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Abstract

Low-dimensional semiconductor systems used in modern nanodevices for generating and detecting
electromagnetic radiation require an accurate and efficient approach to determining their geometric and
functional parameters. This paper proposes a methodology that allows the analysis of large datasets
obtained from experimental and theoretical studies of nanostructures in order to identify precise
parameters of their spatial confinement. Automation of data processing and nanosystem parameter
identification is implemented using machine learning methods and a convolutional neural network,
enabling efficient and reliable characterization of nanosystem parameters of arbitrary symmetry. The
developed software tool will significantly streamline the work of specialists in nanotechnology and
nanostructured material synthesis.
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1. Introduction

Devices for detecting [1] and generating electromagnetic radiation [2] of different frequencies and
intensities play a key role in the development of modern optical fiber electronics, computer
technologies, and military equipment. The functional elements of such nanodevices are multilayer
resonant tunneling nanostructures [3]. The development, research, and fabrication of these
nanosystems require significant investment in automation, as well as the use of specialized
software at various stages of fabrication and modeling.

A key problem in working with such nanostructures is the lack of a clear correlation between
the results of the initial modeling of the parameters of these nanosystems and the results obtained
as a result of their direct growth [4]. Typically, nanostructures whose properties were previously
modeled on the basis of the same model, immediately after their growth, have diverse geometric
confinement, deviating from the desired parameters, which affects their immediate spectral
characteristics. Since nanodevices such as quantum cascade lasers or detectors [1, 2, 5-8] use
hundreds of equivalent cascades, it is practically impossible to directly determine in practice what
the deviations of the confinement of real nanostructures from their modeled calculated parameters
are.

The experimental data obtained from such nanodevices are datasets containing tunneling
current or electron conductivity values. These data can be interpreted directly using specialized
software. In direct measurements, deviations of the geometric confinement of nanostructures from
their model values are manifested in the ambiguity of determining the values of current or
conductivity and their oscillations, which are determined by the spectral characteristics of
electrons in such low-dimensional systems. Due to the multilayer nature of real resonant tunneling
structures used in devices, experimenters face a significant problem, as it is impossible to
unambiguously establish which geometric design of nanostructures corresponds to the obtained
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deviations of measured quantities from their model values. The main approaches to determining
the geometric parameters of nanostructures from experimentally measured current or conductivity
values are inverse problems of quantum scattering theory. However, although many different
numerical methods of this kind exist even for single quantum wells, they usually do not yield
unambiguous results [9]. It is clear that the mentioned approaches cannot be applied even in the
case of complex low-change structures, which are the subject of modern research.

The relevance of this problem lies in the fact that an approach that allows one to establish the
geometric confinement of nanostructures based on experimental measurements would allow one to
significantly optimize the operation of existing nanodevices. In this paper, we aim to solve this
problem by applying machine learning methods to the analysis of large data arrays obtained from
experimental studies and measurements of typical values of electron current and conductivity in
nanosystems. Using these data and generalizing them with a developed mathematical model
describing the electronic states in nanostructures, a convolutional neural network will be trained.
When working with new experimental data, the developed neural network will unambiguously and
reliably determine the geometric parameters, thus solving the general problem.

2. Related work

Currently, there is relatively little specialized software designed for modeling the properties of
nanostructures. However, the following software systems, which can be classified by their level of
abstraction, should be highlighted. In particular, software systems that use quantum-mechanical
methods to describe interactions at the atomic level are worth mentioning: DFT, VASP, and
Quantum ESPRESSO [10]. Another group includes software systems that employ density functional
theory or molecular dynamics methods: NanoTCAD ViDES and NEMO [11]. Yet another group of
software systems is based on mesoscopic methods: they use simplified models that allow for
qualitative modeling of the electronic, optical, or transport properties of nanostructures, e.g.,
nextnano [12]. There are also systems based on continuum approaches to the Poisson equation and
the Boltzmann kinetic equations. Among numerical methods, the most commonly used are the
finite difference method, the finite element method, and the Monte Carlo method. Fig. 1 shows an
example of modeling the properties of a nanostructure using the nextnano software system. Fig. 1
shows an example of modeling the properties of a nanostructure using the nextnano software
system.

Using the aforementioned software, and as further illustrated in Fig. 1, it is possible to model the
fundamental properties of nanostructures with a small number of layers. This allows a qualitative
assessment of the spectral parameters of electrons in nanostructures and the calculation of the
potential diagram of such a nanosystem. However, it should be concluded that none of the
indicated software systems even approximately possesses the functionality required to solve
inverse problems of identifying the geometric confinement of nanostructures, despite their fairly
rich functionality for manipulating the input parameters of nanostructures and the materials from
which they are formed. In light of the existing challenges associated with this topic, two relevant
studies [2, 13] are noteworthy in which machine learning methods were directly applied to the
development of nanostructures and the modeling of their properties. This allowed us to improve
the input parameters of the nanostructures and optimize the performance of the final nanodevices,
although these studies did not resolve the underlying issues. Nevertheless, they demonstrate
progress in the application of artificial intelligence tools in this subject area. Therefore, given the
objectives set in this paper, we will continue to develop this direction, using these studies as a
bridge for further research.

3. Methods

We are beginning to address the stated problem of establishing a general approach, according to
which we are working with input data networks that characterize the electronic spectrum E,, n =



1, 2, .. in a nanostructure. We cannot directly apply datasets obtained from experimental spectral
measurements, as such datasets do not directly correspond to the geometric structure x;, i = L/M
(L - is the characteristic size of the nanostructure) of nanostructures. Therefore, we link spectral
datasets to basic mathematical models that most accurately describe the spectral characteristics of
electrons in such systems.
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Figure 1: Modeling nanostructure properties using the nextnano software system
(source: https://www.nextnano.com/ products/nextnanomat.php).

This basic mathematical model is based on the application of the stationary Schrddinger
equation and the conditions of continuity of the wave function and probability flows for a
nanosystem with any number of layers. This mathematical model can be represented as follows:

7o W (x)] =W ()
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where U(x) is the geometric confinement to be identified, E is the electronic spectrum, m is the
effective mass of the electron in the given structure.

Next, we present the Schrodinger equations and boundary conditions in discretized form on a
one-dimensional uniform grid:
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As a result, the spectral problem is reduced to a matrix equation describing the relationship
between the energy spectrum and the geometric confinement of the nanostructure on a discrete
grid:
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We will use the resulting table dependencies xi = xi(En) as input datasets for training the
neural network. Another mathematical model we will use takes into account the kinetics of
processes in nanostructures. It is based on the full Schrodinger equation and its limiting conditions.
This mathematical model is represented as follows:
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Approximating this mathematical model on a two-dimensional discrete variable grid (x, t), we
will have the following Crank-Nicholson type schemes for a multilayer system:
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Figure 2: Example of tabular data used to train the neural network (a) and its graphical
visualization (b).

Representing the result in a convenient matrix form, we will obtain:
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By now substituting into this difference scheme the data obtained from experimental
measurements of the energy spectrum (E,), we again obtain datasets (in form x; = x(E, t:))
convenient for use in training a neural network.

The data obtained by substituting the experimental results into models (5) and (6) underwent
minimal preprocessing. The primary goal of the data processing was to organize the values into
columns: the first contained the coordinates x, of the difference scheme corresponding to the
partition of the structure’s localization region, while the remaining columns contained the spectral
values E,.. An example of such tabular data and its visualization is presented in Figures 2a and 2b,
respectively.

4. Experiment

We begin working with the input data directly based on model (5), (6). We will accept the input
data as vectors, which leads to the following matrix equation:

H(U)=EW, (7)



where H(U) is a tridiagonal Hamiltonian that depends on the vector of potentials
U = (Ui, Uy, ..,Un1). In our case, the experimental spectral data is a set of energy levels E,. As a
result, we need to construct a mapping as follows:
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To preprocess and normalize the data, we used the Wolfram Mathematica 13.2 environment,
which implements this as follows:

data = Import["spectra_table.csv"];

xGrid = data[[2 ;;, 1]];

Edata = data[[2 ;;, 2 ;;]];

scaledE = Standardize /@ Transpose[Edata];
scaledE = Transpose[scaledE];

scaledX = (xGrid - Mean[xGrid])/StandardDeviation[xGrid];
dataset = MapThread[Association["Input" -> #1, "Target" -> #2] &, {scaledE, scaledX}];
{train, val} = TakeDrop[dataset, Round[0.8 Length[dataset]]];

where in our case scaledXList is a list of corresponding labels for training the neural network:
coordinates and U-vectors for each dadaset. The neural network architecture was designed to use
the vector E, itself to reconstruct the vectors x, and U,.

For this, we use a multi-layer perceptron (MLP) (NetChain / NetGraph). In Wolfram
Mathematica, we implemented this as follows:

inputDim = Length[scaledE[[1]]];
outputDim = Length[scaledXList[[1]]];

net = NetChain({
LinearLayer[256],
ElementwiseLayer[Ramp], (* ReLU *)
DropoutLayer[0.2],
LinearLayer[128],
ElementwiseLayer[Tanh],
LinearLayer[outputDim]

h

"Input” -> inputDim

JE

When training the neural network, the process was controlled by a loss function in the form:

1 M
MSE M Z | true pred ) (10)

In Wolfram Mathematica, this parameter was taken into account automatically using the
NetTrain directive:



trainedNet = NetTrain[net, train,
ValidationSet -> val,
TrainingProgressReporting -> "Panel",
BatchSize -> 32,

MaxTrainingRounds -> 200,
TargetDevice -> "GPU",

LossFunction -> MeanSquaredLossLayer([]

1;

After the initial good approximation was made, the predicted values of x, and U, were updated

by minimizing the discrepancy between the experimental energy data E®?
eigenvalues 4;(U) obtained in the model (5), (6), where the objective function is as follows:

J(U)zé (2, H(U)-E*[+ yR(U),

where y is the weighting coefficient and the regularizer has the form:

R<U>=§<Uj+l+u,->2.

and the

(11)

(12)

Now the implementation of the construction of a tridiagonal matrix, the formation of the

objective function and minimization using a combined scheme looks as follows:

makeH[U_List, alpha_] := Module[{n = Length[U]},
SparseArray/[{

Band[{1, 1}] -> 2 alpha + U,

Band[{1, 2}] -> -alpha,

Band[{2, 1}] -> -alpha
ﬁ, {n, nj]

lossFunc[Uvec_?VectorQ] := Module[{H, eig},

H = makeH[Uvec, alphaVal];

eig = Sort[Eigenvalues[H]];

Total[(eig[[1 ;; K]] - Eexp)"2] + gamma Total[(Differences[Uvec])”2]
1;

Ustart = NetPredict[trainedNet, singleEInput];

res = FindMinimum[
lossFunc[U],

{U, Ustart, StepMonitor :> Null},
Maxlterations -> 200

I;

Uopt = U /. res[[2]];




Figure 3 schematically presents the principle of training a neural network using the vector
representation of the spectrum E, as a function of the discrete grid coordinates x.
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Figure 3: Scheme of training a neural network using tabular spectra E, = Ex(x;).

5. Results

Let us first focus on the training process of the neural network used to identify the parameters of
the nanosystems in all the samples studied.

Table 1
Results of neural network training for identifying precise nanostructure parameters (PINN
approach)
Parameter Symbol Value
Number of layers Niayers 5
Neurons per layer N eurons 64
Activation function o(x) tanh(x)
Learning rate n 5x10™*
Optimizer Adam
Batch size B 128
Training epochs N epochs 2000
Loss function type L= {R* + wpc{(¥ - Pre)® PINN residual + boundary
Boundary condition weight Wge 0.1
Mean residual error Eres 23 x10™
Potential identification error AU(x) <1.5%
Computation time Lirain 38 min
Hardware used Intel I%Oé%ISiZOOH,
Framework Wolfram Matherpatica 13.3
(NetTrain)

Table 1 presents the main parameters and initial training results for a neural network
implemented using the general Physics-Informed Neural Network (PINN) approach. The neural



network was directly applied to the task of identifying precise nanostructure parameters from
experimental data based on the stationary Schrodinger equation in difference form. This model was
trained using experimentally derived data from published experimental papers [14-17] (170
datasets taken from 74 structures of different symmetry were used; the criterion for selecting the
data was to use all experimentally measured values of the energy spectra related to the geometric
configuration of the structure), taking into account only the boundary conditions and the general
differential equation scheme. As shown by the obtained results, the use of a loss function that
includes a physical (PINN) component and an additional penalty term for the boundary conditions
ensures high accuracy in identifying nanostructure confinement with minimal mean square error.
The training process was carried out on a personal computer with relatively modest computational
resources, demonstrating the efficiency of the proposed implementation without the need for high-
performance systems or computing clusters.

A key factor in selecting the datasets used to train the neural network was their consistency
with experimental results obtained for various nanostructures possessing diverse physic-chemical
parameters and geometric confinement. The only unifying feature among them is that all of these
structures are two-dimensional in terms of geometry.

To test the performance of the neural network trained on experimental datasets, experimental
measurement data were used that did not overlap with the input data employed for training. Key
factors for evaluating the neural network’s performance included its speed and its ability to
accurately identify parameters compared to other available models. The reference model, currently
the standard, is based on self-consistent solutions to the Schrodinger-Poisson system of equations
(Schrodinger-Poisson solver). The theoretical foundation of this method was, for example,
developed in our previous paper [18].

6. Discussion

To demonstrate the performance of the trained neural network in identifying nanostructure
parameters, five samples composed of different materials were randomly selected. The
experimental studies from which the verification data were obtained correspond to papers [1, 2, 5,
6, 14]. The computation speed results for the developed neural network, compared to the direct
analytical method, are presented in Table 2. As shown in Table 2, the developed neural network
identifies the geometric confinement parameters of nanostructures in all samples nearly an order of
magnitude faster than the conventional direct calculation method. Moreover, the neural network’s
execution time is independent of the sample type, as the input and experimental data were
previously normalized so that their weights were approximately equal.

Table 2
Comparison of computational speed of neural network versus direct calculation method

Sample No Neural Network Time (min) Direct Method Time (min)
1 23 210
2 16 187
3 14,2 114
4 17 142
5 27,1 217

Further, Figures 4a and 4b present the results of calculating the full spatial confinement for two
different nanostructure samples using both the neural network and the direct computational
method. Moreover, both samples were fabricated from entirely different types of semiconductors:
arsenide (a) and nitride (b). As shown, both methods produce virtually identical results; however,
the neural network-based approach, due to its speed, is more efficient and streamlines the



computational process. This represents a significant advantage for direct applications in
nanoelectronics, as it considerably facilitates the automation of computational work with samples.
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Figure 4: The potential profiles of two nanostructure samples were calculated using two methods:
a trained neural network based on experimental data (solid line) and the direct method (circles).

7. Conclusions

An approach to the automated identification of geometric and spatial confinement in
low-dimensional structures using machine learning methods is proposed.

The developed neural network, trained on input experimental data corresponding to measured
electronic spectra and aligned with a difference scheme based on a mathematical model of the
low-dimensional system, enables efficient identification of nanostructure shapes with arbitrary
input physical parameters. Its performance is nearly one order of magnitude higher than that of the
Schrodinger-Poisson model.

The obtained results demonstrate that the proposed methodology provides efficient processing
of experimental samples and reliable identification of their parameters. These results show promise
for the development of software with broad applications in specialized areas of nanotechnology
and electronics.
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