  movements,  as  well  as  the  software  tools  for  implementing  such  systems. 
Recent  scientific  works  from  the  last  few  years  describing  the  construction  of  classification 
pipelines for motor imagery are examined, and modern AutoML platforms that can be applied in 
BCI  are  analyzed.  Based  on  this  analysis,  the  main  trends  and  challenges  in  the  field  are 
determined, and requirements are formulated for a new software system capable of overcoming the 
identified limitations. In the following sections, we describe in detail the typical structure of an 
EEG classification pipeline, provide a comparison of popular methods and algorithms, consider the 
specifics of performance evaluation and technical implementation, and discuss the shortcomings of 
existing AutoML solutions in the BCI context. This creates a complete picture of the state of the 
problem and provides a foundation for developing new approaches to automating the construction 
of effective EEG-based finger movement recognition systems.

2. Problem Statement

Despite significant progress in EEG-based BCI research, the development of reliable systems for 
recognizing  finger  motor  activity  remains  limited  by  the  lack  of  standardized  and  integrated 
approaches to constructing classification pipelines. Existing studies typically focus on improving 
isolated  algorithms  or  preprocessing  techniques,  without  considering  the  interaction  and joint 
optimization  of  all  pipeline  stages.  This  fragmented  approach leads  to  inconsistent  evaluation 
results, reduced reproducibility, and limited applicability in real-time or large-scale environments.

Furthermore, modern AutoML systems are not fully adapted to the specific requirements of 
EEG/BCI data processing. They often lack explicit representation of domain-specific stages, support 
only single-objective optimization, and do not provide flexible control over metric weighting or  
resource  constraints.  As  a  result,  researchers  face  difficulties  in  identifying  optimal  software 
component configurations that balance accuracy, robustness, and computational efficiency – a gap 
that this study aims to address.

3. Formulation of the Purpose of the Article

The purpose of this article is to analyze modern scientific research and existing software systems  
for classifying EEG signals in finger motor activity recognition tasks. The study aims to identify 
architectural  and  methodological  limitations  in  current  approaches  and  determine  the  key 
directions  for  improving  the  efficiency,  robustness,  and  scalability  of  such  systems.  Special  
attention is  paid  to  the  analysis  of  AutoML solutions  and classification pipelines  used in  BCI 
systems. The objective is to generalize typical structures of data processing pipelines, highlight  
shortcomings  in  current  model  evaluation  practices,  and  formulate  requirements  for  the 
development of an improved, flexible, and resource-efficient software framework for EEG signal 
classification.

4. Review and Analysis of Methods and Software Tools for EEG Signal 
Classification in Finger Movement Recognition Tasks in Scientific 
Studies

Literature  Selection Criteria. To ensure the relevance and reliability  of  the analysis,  the review 
focused on full-text journal articles and conference proceedings published between January 1, 2020, 
and  May 13,  2025.  The  selection  was  strictly  limited  to  English-language,  open-access  studies 
addressing EEG-based motor imagery classification using machine learning methods. The selection 
process involved a systematic multi-stage screening, starting with the removal of duplicates from 
the initial pool of 172 records. This was followed by a preliminary screening based on titles and 
abstracts,  and  subsequently,  a  full-text  assessment  against  the  eligibility  criteria.  During  this  
process, records were excluded if they were abstracts, posters, book chapters, review articles, or 



theses,  or  if  they  failed  to  apply  specific  machine  learning  algorithms.  Additionally,  studies 
published by authors affiliated with scientific institutions of the Russian Federation were omitted.  
Ultimately, 69 publications were selected for the final analysis.

Typical  EEG Processing Pipeline. An effective  EEG-signal  classification system is  based on a 
sequence  of  coordinated  data  processing  stages.  Analysis  of  studies  allowed us  to  highlight  a  
typical pipeline used in the majority of studies (see Figure 1: Structure of a typical EEG signal 
classification pipeline) [1–69].

Figure 1: Structure of a typical EEG signal classification pipeline.

Building an effective EEG classification system is difficult because researchers often study each 
stage  –  preprocessing,  feature  extraction,  and  classification  –  separately.  To  understand  what 
causes performance issues and how to improve the results, we will now look at each step of a 
typical EEG processing pipeline in more detail.

Here is an example of a numbered list:

1. Data collection.  Recording multi-channel  EEG signals  using a standardized scheme with 
focus on motor cortex areas; for example, the "10–20" placement system [70].

2. Preprocessing. Filtering out noise, removing artifacts, and basic normalization of the signal 
to improve data quality.

3. Dataset formation. Splitting the continuous signal into short segments and balancing the 
classes by selecting an equal number of examples for each class; if needed, using artificial  
data augmentation to increase the algorithm’s robustness to signal variability.

4. Feature extraction. Computing informative characteristics of the signal based on frequency, 
temporal-spatial, statistical, and other analysis methods. Often, dimensionality reduction is 
applied  at  this  stage  to  reduce  computational  cost  and  lower  the  risk  of  algorithm 
overfitting.

5. Classification. Training the chosen machine learning algorithm on the extracted features to 
distinguish movement states. Both classical classifiers and modern ensemble methods and 
neural networks are used.

6. Results evaluation. Measuring the algorithm’s quality by one or more metrics on test data or 
via  cross-validation.  This  allows  comparing  alternative  approaches  and  selecting  the 
optimal algorithm configuration.

A strategically important aspect is the coordinated integration of all components within a single 
conveyor: how well the methods at all stages are chosen and assembled determines the balance 
between the system’s  accuracy,  speed,  and robustness.  Most  researchers  design such pipelines 
empirically,  guided  by  intuition  or  the  popularity  of  approaches,  which  often  leads  to 
inconsistencies and lost efficiency. This underlines the need for more formalized approaches to 
designing classification pipelines that ensure reproducibility and optimal solutions.

To summarize the technological landscape analyzed in this study, the list below maps the most 
frequently  used  algorithms  to  their  respective  stages  in  the  typical  EEG  signal  classification 
pipeline:

1. Preprocessing: Common Spatial Patterns, Bandpass Filtering, Notch Filtering.
2. Data enhancement: Artifact Handling and Generation, Artifact Subspace Reconstruction.
3. Feature extraction: Independent Component Analysis, Statistical features.



4. Dimensionality reduction: Principal Component Analysis.
5. Classification: Support Vector Machine, Convolutional Neural Network.
6. Evaluation metrics: Accuracy, F1-score, AUC-ROC, Kappa.

Data and Experimental Scenarios. Data quality and structure significantly affect classification 
results,  so the characteristics of datasets used in the reviewed works were analyzed. In the 69  
studies included in the review, the vast  majority of  experiments were conducted with healthy 
volunteers 68 studies, whereas only 3 studies [10, 57, 64] focused on patients with neurological 
disorders. This shows that the problem of classifying finger movements has been studied mainly on 
healthy  subjects  and  needs  more  attention  for  pathological  conditions.  Most  tasks  were
binary two-class scenarios were used in 62 works [1–23, 25, 27–31, 33–43, 46, 48, 50–52, 54–55, 57, 
58,  61–68].  Multi-class  setups  are  much  rarer:  for  example,  experiments  with  4  classes  of 
movements are described in 21 studies [1, 3, 4, 7, 11, 17, 19, 22–24, 26, 28, 41, 47, 49, 51, 53, 56, 59, 
61, 69], and classification of 3, 5, or more classes appear only in isolated cases [20, 32, 45]. This is 
because,  as  the number of  classes  increases,  it  becomes much more difficult  to  ensure reliable 
algorithm performance. Another limitation is the use of private datasets: in many works, the data  
are not publicly available, or the conditions of data collection are insufficiently described, which 
reduces the reproducibility of results. Thus, there is a deficit of unified open datasets in this field,  
especially for fine finger movements, as well as a lack of standards for documenting experiments.

Classification Algorithms and Their Effectiveness. There is a wide variety of algorithms applied 
for classifying motor activity from EEG, but we can single out the most common approaches and 
estimate  their  typical  accuracy  ranges.  Researchers  most  often  use  classical  machine  learning 
algorithms. For example, the Support Vector Machine (SVM) method was used in 55 studies [1, 2, 
4–6, 8, 9, 11–17, 19–21, 23–25, 28–32, 34, 37, 39–43, 45,  46, 50, 52–54, 56–61, 64–69], and Linear 
Discriminant Analysis (LDA) in 35 studies [2, 4–6, 8, 12, 13, 16, 17, 19, 20, 22, 25–28, 30, 32, 33, 35, 
38, 40, 43, 46–48, 54, 59–63, 66–67]. The typical classification accuracy for SVM was around 70–
80%, while for LDA it was 75–85%. Similar results were demonstrated by the k-Nearest Neighbors  
(k-NN) method [5, 6, 8, 9, 11, 12, 19, 23, 28, 31, 32, 36, 37, 40, 45, 48, 50, 58–60, 66, 67] and logistic 
regression [6,  7, 11, 19, 23, 28, 31, 40, 48, 59]. Decision trees provided somewhat lower but still  
stable accuracy on the order of 65–75% [5, 6, 8,  9, 11, 19, 21, 23, 28, 32, 40, 48, 59]. The highest 
average  figures  in  the  reviewed  studies  were  achieved  with  ensemble  methods,  which  had 
accuracies in the range of 85–95% [9, 10, 12, 14, 19, 23, 28, 30, 31, 59]. Neural networks were used 
less often for example, a multi-layer perceptron (MLP) appears in only 6 studies [6, 13, 19, 23, 28, 
4d6], mainly in cases of large data volumes or more complex task setups. Some modern studies  
have  introduced  deep  convolutional  or  recurrent  neural  networks,  as  well  as  transformer 
algorithms,  to  improve  classification  accuracy.  In  particular,  specialized  architectures  such  as 
TSGL-EEGNet have been proposed for recognizing movements in patients with spinal cord injuries 
[69].  However,  neural  network  approaches  require  large  training  datasets  and  significant 
computational resources, so they are not always better than classical methods on small datasets. At  
the same time, methods for improving the effectiveness of classical algorithms are being actively 
researched – in particular, optimal selection of channels and features. For example, in the work by  
Kardam et  al.  [2],  an evolutionary algorithm for  channel  selection and wavelet  scattering was 
proposed to  enhance  motor imagery classification.  Overall,  the  review showed that  traditional 
approaches  such  as  SVM,  LDA,  etc.,  still  dominate  due  to  their  balanced  accuracy  and 
interpretability of results.

Evaluation Strategies and Metrics. For objective comparison of algorithms, validation methods, 
and the choice of  quality metrics  are  very important.  The analysis  of  publications shows that 
evaluation  practices  vary  greatly.  The  most  common approach is  cross-validation:  specifically,
5-fold cross-validation was used in 20 studies [5, 8, 12, 13, 16, 18, 20, 23–25, 32, 34, 43, 46, 47, 49, 52, 
54, 59, 69], and 10-fold in 14 studies [10, 14, 26, 27, 40–42, 45, 51, 55, 58, 64, 66, 67]. However, 27 
studies did not specify the validation method at all [1–4, 6-7, 9, 11, 17, 21, 22, 30, 33, 36–39, 44, 50, 
53, 56, 57, 60–63, 65], which makes it difficult to interpret the results and compare between works. 



Regarding metrics, the vast majority of authors evaluate algorithms by accuracy – this basic metric 
was used in 66 studies [1–18, 21-37, 39–69]. Much less often, additional values are reported: F1-
score [2, 11, 13, 16, 17, 21, 28, 32, 37, 45, 46, 64] and Recall [2, 9, 11, 12, 16, 28, 30, 45, 48, 59, 64] in 12 
and 11 cases each, Precision in 6 studies [2, 9, 11, 16, 28, 64], and Cohen’s kappa in 6 studies [2, 4,  
14, 22, 28, 45]. Specificity and the area under the ROC curve (AUC) appear only 5 times each [13, 
28, 45, 46, 48]. Very rarely are criteria such as BCI information transfer rate, system response time,  
balanced accuracy, Fisher’s criterion, or g-mean mentioned [2, 8, 13, 17, 27, 38, 55]. Thus, quality  
evaluation  metrics  are  mostly  limited  to  a  single  dimension,  whereas  aspects  like  algorithm 
robustness, speed, and other practical indicators are often ignored. The prevailing format is a direct 
comparison  of  average  accuracies  of  several  approaches  on  one  dataset;  multi-criteria  or 
statistically grounded comparisons are almost never used. This confirms that evaluation practice is 
not yet mature: researchers tend to rely on simple metrics that do not always reflect an algorithm’s 
suitability  for  real-world  application.  One  direction  for  progress  in  this  area  is  the  call  for  
mandatory reporting of  result  variability,  the  use  of  unified cross-validation schemes,  and the 
inclusion of multiple types of metrics. Only under such conditions is it possible to make objective 
and fair comparisons of alternative methods.

Implementation  and  Practical  Suitability. It  is  worth  separately  considering  the  issue  of 
implementing classification solutions in practice, since the ultimate goal of research is to create 
working BCI systems. Here, a significant gap was found between laboratory prototypes and ready-
to-use solutions. Firstly, very few works take into account computational resource constraints and 
energy consumption. Only 2 out of 69 analyzed papers include measures for optimizing energy 
consumption, for example, for wearable or implanted devices [53, 60]. Some authors note that even 
simple measures such as reducing the sampling rate, reducing the number of EEG channels, or  
selecting features can significantly reduce the load on hardware resources. However, the majority 
of studies focus exclusively on increasing accuracy, without analyzing the runtime of algorithms or 
energy  efficiency,  which  are  critical  for  autonomous  systems.  Secondly,  only  29  works 
demonstrated moving beyond offline experiments – that is, implementing a system that works in 
real time or integrates into an application environment [6, 11, 14, 18, 22, 25, 27, 32–35, 37–40, 42–
48, 50, 53, 56, 60, 63, 64, 67]. The other 40 studies were limited to offline analysis of recorded data or 
software emulations, not bringing the developments to the stage of real use [1–5, 7–10, 12,  13, 
15–17, 19–21, 23,  24, 26, 28–31, 36, 41, 49, 51,  52, 54, 55, 57–59, 61, 62, 65, 66, 68, 69]. Thirdly, 
architectural scalability and distributed processing are practically not addressed: the overwhelming 
majority of solutions are implemented as local applications, without the ability to deploy them in  
the cloud or on a cluster. Only 4 works experimented with cloud services for EEG processing, and 
only in one case was the use of a national supercomputer mentioned [3, 53, 56, 60]. Where cloud  
technologies  were  applied,  a  positive  experience  is  described:  parallel  signal  processing  on  a 
cluster,  centralized  data  storage,  automated modeling pipelines,  and web interfaces  for  remote 
configuration of preprocessing. This confirms the promise of such approaches, but at present they 
remain isolated experiments. In summary, the practical analysis revealed a number of unresolved 
issues: energy efficiency, scalability, and distributed computing are insufficiently covered in current 
research. This gap holds back the transfer of finger motor classification algorithms to portable 
devices and industrial applications.

Problem of Choosing the Optimal Pipeline. Summarizing the results of the methods review, we 
can conclude that the effectiveness of BCI systems is determined by a holistic approach to building 
the pipeline. Each step – from preprocessing to the classifier – must not only be well implemented, 
but also correctly composed with the others. In contrast, the current state of affairs is characterized 
by fragmentation: researchers often improve individual stages or propose a new feature extraction 
method or a new classification algorithm, without paying attention to how these stages align in the 
overall system. The absence of standardized methods for describing and evaluating pipelines leads 
to the impossibility of objectively comparing different configurations with each other. For example,  
two researchers might use similar algorithms, but with different sequences or settings of stages, 
and obtain different results – yet determining which variant is better is difficult due to the lack of a  



unified approach to reporting results. Moreover, the low reproducibility of experiments, due to  
unspecified randomness parameters, lack of published code, etc., makes it hard to verify claimed 
achievements.  Insufficient  attention  is  also  given  to  computational  efficiency:  when  choosing 
methods,  considerations like  processing delays or  real-time requirements  are  rarely  taken into 
account, so the proposed pipelines are not optimized for practical operation. The lack of automated 
tools for searching for the optimal pipeline forces manual tuning by trying out options, which 
requires a lot  of time and does not guarantee finding the globally best  solution. Therefore,  an 
urgent scientific task is the development of approaches for the automatic synthesis of the optimal 
conveyor  of  software  components  for  EEG  classification.  Such  an  approach  should  take  into 
account  method  compatibility,  the  balance  between  accuracy  and  speed,  and  should  ensure 
reproducibility  and  easy  reconfiguration  of  the  system  for  other  conditions  or  data.  The 
shortcomings of  existing  solutions  identified in  the  review directly  point  to  the  directions  for 
improvement, which will form the basis for the next stage of our research.

5. Modern Software Systems and AutoML Solutions for EEG/BCI

AutoML in BCI Tasks. The growing complexity of algorithms and the need for reproducibility of 
experiments  in  neurotechnology  have  led  to  the  emergence  of  automated  machine  learning 
systems. AutoML platforms automatically select the optimal combination of algorithms and their 
hyperparameters,  can  perform feature  selection,  build  ensemble  algorithms,  and evaluate  their  
quality according to specified metrics. The advantage of AutoML is that it saves a lot of researcher  
time and reduces the role of  human factor  in  building ensemble  algorithms.  In  addition,  such 
systems  promote  better  reproducibility,  since  all  pipeline  configurations  are  documented 
automatically and the search process is carried out by formalized procedures. For the BCI field,  
where  one  often  has  to  experimentally  try  many  variants  of  preprocessing  and  classification, 
AutoML is especially attractive: it allows quick hypothesis testing and efficient use of computing 
resources thanks to smart search strategies.

While  general-purpose  software  environments  like  Python  and  MATLAB  have  become 
dominant  in  BCI  research  due  to  their  flexibility,  extensive  libraries,  and  strong  community 
support, applying general-purpose AutoML platforms to biomedical signals requires taking domain 
specifics into account. In particular, typical AutoML systems have been developed mostly for tasks 
with ready-made tabular data or standard features, and they do not include built-in modules for 
processing raw biosignals.  Therefore,  when using them in neurointerfaces,  researchers have to 
prepare the data themselves and then feed the already extracted features into the AutoML tool.  
Another problem is the limited ability to configure the optimization criteria. In practice, in BCI it is  
often important not only to maximize accuracy but also, for example, to minimize decision time or 
to  account  for  build  an  ensemble  algorithm  stability  across  different  sessions.  Basic  AutoML 
platforms allow setting only one target metric, without flexible balancing of multiple indicators. 
We should also mention validation and data variability: for EEG tasks, it is critical that algorithm 
evaluation considers inter-subject differences and potential  signal  drift between sessions.  Thus, 
existing AutoML solutions need extended functionality for EEG/BCI. There is a need for tools to  
develop extendable  pipelines  with  support  for  domain-specific  biomedical  signal  preprocessing 
stages, flexible metric configuration mechanisms, and transparent validation methods that allow 
one to monitor an algorithm’s generalizability to new subjects and sessions.

Analysis  of  Existing Platforms. As  part  of  this  review,  three popular  AutoML systems were 
selected for analysis: H2O AutoML, AutoGluon, and Google Cloud AutoML Tables. The selection 
criteria  were  their  wide  popularity,  support  for  various  algorithms,  and  claimed  automatic 
optimization capabilities. The comparison showed that each of these platforms has limitations in 
terms of use for EEG signal classification tasks.



1 H2O AutoML handles building algorithm ensembles well, but it has no tools for processing 
raw EEG time series and does not support user-configurable metrics beyond the standard 
ones [71].

2 AutoGluon focuses on tabular data and computer vision tasks; applying it to EEG requires  
unconventional solutions to integrate signal filtering and spatial filtering stages [72].

3 Google AutoML Tables is a cloud service with limited user control over the process – this is  
acceptable for typical tasks, but in the BCI context, it lacks flexibility in choosing specific 
data transformations [73].

Overall, none of the analyzed AutoML systems provides an explicit representation of the stages 
of an EEG pipeline as controllable components. A user cannot, for example, change the artifact  
removal algorithm or add their own signal decomposition step – such stages are simply absent or 
fixed  in  advance.  Parameter  optimization  is  single-objective,  with  no  ability  to  compromise 
between multiple metrics. The weight of metrics is hard-coded, and even if a platform displays 
additional  metrics,  they  play  a  secondary  role  in  algorithm  selection.  Experiment
traceability – meaning detailed saving of all settings and obtained results – is incomplete: often 
only  the  final  algorithm  is  recorded,  without  intermediate  configurations,  which  complicates 
analysis  and  reproduction  of  the  search  process.  Additionally,  dependence  on  a  particular 
execution environment  creates  difficulties  in  transferring solutions:  for  example,  AutoGluon is 
currently oriented towards local execution, whereas Google AutoML is only a cloud service, and 
integrating  them  into  a  single  workflow  is  not  straightforward.  In  summary,  even  the  most 
powerful  existing  AutoML tools  currently  take  into  account  EEG/BCI  specifics  rather  weakly, 
which  does  not  allow  for  systematically  finding  a  pipeline  configuration  that  simultaneously 
satisfies accuracy, robustness, and resource-efficiency requirements.

Directions  for  Improvement  and  Proposed  Solution. The  identified  shortcomings  of  existing 
solutions made it possible to formulate requirements for a new generation software system for 
automated EEG-signal classification. This system should combine the advantages of AutoML with 
consideration of BCI domain specifics. Based on the analysis, the following set of key features is  
proposed for an improved tool:

1. Interactive user interface. It is desirable to provide a convenient web-based interface in the 
form of a desktop application through which a researcher can configure the pipeline, launch 
experiments,  and  monitor  their  progress.  Unlike  tools  with  narrow or  highly  technical 
interfaces, a web-based GUI increases the system’s accessibility to a wide range of users 
without requiring deep programming skills.

2. Computation resumption mechanism. The system should support automatic saving of the 
state of the current experiment and the ability to continue from the point of interruption 
after a failure or computer shutdown. This prevents the loss of data and time during long 
algorithm  training  runs,  which  is  a  common  problem  in  resource-intensive  BCI 
computations.

3. Versatility of execution environment. The tool should work flexibly both on local hardware 
and in cloud infrastructure. Such portability will allow using it for small experiments in the 
laboratory and for large-scale computations on clusters, depending on the project’s needs.

4. Graph modeling of the pipeline.  It  is proposed to represent the sequence of EEG signal 
processing stages as a directed graph, where the nodes are separate components: filtering, 
feature extraction, classifier, etc., and the edges are data flows between them. The graph 
structure  explicitly  defines  all  dependencies  and  compatible  connections  between steps, 
which  helps  to  avoid  incorrect  combinations  of  methods  and  ensures  the  reuse  of 
components.  This  formalization  also  simplifies  tracking  and  explaining  the  obtained 
pipelines, since each path in the graph corresponds to a specific solution configuration.

5. Multi-criteria optimization with flexible weights. Unlike typical AutoML, which optimizes 
one metric, the new system will consider several quality indicators simultaneously. The user 



will be able to assign weight coefficients of importance for each metric – for example, 70% 
for accuracy, 30% for speed. The system will normalize the values of different metrics and 
compute a  single  aggregated efficiency criterion,  for  example,  a  weighted overall  score, 
which  will  be  used  to  compare  algorithms.  In  this  way,  a  convenient  multi-criteria 
optimization  mechanism  is  implemented  that  allows  finding  a  balance  between,  say, 
accuracy and speed depending on the specifics of the task.

6. Complete  traceability  of  experiments.  All  parameters,  hyperparameters,  intermediate 
results, and final algorithms should be automatically saved and available for analysis. This 
will ensure reproducibility: any obtained pipeline can be examined in detail or repeated on 
another  dataset.  Such  an  approach  corresponds  to  best  practices  of  open  science  and 
eliminates the problem of fragmentary reporting noted in the review.

7. Formal  optimization  methods  for  search.  For  intelligent  exploration  of  pipeline 
configurations,  it  is  planned to  apply  mathematical  optimization  methods,  in  particular 
linear or integer programming. The task of choosing the optimal pipeline can be expressed 
as an optimization problem on a graph with given constraints; for example, incompatibility 
of certain methods with each other, or limits on execution time. Using formal algorithms 
will guarantee finding a quasi-optimal solution in an acceptable time and will make the 
search process transparent and objective.

The above proposals form the basis for a new software complex that addresses the identified 
shortcomings and takes into account the specifics of finger movement classification. In particular,  
the  graph-based  representation  of  the  component  conveyor,  combined  with  multi-criteria 
optimization,  will  allow  the  system  to  automatically  prune  ineffective  or  incompatible 
configurations,  explore  a  wider  space  of  solutions,  and  provide  the  user  with  explainable
results – for example, in the form of a constructed graph of the optimal pipeline. Flexible control  
over metric weights will enable adapting the optimization criterion to a specific application: for 
some tasks, maximum accuracy is most important, while for others, a slightly lower accuracy is 
acceptable in exchange for a significant increase in system speed. The system’s versatility and fault 
tolerance, supporting different environments and resuming computations, will increase the tool’s 
practical value for researchers. Thus, the proposed solution will be a powerful means for automated 
construction of BCI systems, capable of considering a complex set of requirements and providing 
reliable recognition of finger movements from EEG signals even outside the laboratory.

6. Conclusions

This study provides a comprehensive analysis of existing methods and software tools for EEG-
signal classification in finger movement recognition tasks, emphasizing the need for an integrated 
and systematic approach to pipeline design. The results demonstrate that the effectiveness of such 
systems depends on the coordinated selection and interaction of all processing stages, rather than 
the optimization of individual algorithms alone. A holistic conveyor of software components is 
essential  to  balance  algorithm  accuracy,  processing  speed,  and  robustness  under  real-world 
operating conditions.

The review also revealed significant inconsistencies in algorithm evaluation practices across 
studies. Most works rely on a single performance metric and rarely report result variability, which 
complicates objective comparison. Standardized cross-validation procedures, consistent reporting 
of  robustness  indicators,  and  the  inclusion  of  computational  efficiency  measures  alongside 
traditional quality metrics are proposed as necessary steps toward reproducible and fair assessment 
of EEG-based classification systems.

Based  on  the  analyzed  scientific  studies,  a  typical  EEG-signal  classification  pipeline  was 
synthesized, describing the most frequently used and effective sequence of stages: data acquisition, 
preprocessing, dataset formation, feature extraction, dimensionality reduction, classification, and 



algorithm performance evaluation. This generalized structure provides a foundation for designing 
reproducible and comparable EEG-processing workflows in future research.

A  comparative  study  of  modern  AutoML  systems,  such  as  H2O AutoML,  AutoGluon,  and 
Google Cloud AutoML Tables, showed that existing automation tools do not adequately meet the 
specific requirements of EEG/BCI research. Among the key limitations identified are the lack of 
explicit representation of domain-specific processing stages, single-objective optimization without 
metric  trade-offs,  fixed  or  inflexible  metric  weighting,  incomplete  experiment  traceability,  and 
dependence on particular execution environments. These findings, summarized here for the first 
time in the context of finger-movement classification, formed the basis for defining requirements 
for next-generation AutoML systems.

The  proposed  methodological  framework  and practical  recommendations  pave  the  way  for 
developing a new AutoML platform that employs a graph-based pipeline architecture, supports 
flexible  multi-criteria  optimization,  ensures  full  experiment  traceability,  and  maintains 
independence from execution environments. Looking beyond algorithmic optimization, the future 
of BCI will also be shaped by parallel advancements in hardware and open science. The emergence 
of  user-friendly,  wireless EEG devices with dry sensors promises to lower the barrier for data 
collection in naturalistic environments. Simultaneously, supporting global data-sharing initiatives 
and creating large-scale standardized repositories  will  be  essential  for  training robust,  subject-
independent models. These factors, combined with the proposed automated software framework, 
are key to moving finger movement recognition from research labs to daily usage. Implementing 
these  solutions  will  mark  a  significant  step  toward  practical,  resource-efficient,  and  robust
EEG-based  BCI  systems  applicable  to  rehabilitation,  neuroprosthetics,  and  other  real-world 
domains.
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