CEUR-WS.org/Vol-4160/paper23.pdf

CEUR
E Workshop
Proceedings

published 2026-02-07

Review of EEG signal classification approaches in finger
movement recognition

Igor Boyko', Oleh Pastukh’, Ivan Stefanyshyn*" and Oleh Lyashuk®
Ternopil Ivan Puluj National Technical University, Rus'ka Street 56, 46025 Ternopil, Ukraine

Abstract

This article reviews and analyzes methods and software tools for electroencephalographic (EEG) signal
classification in finger movement recognition tasks. A systematic review of recent studies and Automated
Machine Learning (AutoML) solutions in brain-computer interfaces (BCI) was conducted. Attention is
paid to EEG signal processing pipelines, algorithm evaluation, and software implementation. Typical
pipeline stages are summarized, and key factors affecting an algorithm's effectiveness are identified. The
review found an overreliance on accuracy as a metric and limited evaluation criteria, making fair
comparison difficult. Popular AutoML platforms fail to reflect EEG/BCI specifics. The article justifies using
graph-based pipeline representation and multi-criteria optimization with flexible metric weighting. It
formulates requirements for new software able to provide reliable, reproducible, and efficient EEG-based
finger movement recognition.
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1. Introduction

Recognizing the motor activity of fingers of the upper limbs from EEG signals is one of the most
challenging yet promising directions in the development of brain-computer interfaces. EEG allows
non-invasive recording of brain activity related to movement intentions, but such signals are
characterized by a high level of noise, non-stationarity, and significant differences between
subjects. This makes it difficult to a build universal algorithm capable of accurately and
consistently recognizing fine movements of the hands and fingers. Achieving acceptable accuracy
requires a careful multi-stage processing pipeline: from filtering and artifact removal to forming
informative features and classifying the signals. Each stage of this pipeline significantly influences
the final result, so the system’s effectiveness is determined not so much by individual algorithms as
by the coordinated combination of all processing components.

At present, scientific studies present a wide range of approaches to EEG signal
classification — from classical statistical methods to modern deep neural networks and ensemble
algorithms. Numerous studies focus on motor imagery tasks and demonstrate gradual increases in
classification accuracy thanks to improved algorithms and their combination. However, the open
question remains: which specific combinations of preprocessing methods, feature extraction
techniques, and classifiers are the most effective for recognizing movements of individual fingers.
The lack of standard pipelines for building such systems makes it hard to compare different
solutions and slows progress in the field. Thus, there is a need for a systematic review of current
methods and software tools to summarize achievements, identify existing problems, and outline
promising development paths.
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In this study, we present the results of a review and analysis of EEG-signal classification
methods for finger movements, as well as the software tools for implementing such systems.
Recent scientific works from the last few years describing the construction of classification
pipelines for motor imagery are examined, and modern AutoML platforms that can be applied in
BCI are analyzed. Based on this analysis, the main trends and challenges in the field are
determined, and requirements are formulated for a new software system capable of overcoming the
identified limitations. In the following sections, we describe in detail the typical structure of an
EEG classification pipeline, provide a comparison of popular methods and algorithms, consider the
specifics of performance evaluation and technical implementation, and discuss the shortcomings of
existing AutoML solutions in the BCI context. This creates a complete picture of the state of the
problem and provides a foundation for developing new approaches to automating the construction
of effective EEG-based finger movement recognition systems.

2. Problem Statement

Despite significant progress in EEG-based BCI research, the development of reliable systems for
recognizing finger motor activity remains limited by the lack of standardized and integrated
approaches to constructing classification pipelines. Existing studies typically focus on improving
isolated algorithms or preprocessing techniques, without considering the interaction and joint
optimization of all pipeline stages. This fragmented approach leads to inconsistent evaluation
results, reduced reproducibility, and limited applicability in real-time or large-scale environments.

Furthermore, modern AutoML systems are not fully adapted to the specific requirements of
EEG/BCI data processing. They often lack explicit representation of domain-specific stages, support
only single-objective optimization, and do not provide flexible control over metric weighting or
resource constraints. As a result, researchers face difficulties in identifying optimal software
component configurations that balance accuracy, robustness, and computational efficiency - a gap
that this study aims to address.

3. Formulation of the Purpose of the Article

The purpose of this article is to analyze modern scientific research and existing software systems
for classifying EEG signals in finger motor activity recognition tasks. The study aims to identify
architectural and methodological limitations in current approaches and determine the key
directions for improving the efficiency, robustness, and scalability of such systems. Special
attention is paid to the analysis of AutoML solutions and classification pipelines used in BCI
systems. The objective is to generalize typical structures of data processing pipelines, highlight
shortcomings in current model evaluation practices, and formulate requirements for the
development of an improved, flexible, and resource-efficient software framework for EEG signal
classification.

4. Review and Analysis of Methods and Software Tools for EEG Signal
Classification in Finger Movement Recognition Tasks in Scientific
Studies

Literature Selection Criteria. To ensure the relevance and reliability of the analysis, the review
focused on full-text journal articles and conference proceedings published between January 1, 2020,
and May 13, 2025. The selection was strictly limited to English-language, open-access studies
addressing EEG-based motor imagery classification using machine learning methods. The selection
process involved a systematic multi-stage screening, starting with the removal of duplicates from
the initial pool of 172 records. This was followed by a preliminary screening based on titles and
abstracts, and subsequently, a full-text assessment against the eligibility criteria. During this
process, records were excluded if they were abstracts, posters, book chapters, review articles, or



theses, or if they failed to apply specific machine learning algorithms. Additionally, studies
published by authors affiliated with scientific institutions of the Russian Federation were omitted.
Ultimately, 69 publications were selected for the final analysis.

Typical EEG Processing Pipeline. An effective EEG-signal classification system is based on a
sequence of coordinated data processing stages. Analysis of studies allowed us to highlight a
typical pipeline used in the majority of studies (see Figure 1: Structure of a typical EEG signal
classification pipeline) [1-69].
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Figure 1: Structure of a typical EEG signal classification pipeline.

Building an effective EEG classification system is difficult because researchers often study each
stage — preprocessing, feature extraction, and classification — separately. To understand what
causes performance issues and how to improve the results, we will now look at each step of a
typical EEG processing pipeline in more detail.

Here is an example of a numbered list:

1. Data collection. Recording multi-channel EEG signals using a standardized scheme with
focus on motor cortex areas; for example, the "10-20" placement system [70].

2. Preprocessing. Filtering out noise, removing artifacts, and basic normalization of the signal
to improve data quality.

3. Dataset formation. Splitting the continuous signal into short segments and balancing the
classes by selecting an equal number of examples for each class; if needed, using artificial
data augmentation to increase the algorithm’s robustness to signal variability.

4. TFeature extraction. Computing informative characteristics of the signal based on frequency,
temporal-spatial, statistical, and other analysis methods. Often, dimensionality reduction is
applied at this stage to reduce computational cost and lower the risk of algorithm
overfitting.

5. Classification. Training the chosen machine learning algorithm on the extracted features to
distinguish movement states. Both classical classifiers and modern ensemble methods and
neural networks are used.

6. Results evaluation. Measuring the algorithm’s quality by one or more metrics on test data or
via cross-validation. This allows comparing alternative approaches and selecting the
optimal algorithm configuration.

A strategically important aspect is the coordinated integration of all components within a single
conveyor: how well the methods at all stages are chosen and assembled determines the balance
between the system’s accuracy, speed, and robustness. Most researchers design such pipelines
empirically, guided by intuition or the popularity of approaches, which often leads to
inconsistencies and lost efficiency. This underlines the need for more formalized approaches to
designing classification pipelines that ensure reproducibility and optimal solutions.

To summarize the technological landscape analyzed in this study, the list below maps the most
frequently used algorithms to their respective stages in the typical EEG signal classification
pipeline:

1. Preprocessing: Common Spatial Patterns, Bandpass Filtering, Notch Filtering.
2. Data enhancement: Artifact Handling and Generation, Artifact Subspace Reconstruction.
3. Feature extraction: Independent Component Analysis, Statistical features.



4. Dimensionality reduction: Principal Component Analysis.
5. Classification: Support Vector Machine, Convolutional Neural Network.
6. Evaluation metrics: Accuracy, F1-score, AUC-ROC, Kappa.

Data and Experimental Scenarios. Data quality and structure significantly affect classification
results, so the characteristics of datasets used in the reviewed works were analyzed. In the 69
studies included in the review, the vast majority of experiments were conducted with healthy
volunteers 68 studies, whereas only 3 studies [10, 57, 64] focused on patients with neurological
disorders. This shows that the problem of classifying finger movements has been studied mainly on
healthy subjects and needs more attention for pathological conditions. Most tasks were
binary two-class scenarios were used in 62 works [1-23, 25, 27-31, 33-43, 46, 48, 50-52, 54-55, 57,
58, 61-68]. Multi-class setups are much rarer: for example, experiments with 4 classes of
movements are described in 21 studies [1, 3, 4, 7, 11, 17, 19, 22-24, 26, 28, 41, 47, 49, 51, 53, 56, 59,
61, 69], and classification of 3, 5, or more classes appear only in isolated cases [20, 32, 45]. This is
because, as the number of classes increases, it becomes much more difficult to ensure reliable
algorithm performance. Another limitation is the use of private datasets: in many works, the data
are not publicly available, or the conditions of data collection are insufficiently described, which
reduces the reproducibility of results. Thus, there is a deficit of unified open datasets in this field,
especially for fine finger movements, as well as a lack of standards for documenting experiments.

Classification Algorithms and Their Effectiveness. There is a wide variety of algorithms applied
for classifying motor activity from EEG, but we can single out the most common approaches and
estimate their typical accuracy ranges. Researchers most often use classical machine learning
algorithms. For example, the Support Vector Machine (SVM) method was used in 55 studies [1, 2,
4-6, 8, 9, 11-17, 19-21, 23-25, 28-32, 34, 37, 39-43, 45, 46, 50, 52-54, 56—61, 64-69], and Linear
Discriminant Analysis (LDA) in 35 studies [2, 4-6, 8, 12, 13, 16, 17, 19, 20, 22, 25-28, 30, 32, 33, 35,
38, 40, 43, 46-48, 54, 59-63, 66—67]. The typical classification accuracy for SVM was around 70-
80%, while for LDA it was 75-85%. Similar results were demonstrated by the k-Nearest Neighbors
(k-NN) method [5, 6, 8, 9, 11, 12, 19, 23, 28, 31, 32, 36, 37, 40, 45, 48, 50, 58-60, 66, 67] and logistic
regression [6, 7, 11, 19, 23, 28, 31, 40, 48, 59]. Decision trees provided somewhat lower but still
stable accuracy on the order of 65-75% [5, 6, 8, 9, 11, 19, 21, 23, 28, 32, 40, 48, 59]. The highest
average figures in the reviewed studies were achieved with ensemble methods, which had
accuracies in the range of 85-95% [9, 10, 12, 14, 19, 23, 28, 30, 31, 59]. Neural networks were used
less often for example, a multi-layer perceptron (MLP) appears in only 6 studies [6, 13, 19, 23, 28,
4d6], mainly in cases of large data volumes or more complex task setups. Some modern studies
have introduced deep convolutional or recurrent neural networks, as well as transformer
algorithms, to improve classification accuracy. In particular, specialized architectures such as
TSGL-EEGNet have been proposed for recognizing movements in patients with spinal cord injuries
[69]. However, neural network approaches require large training datasets and significant
computational resources, so they are not always better than classical methods on small datasets. At
the same time, methods for improving the effectiveness of classical algorithms are being actively
researched — in particular, optimal selection of channels and features. For example, in the work by
Kardam et al. [2], an evolutionary algorithm for channel selection and wavelet scattering was
proposed to enhance motor imagery classification. Overall, the review showed that traditional
approaches such as SVM, LDA, etc, still dominate due to their balanced accuracy and
interpretability of results.

Evaluation Strategies and Metrics. For objective comparison of algorithms, validation methods,
and the choice of quality metrics are very important. The analysis of publications shows that
evaluation practices vary greatly. The most common approach is cross-validation: specifically,
5-fold cross-validation was used in 20 studies [5, 8, 12, 13, 16, 18, 20, 23-25, 32, 34, 43, 46, 47, 49, 52,
54, 59, 69], and 10-fold in 14 studies [10, 14, 26, 27, 40-42, 45, 51, 55, 58, 64, 66, 67]. However, 27
studies did not specify the validation method at all [1-4, 6-7, 9, 11, 17, 21, 22, 30, 33, 36-39, 44, 50,
53, 56, 57, 60—63, 65], which makes it difficult to interpret the results and compare between works.



Regarding metrics, the vast majority of authors evaluate algorithms by accuracy - this basic metric
was used in 66 studies [1-18, 21-37, 39-69]. Much less often, additional values are reported: F1-
score [2, 11, 13, 16, 17, 21, 28, 32, 37, 45, 46, 64] and Recall [2, 9, 11, 12, 16, 28, 30, 45, 48, 59, 64] in 12
and 11 cases each, Precision in 6 studies [2, 9, 11, 16, 28, 64], and Cohen’s kappa in 6 studies [2, 4,
14, 22, 28, 45]. Specificity and the area under the ROC curve (AUC) appear only 5 times each [13,
28, 45, 46, 48]. Very rarely are criteria such as BCI information transfer rate, system response time,
balanced accuracy, Fisher’s criterion, or g-mean mentioned [2, 8, 13, 17, 27, 38, 55]. Thus, quality
evaluation metrics are mostly limited to a single dimension, whereas aspects like algorithm
robustness, speed, and other practical indicators are often ignored. The prevailing format is a direct
comparison of average accuracies of several approaches on one dataset; multi-criteria or
statistically grounded comparisons are almost never used. This confirms that evaluation practice is
not yet mature: researchers tend to rely on simple metrics that do not always reflect an algorithm’s
suitability for real-world application. One direction for progress in this area is the call for
mandatory reporting of result variability, the use of unified cross-validation schemes, and the
inclusion of multiple types of metrics. Only under such conditions is it possible to make objective
and fair comparisons of alternative methods.

Implementation and Practical Suitability. It is worth separately considering the issue of
implementing classification solutions in practice, since the ultimate goal of research is to create
working BCI systems. Here, a significant gap was found between laboratory prototypes and ready-
to-use solutions. Firstly, very few works take into account computational resource constraints and
energy consumption. Only 2 out of 69 analyzed papers include measures for optimizing energy
consumption, for example, for wearable or implanted devices [53, 60]. Some authors note that even
simple measures such as reducing the sampling rate, reducing the number of EEG channels, or
selecting features can significantly reduce the load on hardware resources. However, the majority
of studies focus exclusively on increasing accuracy, without analyzing the runtime of algorithms or
energy efficiency, which are critical for autonomous systems. Secondly, only 29 works
demonstrated moving beyond offline experiments — that is, implementing a system that works in
real time or integrates into an application environment [6, 11, 14, 18, 22, 25, 27, 32-35, 37-40, 42—
48, 50, 53, 56, 60, 63, 64, 67]. The other 40 studies were limited to offline analysis of recorded data or
software emulations, not bringing the developments to the stage of real use [1-5, 7-10, 12, 13,
15-17, 19-21, 23, 24, 26, 28-31, 36, 41, 49, 51, 52, 54, 55, 57-59, 61, 62, 65, 66, 68, 69]. Thirdly,
architectural scalability and distributed processing are practically not addressed: the overwhelming
majority of solutions are implemented as local applications, without the ability to deploy them in
the cloud or on a cluster. Only 4 works experimented with cloud services for EEG processing, and
only in one case was the use of a national supercomputer mentioned [3, 53, 56, 60]. Where cloud
technologies were applied, a positive experience is described: parallel signal processing on a
cluster, centralized data storage, automated modeling pipelines, and web interfaces for remote
configuration of preprocessing. This confirms the promise of such approaches, but at present they
remain isolated experiments. In summary, the practical analysis revealed a number of unresolved
issues: energy efficiency, scalability, and distributed computing are insufficiently covered in current
research. This gap holds back the transfer of finger motor classification algorithms to portable
devices and industrial applications.

Problem of Choosing the Optimal Pipeline. Summarizing the results of the methods review, we
can conclude that the effectiveness of BCI systems is determined by a holistic approach to building
the pipeline. Each step — from preprocessing to the classifier — must not only be well implemented,
but also correctly composed with the others. In contrast, the current state of affairs is characterized
by fragmentation: researchers often improve individual stages or propose a new feature extraction
method or a new classification algorithm, without paying attention to how these stages align in the
overall system. The absence of standardized methods for describing and evaluating pipelines leads
to the impossibility of objectively comparing different configurations with each other. For example,
two researchers might use similar algorithms, but with different sequences or settings of stages,
and obtain different results — yet determining which variant is better is difficult due to the lack of a



unified approach to reporting results. Moreover, the low reproducibility of experiments, due to
unspecified randomness parameters, lack of published code, etc., makes it hard to verify claimed
achievements. Insufficient attention is also given to computational efficiency: when choosing
methods, considerations like processing delays or real-time requirements are rarely taken into
account, so the proposed pipelines are not optimized for practical operation. The lack of automated
tools for searching for the optimal pipeline forces manual tuning by trying out options, which
requires a lot of time and does not guarantee finding the globally best solution. Therefore, an
urgent scientific task is the development of approaches for the automatic synthesis of the optimal
conveyor of software components for EEG classification. Such an approach should take into
account method compatibility, the balance between accuracy and speed, and should ensure
reproducibility and easy reconfiguration of the system for other conditions or data. The
shortcomings of existing solutions identified in the review directly point to the directions for
improvement, which will form the basis for the next stage of our research.

5. Modern Software Systems and AutoML Solutions for EEG/BCI

AutoML in BCI Tasks. The growing complexity of algorithms and the need for reproducibility of
experiments in neurotechnology have led to the emergence of automated machine learning
systems. AutoML platforms automatically select the optimal combination of algorithms and their
hyperparameters, can perform feature selection, build ensemble algorithms, and evaluate their
quality according to specified metrics. The advantage of AutoML is that it saves a lot of researcher
time and reduces the role of human factor in building ensemble algorithms. In addition, such
systems promote better reproducibility, since all pipeline configurations are documented
automatically and the search process is carried out by formalized procedures. For the BCI field,
where one often has to experimentally try many variants of preprocessing and classification,
AutoML is especially attractive: it allows quick hypothesis testing and efficient use of computing
resources thanks to smart search strategies.

While general-purpose software environments like Python and MATLAB have become
dominant in BCI research due to their flexibility, extensive libraries, and strong community
support, applying general-purpose AutoML platforms to biomedical signals requires taking domain
specifics into account. In particular, typical AutoML systems have been developed mostly for tasks
with ready-made tabular data or standard features, and they do not include built-in modules for
processing raw biosignals. Therefore, when using them in neurointerfaces, researchers have to
prepare the data themselves and then feed the already extracted features into the AutoML tool.
Another problem is the limited ability to configure the optimization criteria. In practice, in BCI it is
often important not only to maximize accuracy but also, for example, to minimize decision time or
to account for build an ensemble algorithm stability across different sessions. Basic AutoML
platforms allow setting only one target metric, without flexible balancing of multiple indicators.
We should also mention validation and data variability: for EEG tasks, it is critical that algorithm
evaluation considers inter-subject differences and potential signal drift between sessions. Thus,
existing AutoML solutions need extended functionality for EEG/BCIL. There is a need for tools to
develop extendable pipelines with support for domain-specific biomedical signal preprocessing
stages, flexible metric configuration mechanisms, and transparent validation methods that allow
one to monitor an algorithm’s generalizability to new subjects and sessions.

Analysis of Existing Platforms. As part of this review, three popular AutoML systems were
selected for analysis: H20 AutoML, AutoGluon, and Google Cloud AutoML Tables. The selection
criteria were their wide popularity, support for various algorithms, and claimed automatic
optimization capabilities. The comparison showed that each of these platforms has limitations in
terms of use for EEG signal classification tasks.



1 H20 AutoML handles building algorithm ensembles well, but it has no tools for processing
raw EEG time series and does not support user-configurable metrics beyond the standard
ones [71].

2 AutoGluon focuses on tabular data and computer vision tasks; applying it to EEG requires
unconventional solutions to integrate signal filtering and spatial filtering stages [72].

3 Google AutoML Tables is a cloud service with limited user control over the process — this is
acceptable for typical tasks, but in the BCI context, it lacks flexibility in choosing specific
data transformations [73].

Overall, none of the analyzed AutoML systems provides an explicit representation of the stages
of an EEG pipeline as controllable components. A user cannot, for example, change the artifact
removal algorithm or add their own signal decomposition step — such stages are simply absent or
fixed in advance. Parameter optimization is single-objective, with no ability to compromise
between multiple metrics. The weight of metrics is hard-coded, and even if a platform displays
additional metrics, they play a secondary role in algorithm selection. Experiment
traceability — meaning detailed saving of all settings and obtained results — is incomplete: often
only the final algorithm is recorded, without intermediate configurations, which complicates
analysis and reproduction of the search process. Additionally, dependence on a particular
execution environment creates difficulties in transferring solutions: for example, AutoGluon is
currently oriented towards local execution, whereas Google AutoML is only a cloud service, and
integrating them into a single workflow is not straightforward. In summary, even the most
powerful existing AutoML tools currently take into account EEG/BCI specifics rather weakly,
which does not allow for systematically finding a pipeline configuration that simultaneously
satisfies accuracy, robustness, and resource-efficiency requirements.

Directions for Improvement and Proposed Solution. The identified shortcomings of existing
solutions made it possible to formulate requirements for a new generation software system for
automated EEG-signal classification. This system should combine the advantages of AutoML with
consideration of BCI domain specifics. Based on the analysis, the following set of key features is
proposed for an improved tool:

1. Interactive user interface. It is desirable to provide a convenient web-based interface in the
form of a desktop application through which a researcher can configure the pipeline, launch
experiments, and monitor their progress. Unlike tools with narrow or highly technical
interfaces, a web-based GUI increases the system’s accessibility to a wide range of users
without requiring deep programming skills.

2. Computation resumption mechanism. The system should support automatic saving of the
state of the current experiment and the ability to continue from the point of interruption
after a failure or computer shutdown. This prevents the loss of data and time during long
algorithm training runs, which is a common problem in resource-intensive BCI
computations.

3. Versatility of execution environment. The tool should work flexibly both on local hardware
and in cloud infrastructure. Such portability will allow using it for small experiments in the
laboratory and for large-scale computations on clusters, depending on the project’s needs.

4. Graph modeling of the pipeline. It is proposed to represent the sequence of EEG signal
processing stages as a directed graph, where the nodes are separate components: filtering,
feature extraction, classifier, etc., and the edges are data flows between them. The graph
structure explicitly defines all dependencies and compatible connections between steps,
which helps to avoid incorrect combinations of methods and ensures the reuse of
components. This formalization also simplifies tracking and explaining the obtained
pipelines, since each path in the graph corresponds to a specific solution configuration.

5. Multi-criteria optimization with flexible weights. Unlike typical AutoML, which optimizes
one metric, the new system will consider several quality indicators simultaneously. The user



will be able to assign weight coefficients of importance for each metric — for example, 70%
for accuracy, 30% for speed. The system will normalize the values of different metrics and
compute a single aggregated efficiency criterion, for example, a weighted overall score,
which will be used to compare algorithms. In this way, a convenient multi-criteria
optimization mechanism is implemented that allows finding a balance between, say,
accuracy and speed depending on the specifics of the task.

6. Complete traceability of experiments. All parameters, hyperparameters, intermediate
results, and final algorithms should be automatically saved and available for analysis. This
will ensure reproducibility: any obtained pipeline can be examined in detail or repeated on
another dataset. Such an approach corresponds to best practices of open science and
eliminates the problem of fragmentary reporting noted in the review.

7. Formal optimization methods for search. For intelligent exploration of pipeline
configurations, it is planned to apply mathematical optimization methods, in particular
linear or integer programming. The task of choosing the optimal pipeline can be expressed
as an optimization problem on a graph with given constraints; for example, incompatibility
of certain methods with each other, or limits on execution time. Using formal algorithms
will guarantee finding a quasi-optimal solution in an acceptable time and will make the
search process transparent and objective.

The above proposals form the basis for a new software complex that addresses the identified
shortcomings and takes into account the specifics of finger movement classification. In particular,
the graph-based representation of the component conveyor, combined with multi-criteria
optimization, will allow the system to automatically prune ineffective or incompatible
configurations, explore a wider space of solutions, and provide the user with explainable
results — for example, in the form of a constructed graph of the optimal pipeline. Flexible control
over metric weights will enable adapting the optimization criterion to a specific application: for
some tasks, maximum accuracy is most important, while for others, a slightly lower accuracy is
acceptable in exchange for a significant increase in system speed. The system’s versatility and fault
tolerance, supporting different environments and resuming computations, will increase the tool’s
practical value for researchers. Thus, the proposed solution will be a powerful means for automated
construction of BCI systems, capable of considering a complex set of requirements and providing
reliable recognition of finger movements from EEG signals even outside the laboratory.

6. Conclusions

This study provides a comprehensive analysis of existing methods and software tools for EEG-
signal classification in finger movement recognition tasks, emphasizing the need for an integrated
and systematic approach to pipeline design. The results demonstrate that the effectiveness of such
systems depends on the coordinated selection and interaction of all processing stages, rather than
the optimization of individual algorithms alone. A holistic conveyor of software components is
essential to balance algorithm accuracy, processing speed, and robustness under real-world
operating conditions.

The review also revealed significant inconsistencies in algorithm evaluation practices across
studies. Most works rely on a single performance metric and rarely report result variability, which
complicates objective comparison. Standardized cross-validation procedures, consistent reporting
of robustness indicators, and the inclusion of computational efficiency measures alongside
traditional quality metrics are proposed as necessary steps toward reproducible and fair assessment
of EEG-based classification systems.

Based on the analyzed scientific studies, a typical EEG-signal classification pipeline was
synthesized, describing the most frequently used and effective sequence of stages: data acquisition,
preprocessing, dataset formation, feature extraction, dimensionality reduction, classification, and



algorithm performance evaluation. This generalized structure provides a foundation for designing
reproducible and comparable EEG-processing workflows in future research.

A comparative study of modern AutoML systems, such as H20 AutoML, AutoGluon, and
Google Cloud AutoML Tables, showed that existing automation tools do not adequately meet the
specific requirements of EEG/BCI research. Among the key limitations identified are the lack of
explicit representation of domain-specific processing stages, single-objective optimization without
metric trade-offs, fixed or inflexible metric weighting, incomplete experiment traceability, and
dependence on particular execution environments. These findings, summarized here for the first
time in the context of finger-movement classification, formed the basis for defining requirements
for next-generation AutoML systems.

The proposed methodological framework and practical recommendations pave the way for
developing a new AutoML platform that employs a graph-based pipeline architecture, supports
flexible multi-criteria optimization, ensures full experiment traceability, and maintains
independence from execution environments. Looking beyond algorithmic optimization, the future
of BCI will also be shaped by parallel advancements in hardware and open science. The emergence
of user-friendly, wireless EEG devices with dry sensors promises to lower the barrier for data
collection in naturalistic environments. Simultaneously, supporting global data-sharing initiatives
and creating large-scale standardized repositories will be essential for training robust, subject-
independent models. These factors, combined with the proposed automated software framework,
are key to moving finger movement recognition from research labs to daily usage. Implementing
these solutions will mark a significant step toward practical, resource-efficient, and robust
EEG-based BCI systems applicable to rehabilitation, neuroprosthetics, and other real-world
domains.

Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT and Grammarly in order to:
Grammar and spelling check, and as a smart Search Engine to find related works based on the
context of conversation. After using these tools/services, the authors reviewed and edited the
content as needed and take full responsibility for the publication’s content.

References

[1] F.Xu,Y.Lou,Y.Deng, Z. Lun, P. Zhao, D. Yan, Z. Han, Z. Wu, C. Feng, L. Chen, J. Leng, Motor
imagery EEG decoding based on TS-former for spinal cord injury patients, Brain Research
Bulletin 224 (2025). doi:10.1016/j.brainresbull.2025.111298.

[2] V. S. Kardam, S. Taran, A. Pandey, BSPKTM-SIFE-WST: bispectrum based channel selection
using set-based-integer-coded fuzzy granular evolutionary algorithm and wavelet scattering
transform for motor imagery EEG classification, Signal, Image and Video Processing 19 (4)
(2025). doi:10.1007/s11760-025-03851-z.

[3] X. Gao, K. Gui, X. Wu, B. Metcalfe, D. Zhang, Effects of different preprocessing pipelines on
motor imagery-based brain-computer interfaces, IEEE Journal of Biomedical and Health
Informatics 29 (5) (2025) 3343-3355. doi:10.1109/JBHIL.2025.3532771.

[4] X.-C.Zhong, Q. Wang, D. Liu, Z. Chen, J.-X. Liao, J. Sun, Y. Zhang, F.-L. Fan, EEG-DG: a multi-
source domain generalization framework for motor imagery EEG classification, IEEE Journal
of Biomedical and Health Informatics 29 (4) (2025) 2484-2495. doi:10.1109/JBHI.2024.3431230.

[5] A.X. Gonzalez-Cely, C. F. Blanco-Diaz, C. D. Guerrero-Mendez, A. C. Villa-Parra, T. Bastos-
Filho, Classification of opening/closing hand motor imagery induced by left and right robotic
gloves through EEG signals, Transactions on Energy Systems and Engineering Applications 5
(2) (2024). do0i:10.32397/tesea.vol5.n2.579.

[6] Z.T. Al-Qaysi, M. S. Suzani, N. Bin Abdul Rashid, R. D. Ismail, M. A. Ahmed, R. A. Aljanabi, V.
Gil-Costa, Generalized time domain prediction model for motor imagery-based wheelchair


https://doi.org/10.32397/tesea.vol5.n2.579.
https://doi.org/10.1109/JBHI.2024.3431230.
https://doi.org/10.1109/JBHI.2025.3532771.
https://doi.org/10.1007/s11760-025-03851-z.
https://doi.org/10.1016/j.brainresbull.2025.111298.

movement  control, Mesopotamian  Journal of Big Data  (2024) 68-81.
doi:10.58496/MJBD/2024/006.

[7] X.]Jiang, L. Meng, X. Chen, Y. Xu, D. Wu, CSP-Net: common spatial pattern empowered neural
networks for EEG-based motor imagery classification, Knowledge-Based Systems 305 (2024).
do0i:10.1016/j.knosys.2024.112668.

[8] S. Chen, N. Li, X. Kong, D. Huang, T. Zhang, Electroencephalography-based motor imagery
classification using multi-scale feature fusion and adaptive Lasso, Big Data and Cognitive
Computing 8 (12) (2024). doi:10.3390/bdcc8120169.

[9] S. G. Aslan, B. Yilmaz, Examining tongue movement intentions in EEG-based BCI with
machine and deep learning: an approach for dysphagia rehabilitation, EuroBiotech Journal 8
(4) (2024) 176-183. doi:10.2478/ebtj-2024-0017.

[10] S. S. Baberwal, L. Magre, S. Gunawardhana, M. Parkinson, T. Ward, S. Coyle, Motor imagery
with cues in virtual reality, audio and screen, Journal of Neural Engineering 21 (2024).
doi:10.1088/1741-2552/ad775e.

[11] K. Belwafi, F. Ghaffari, Thought-controlled computer applications: a brain-computer interface
system for severe disability support, Sensors 24 (20) (2024). doi:10.3390/s24206759.

[12] H. Xu, W. Haider, M. Z. Aziz, Y. Sun, X. Yu, Transforming motor imagery analysis: a novel
EEG classification framework using AtSiftNet method, Sensors 24 (19) (2024).
d0i:10.3390/524196466.

[13] M. H. Kabir, N. I. Akhtar, N. Tasnim, A. S. M. Miah, H.-S. Lee, S.-W. Jang, J. Shin, Exploring
feature selection and classification techniques to improve the performance of an
electroencephalography-based motor imagery brain—computer interface system, Sensors 24
(2024). doi:10.3390/s24154989.

[14] Y. Lu, W. Wang, B. Lian, C. He, Feature extraction and classification of motor imagery EEG
signals in motor imagery for sustainable brain-computer interfaces, Sustainability 16 (2024).
doi:10.3390/s5u16156627.

[15] S. Ruiz, S. Lee, J. L. Dalboni da Rocha, A. Ramos-Murguialday, E. Pasqualotto, E. Soares, E.
Garcia, E. Fetz, N. Birbaumer, R. Sitaram, Motor intentions decoded from fMRI signals, Brain
Sciences 14 (2024). doi:10.3390/brainsci14070643.

[16] A. A. Shiam, K. M. Hassan, M. R. Islam, A. M. M. Almassri, H. Wagatsuma, M. K. I. Molla,
Motor imagery classification using effective channel selection of multichannel EEG, Brain
Sciences 14 (2024). doi:10.3390/brainsci14050462.

[17] X. Kong, C. Wu, S. Chen, T. Wu, J. Han, Efficient feature learning model of motor imagery
EEG signals with Ll-norm and weighted fusion, Biosensors 14  (2024).
doi:10.3390/bios14050211.

[18] S. Kundu, A. S. Tomar, A. Chowdhury, G. Thakur, A. Tomar, Advancements in temporal
fusion: a new horizon for EEG-based motor imagery classification, IEEE Transactions on
Medical Robotics and Bionics 6 (2) (2024) 567-576. d0i:10.1109/TMRB.2024.3387092.

[19] H. Ahmadi, L. Mesin, Enhancing motor imagery electroencephalography classification with a
correlation-optimized weighted stacking ensemble model, Electronics 13 (2024).
do0i:10.3390/electronics13061033.

[20] I Carrara, T. Papadopoulo, Pseudo-online framework for BCI evaluation: a MOABB
perspective using various MI and SSVEP datasets, Journal of Neural Engineering 21 (2024).
doi:10.1088/1741-2552/ad171a.

[21] R. Lin, C. Dong, P. Zhou, P. Ma, S. Ma, X. Chen, H. Liu, Motor imagery EEG task recognition
using a nonlinear Granger causality feature extraction and an improved Salp swarm feature
selection, Biomedical Signal Processing and Control 88 (2024). doi:10.1016/j.bspc.2023.105626.

[22] C. M. Thi, L. V. Thanh, K. N. Minh, Exploring motor imagery classification in brain—computer
interfaces: case study of the Vietnamese BCI speller, Edelweiss Applied Science and
Technology 8 (6) (2024) 8873-8891. doi:10.55214/25768484.v816.3884.


https://doi.org/10.55214/25768484.v8i6.3884.
https://doi.org/10.1016/j.bspc.2023.105626.
https://doi.org/10.1088/1741-2552/ad171a.
https://doi.org/10.3390/electronics13061033.
https://doi.org/10.1109/TMRB.2024.3387092.
https://doi.org/10.3390/bios14050211.
https://doi.org/10.3390/brainsci14050462.
https://doi.org/10.3390/brainsci14070643.
https://doi.org/10.3390/su16156627.
https://doi.org/10.3390/s24154989.
https://doi.org/10.3390/s24196466.
https://doi.org/10.3390/s24206759.
https://doi.org/10.1088/1741-2552/ad775e.
https://doi.org/10.2478/ebtj-2024-0017.
https://doi.org/10.3390/bdcc8120169.
https://doi.org/10.1016/j.knosys.2024.112668.
https://doi.org/10.58496/MJBD/2024/006.

[23] M. Degirmenci, Y. K. Yuce, M. Perc, Y. Isler, EEG channel and feature investigation in binary
and multiple motor imagery task predictions, Frontiers in Human Neuroscience 18 (2024).
doi:10.3389/fnhum.2024.1525139.

[24] Y. Wang, L. Gong, Y. Zhao, Y. Yu, H. Liu, X. Yang, Dynamic graph attention network based on
multi-scale frequency domain features for motion imagery decoding in hemiplegic patients,
Frontiers in Neuroscience 18 (2024). doi:10.3389/fnins.2024.1493264.

[25] M. Sultana, S. Perdikis, Automatic feature selection for sensorimotor rhythms brain-computer
interface fusing expert and data-driven knowledge, IEEE Transactions on Neural Systems and
Rehabilitation Engineering 32 (2024) 3422-3431. doi:10.1109/TNSRE.2024.3456591.

[26] F. Rong, B. Yang, C. Guan, Decoding multi-class motor imagery from unilateral limbs using
EEG signals, IEEE Transactions on Neural Systems and Rehabilitation Engineering 32 (2024)
3399-3409. doi:10.1109/TNSRE.2024.3454088.

[27] Y. Xu, L. Jie, W. Jian, W. Yi, H. Yin, Y. Peng, Improved motor imagery training for subject’s
self-modulation in EEG-based brain—computer interface, Frontiers in Human Neuroscience 18
(2024). doi:10.3389/fnhum.2024.1447662.

[28] H. Ahmadi, L. Mesin, Enhancing MI EEG signal classification with a novel weighted and
stacked adaptive integrated ensemble model: a multi-dataset approach, IEEE Access 12 (2024)
103626-103646. doi:10.1109/ACCESS.2024.3434654.

[29] H. Yu, S. Baek, J. Lee, I. Sohn, B. Hwang, C. Park, Deep neural network-based empirical mode
decomposition for motor imagery EEG classification, IEEE Transactions on Neural Systems
and Rehabilitation Engineering 32 (2024) 3647-3656. doi:10.1109/TNSRE.2024.3432102.

[30] S. Yu, B. Mao, Y. Zhou, Y. Liu, C. Yi, F. Li, D. Yao, P. Xu, X. San Liang, T. Zhang, Large-scale
cortical network analysis and classification of MI-BCI tasks based on Bayesian nonnegative
matrix factorization, IEEE Transactions on Neural Systems and Rehabilitation Engineering 32
(2024) 2187-2197. doi:10.1109/TNSRE.2024.3409872.

[31] M. Lee, H.-Y. Park, W. Park, K.-T. Kim, Y.-H. Kim, J.-H. Jeong, Multi-task heterogeneous
ensemble learning-based cross-subject EEG classification under stroke patients, IEEE
Transactions on Neural Systems and Rehabilitation Engineering 32 (2024) 1767-1778.
doi:10.1109/TNSRE.2024.3395133.

[32] N. Karakullukcu, F. Altindis, B. Yilmaz, Object weight perception in motor imagery using
Fourier-based synchrosqueezing transform and regularized common spatial patterns, IEEE
Access 12 (2024) 52978-52989. doi:10.1109/ACCESS.2024.3386554.

[33] Y. Zhong, L. Yao, G. Pan, Y. Wang, Cross-subject motor imagery decoding by transfer learning
of tactile ERD, IEEE Transactions on Neural Systems and Rehabilitation Engineering 32 (2024)
662-671. doi:10.1109/TNSRE.2024.3358491.

[34] H. Wang, Y. Qi, L. Yao, Y. Wang, D. Farina, G. Pan, A human-machine joint learning
framework to boost endogenous BCI training, IEEE Transactions on Neural Networks and
Learning Systems 35 (12) (2024) 17534-17548. doi:10.1109/TNNLS.2023.3305621.

[35] P. Dreyer, A. Roc, L. Pillette, S. Rimbert, F. Lotte, A large EEG database with users’ profile
information for motor imagery brain-computer interface research, Scientific Data 10 (2023).
doi:10.1038/s41597-023-02445-z.

[36] S. Lyu, R. C. C. Cheung, Efficient multiple channels EEG signal classification based on
hierarchical extreme learning machine, Sensors 23 (21) (2023). doi:10.3390/s23218976.

[37] M. Ahmadi, A. Farrokhi Nia, S. W. Michalka, A. L. Sumich, B. Wuensche, M. Billinghurst,
Comparing performance of dry and gel EEG electrodes in VR using MI paradigms, in:
Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST ’2023,
ACM, New York, USA, 2023, pp. 1-2. d0i:10.1145/3611659.3617436.

[38] D. Camargo-Vargas, M. Callejas-Cuervo, A. C. Alarcén-Aldana, Brain—computer interface
prototype to support upper limb rehabilitation processes in the human body, International
Journal of Information Technology (Singapore) 15 (7) (2023) 3655-3667. doi:10.1007/s41870-
023-01400-w.


https://doi.org/10.1007/s41870-023-01400-w.
https://doi.org/10.1007/s41870-023-01400-w.
https://doi.org/10.1145/3611659.3617436.
https://doi.org/10.3390/s23218976.
https://doi.org/10.1038/s41597-023-02445-z.
https://doi.org/10.1109/TNNLS.2023.3305621.
https://doi.org/10.1109/TNSRE.2024.3358491.
https://doi.org/10.1109/ACCESS.2024.3386554.
https://doi.org/10.1109/TNSRE.2024.3395133.
https://doi.org/10.1109/TNSRE.2024.3409872.
https://doi.org/10.1109/TNSRE.2024.3432102.
https://doi.org/10.1109/ACCESS.2024.3434654.
https://doi.org/10.3389/fnhum.2024.1447662.
https://doi.org/10.1109/TNSRE.2024.3454088.
https://doi.org/10.1109/TNSRE.2024.3456591.
https://doi.org/10.3389/fnins.2024.1493264.
https://doi.org/10.3389/fnhum.2024.1525139.

[39] T. Huang, Z. Luo, Y. Lyu, A2FWPO: anti-aliasing filter based on whale parameter optimization
method for feature extraction and recognition of dance motor imagery EEG, Computer Science
and Information Systems 20 (4) (2023) 1845-1868. doi:10.2298/CSIS221222033H.

[40] R. A. Khan, N. Rashid, M. Shahzaib, U. F. Malik, A. Arif, J. Igbal, M. Saleem, U. S. Khan, M.
Tiwana, A novel framework for classification of two-class motor imagery EEG signals using
logistic regression classification algorithm, PLoS ONE 18 (2023).
doi:10.1371/journal.pone.0276133.

[41] J. Zhang, K. Li, A multi-view CNN encoding for motor imagery EEG signals, Biomedical Signal
Processing and Control 85 (2023). doi:10.1016/j.bspc.2023.105063.

[42] J. Tong, Z. Xing, X. Wei, C. Yue, E. Dong, S. Du, Z. Sun, J. Solé-Casals, C. F. Caiafa, Towards
improving motor imagery brain-computer interface using multimodal speech imagery,
Journal of Medical and Biological Engineering 43 (3) (2023) 216—226. doi:10.1007/s40846-023-
00798-9.

[43] L. Batisti¢, D. Susanj, D. Pin¢i¢, S. Ljubic, Motor imagery classification based on EEG sensing
with visual and vibrotactile guidance, Sensors 23 (11) (2023). doi:10.3390/s23115064.

[44] T. C. de Brito Guerra, T. Noébrega, E. Morya, A. de M. Martins, V. A. de Sousa Jr.,
Electroencephalography signal analysis for human activities classification: a solution based on
machine learning and motor imagery, Sensors 23 (9) (2023). doi:10.3390/s23094277.

[45] A. Maher, S. M. Qaisar, N. Salankar, F. Jiang, R. Tadeusiewicz, P. Plawiak, A. A. Abd El-Latif,
M. Hammad, Hybrid EEG-fNIRS brain-computer interface based on non-linear features
extraction and stacking ensemble learning, Biocybernetics and Biomedical Engineering 43 (2)
(2023) 463-475. doi:10.1016/j.bbe.2023.05.001.

[46] M. H. Kabir, S. Mahmood, M. Al Shiam, M. A. S. Musa, J. Shin, M. K. I. Molla, Investigating
feature selection techniques to enhance the performance of EEG-based motor imagery tasks
classification, Mathematics 11 (8) (2023). doi:10.3390/math11081921.

[47] A. Dillen, F. Ghaffari, O. Romain, B. Vanderborght, U. Marusic, S. Grosprétre, A. Nowé, R.
Meeusen, K. De Pauw, Optimal sensor set for decoding motor imagery from EEG, Applied
Sciences 13 (7) (2023). doi:10.3390/app13074438.

[48] H. A. Hashem, Y. Abdulazeem, L. M. Labib, M. A. FElhosseini, M. Shehata, An integrated
machine learning-based brain—computer interface to classify diverse limb motor tasks:
explainable model, Sensors 23 (6) (2023). doi:10.3390/s23063171.

[49] H. Hu, K. Yue, M. Guo, K. Lu, Y. Liu, Subject separation network for reducing calibration time
of MI-based BCI, Brain Sciences 13 (2) (2023). doi:10.3390/brainsci13020221.

[50] R. Pawan, R. Dhiman, Electroencephalogram channel selection based on Pearson correlation
coefficient for motor imagery-brain-computer interface, Measurement Sensors 25 (2023).
doi:10.1016/j.measen.2022.100616.

[51] X. Xiong, Y. Wang, T. Song, J. Huang, G. Kang, Improved motor imagery classification using
adaptive spatial filters based on particle swarm optimization algorithm, Frontiers in
Neuroscience 17 (2023). doi:10.3389/fnins.2023.1303648.

[52] B. Shi, Z. Yue, S. Yin, J. Zhao, J. Wang, Multi-domain feature joint optimization based on multi-
view learning for improving the EEG decoding, Frontiers in Human Neuroscience 17 (2023).
do0i:10.3389/fnhum.2023.1292428.

[53] K.-K. Shyu, S.-C. Huang, K.-J. Tung, L.-H. Lee, P.-L. Lee, Y.-H. Chen, Common spatial pattern
and Riemannian manifold-based real-time multiclass motor imagery EEG classification, IEEE
Access 11 (2023) 139457-139465. doi:10.1109/ACCESS.2023.3340685.

[54] W. Liang, J. Jin, R. Xu, X. Wang, A. Cichocki, Variance characteristic preserving common
spatial pattern for motor imagery BCI, Frontiers in Human Neuroscience 17 (2023).
doi:10.3389/fnhum.2023.1243750.

[55] P. Penava, R. Buettner, A novel small-data based approach for decoding yes/no-decisions of
locked-in patients using generative adversarial networks, IEEE Access 11 (2023)
118849-118864. doi:10.1109/ACCESS.2023.3326720.


https://doi.org/10.1109/ACCESS.2023.3326720.
https://doi.org/10.3389/fnhum.2023.1243750.
https://doi.org/10.1109/ACCESS.2023.3340685.
https://doi.org/10.3389/fnhum.2023.1292428.
https://doi.org/10.3389/fnins.2023.1303648.
https://doi.org/10.1016/j.measen.2022.100616.
https://doi.org/10.3390/brainsci13020221.
https://doi.org/10.3390/s23063171.
https://doi.org/10.3390/app13074438.
https://doi.org/10.3390/math11081921.
https://doi.org/10.1016/j.bbe.2023.05.001.
https://doi.org/10.3390/s23094277.
https://doi.org/10.3390/s23115064.
https://doi.org/10.1007/s40846-023-00798-9.
https://doi.org/10.1007/s40846-023-00798-9.
https://doi.org/10.1016/j.bspc.2023.105063.
https://doi.org/10.1371/journal.pone.0276133.
https://doi.org/10.2298/CSIS221222033H.

[56] X. Chen, J. An, H. Wu, S. Li, B. Liu, D. Wu, Front-end replication dynamic window (FRDW) for
online motor imagery classification, IEEE Transactions on Neural Systems and Rehabilitation
Engineering 31 (2023) 3906—-3914. d0i:10.1109/TNSRE.2023.3321640.

[57] L. A. Fard, K. Jaseb, S. M. Mehdi Safi, Motor-imagery EEG signal classification using optimized
support vector machine by differential evolution algorithm, New Armenian Medical Journal 17
(2) (2023) 78-86. doi:10.56936/18290825-2023.17.2-78.

[58] R. Ma, Y.-F. Chen, Y.-C. Jiang, M. Zhang, A new compound-limbs paradigm: integrating upper-
limb swing improves lower-limb stepping intention decoding from EEG, IEEE Transactions on
Neural = Systems and  Rehabilitation = Engineering 31 (2023)  3823-3834.
doi:10.1109/TNSRE.2023.3315717.

[59] M. Degirmenci, Y. K. Yuce, M. Perc, Y. Isler, Statistically significant features improve binary
and multiple motor imagery task predictions from EEGs, Frontiers in Human Neuroscience 17
(2023). doi:10.3389/fnhum.2023.1223307.

[60] M. Gemborn Nilsson, P. Tufvesson, F. Heskebeck, M. Johansson, An open-source human-in-
the-loop BCI research framework: method and design, Frontiers in Human Neuroscience 17
(2023). doi:10.3389/fnhum.2023.1129362.

[61] K. Suemitsu, I. Nambu, Effects of data including visual presentation and rest time on
classification of motor imagery of using brain-computer interface competition datasets, IEEE
Access 11 (2023) 59542-59557. doi:10.1109/ACCESS.2023.3285236.

[62] H. Lou, Z. Ye, L. Yao, Y. Zhang, Less is more: brain functional connectivity empowered
generalizable intention classification with task-relevant channel selection, IEEE Transactions
on Neural Systems and Rehabilitation Engineering 31  (2023)  1888-1899.
doi:10.1109/TNSRE.2023.3252610.

[63] G. Huang, Z. Zhao, S. Zhang, Z. Hu, J. Fan, M. Fu, J. Chen, Y. Xiao, J. Wang, G. Dan,
Discrepancy between inter- and intra-subject variability in EEG-based motor imagery brain-
computer interface: evidence from multiple perspectives, Frontiers in Neuroscience 17 (2023).
doi:10.3389/fnins.2023.1122661.

[64] T. D. Pham, Classification of motor-imagery tasks using a large EEG dataset by fusing
classifiers learning on wavelet-scattering features, IEEE Transactions on Neural Systems and
Rehabilitation Engineering 31 (2023) 1097-1107. doi:10.1109/TNSRE.2023.3241241.

[65] F. Wei, X. Xu, T. Jia, D. Zhang, X. Wu, A multi-source transfer joint matching method for
inter-subject motor imagery decoding, IEEE Transactions on Neural Systems and
Rehabilitation Engineering 31 (2023) 1258-1267. doi:10.1109/TNSRE.2023.3243257.

[66] R. Chen, G. Xu, Y. Jia, C. Zhou, Z. Wang, J. Pei, C. Han, Y. Wang, S. Zhang, Enhancement of
time-frequency energy for the classification of motor imagery electroencephalogram based on
an improved FitzZHugh-Nagumo neuron system, IEEE Transactions on Neural Systems and
Rehabilitation Engineering 31 (2023) 282-293. doi:10.1109/TNSRE.2022.3219450.

[67] C.-R. Phang, C.-H. Chen, Y.-Y. Cheng, Y.-J. Chen, L.-W. Ko, Frontoparietal dysconnection in
covert bipedal activity for enhancing the performance of the motor preparation-based brain-
computer interface, IEEE Transactions on Neural Systems and Rehabilitation Engineering 31
(2023) 139-149. d0i:10.1109/TNSRE.2022.3217298.

[68]]. Jin, T. Qu, R. Xu, X. Wang, A. Cichocki, Motor imagery EEG classification based on
Riemannian sparse optimization and Dempster—Shafer fusion of multi-time-frequency
patterns, IEEE Transactions on Neural Systems and Rehabilitation Engineering 31 (2023)
58-67. d0i:10.1109/TNSRE.2022.3217573.

[69] X. Deng, B. Zhang, N. Yu, K. Liu, K. Sun, Advanced TSGL-EEGNet for motor imagery
EEG-based  brain-computer interfaces, IEEE  Access 9 (2021) 25118-25130.
doi:10.1109/ACCESS.2021.3056088.

[70] K. Barnova, M. Mikolasova, R. V. Kahankova, R. Jaros, A. Kawala-Sterniuk, V. Snasel, S.
Mirjalili, M. Pelc, R. Martinek, Implementation of artificial intelligence and machine learning-
based methods in brain—computer interaction, Computers in Biology and Medicine 163 (2023).
doi:10.1016/j.compbiomed.2023.107135.


https://doi.org/10.1016/j.compbiomed.2023.107135.
https://doi.org/10.1109/ACCESS.2021.3056088.
https://doi.org/10.1109/TNSRE.2022.3217573.
https://doi.org/10.1109/TNSRE.2022.3217298.
https://doi.org/10.1109/TNSRE.2022.3219450.
https://doi.org/10.1109/TNSRE.2023.3243257.
https://doi.org/10.1109/TNSRE.2023.3241241.
https://doi.org/10.3389/fnins.2023.1122661.
https://doi.org/10.1109/TNSRE.2023.3252610.
https://doi.org/10.1109/ACCESS.2023.3285236.
https://doi.org/10.3389/fnhum.2023.1129362.
https://doi.org/10.3389/fnhum.2023.1223307.
https://doi.org/10.1109/TNSRE.2023.3315717.
https://doi.org/10.56936/18290825-2023.17.2-78.
https://doi.org/10.1109/TNSRE.2023.3321640.

[71] H20.ai, H20 AutoML, Online documentation, 2025. URL: https://h20.ai/platform/h20-automl/.

[72] AutoGluon Team, AutoGluon: Open Source AutoML Toolkit, Online documentation, 2025.
URL: https://auto.gluon.ai/stable/index.html.

[73] Google Cloud, Vertex AI Platform: innovate faster with enterprise-ready Al enhanced by
Gemini models, Online documentation, 2025. URL: https://cloud.google.com/vertex-ai.


https://cloud.google.com/vertex-ai
https://auto.gluon.ai/stable/index.html
https://h2o.ai/platform/h2o-automl/

	1. Introduction
	2. Problem Statement
	3. Formulation of the Purpose of the Article
	4. Review and Analysis of Methods and Software Tools for EEG Signal Classification in Finger Movement Recognition Tasks in Scientific Studies
	5. Modern Software Systems and AutoML Solutions for EEG/BCI
	6. Conclusions
	Declaration on Generative AI
	References

