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Abstract
Low-dimensional  semiconductor  systems  used  in  modern  nanodevices  for  generating  and  detecting 
electromagnetic radiation require an accurate and efficient approach to determining their geometric and 
functional  parameters.  This  paper proposes a  methodology that  allows the analysis  of  large datasets 
obtained  from  experimental  and  theoretical  studies  of  nanostructures  in  order  to  identify  precise 
parameters  of  their  spatial  confinement.  Automation  of  data  processing  and  nanosystem  parameter 
identification  is  implemented  using  machine  learning  methods  and  a  convolutional  neural  network, 
enabling efficient and reliable characterization of  nanosystem parameters  of  arbitrary symmetry.  The 
developed  software  tool  will  significantly  streamline  the  work  of  specialists  in  nanotechnology  and 
nanostructured material synthesis.
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1. Introduction

Devices for detecting [1] and generating electromagnetic radiation [2] of different frequencies and 
intensities  play  a  key  role  in  the  development  of  modern  optical  fiber  electronics,  computer 
technologies, and military equipment. The functional elements of such nanodevices are multilayer 
resonant  tunneling  nanostructures  [3].  The  development,  research,  and  fabrication  of  these 
nanosystems  require  significant  investment  in  automation,  as  well  as  the  use  of  specialized 
software at various stages of fabrication and modeling.

A key problem in working with such nanostructures is the lack of a clear correlation between 
the results of the initial modeling of the parameters of these nanosystems and the results obtained 
as a result of their direct growth [4]. Typically, nanostructures whose properties were previously 
modeled on the basis of the same model, immediately after their growth, have diverse geometric  
confinement,  deviating  from  the  desired  parameters,  which  affects  their  immediate  spectral 
characteristics.  Since  nanodevices  such as  quantum cascade  lasers  or  detectors  [1,  2,  5–8]  use 
hundreds of equivalent cascades, it is practically impossible to directly determine in practice what 
the deviations of the confinement of real nanostructures from their modeled calculated parameters 
are.

The  experimental  data  obtained  from  such  nanodevices  are  datasets  containing  tunneling 
current or electron conductivity values. These data can be interpreted directly using specialized 
software. In direct measurements, deviations of the geometric confinement of nanostructures from 
their  model  values  are  manifested  in  the  ambiguity  of  determining  the  values  of  current  or 
conductivity  and  their  oscillations,  which  are  determined  by  the  spectral  characteristics  of  
electrons in such low-dimensional systems. Due to the multilayer nature of real resonant tunneling 
structures  used  in  devices,  experimenters  face  a  significant  problem,  as  it  is  impossible  to 
unambiguously establish which geometric design of nanostructures corresponds to the obtained 
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deviations of measured quantities from their model values. The main approaches to determining 
the geometric parameters of nanostructures from experimentally measured current or conductivity 
values  are  inverse  problems  of  quantum scattering  theory.  However,  although many different 
numerical methods of this kind exist even for single quantum wells,  they usually do not yield  
unambiguous results [9]. It is clear that the mentioned approaches cannot be applied even in the  
case of complex low-change structures, which are the subject of modern research.

The relevance of this problem lies in the fact that an approach that allows one to establish the 
geometric confinement of nanostructures based on experimental measurements would allow one to 
significantly optimize the operation of existing nanodevices. In this paper, we aim to solve this 
problem by applying machine learning methods to the analysis of large data arrays obtained from 
experimental studies and measurements of typical values of electron current and conductivity in 
nanosystems.  Using  these  data  and  generalizing  them  with  a  developed  mathematical  model 
describing the electronic states in nanostructures, a convolutional neural network will be trained. 
When working with new experimental data, the developed neural network will unambiguously and 
reliably determine the geometric parameters, thus solving the general problem.

2. Related work

Currently,  there is relatively little specialized software designed for modeling the properties of  
nanostructures. However, the following software systems, which can be classified by their level of  
abstraction, should be highlighted. In particular, software systems that use quantum-mechanical 
methods  to  describe  interactions  at  the  atomic  level  are  worth  mentioning:  DFT,  VASP,  and 
Quantum ESPRESSO [10]. Another group includes software systems that employ density functional 
theory or molecular dynamics methods: NanoTCAD ViDES and NEMO [11]. Yet another group of 
software  systems  is  based  on  mesoscopic  methods:  they  use  simplified  models  that  allow for 
qualitative  modeling  of  the  electronic,  optical,  or  transport  properties  of  nanostructures,  e.g.,  
nextnano [12]. There are also systems based on continuum approaches to the Poisson equation and 
the Boltzmann kinetic equations.  Among numerical methods, the most commonly used are the 
finite difference method, the finite element method, and the Monte Carlo method. Fig. 1 shows an 
example of modeling the properties of a nanostructure using the nextnano software system. Fig. 1  
shows an example of  modeling the properties of  a nanostructure using the nextnano software 
system.

Using the aforementioned software, and as further illustrated in Fig. 1, it is possible to model the 
fundamental properties of nanostructures with a small number of layers. This allows a qualitative 
assessment of the spectral parameters of electrons in nanostructures and the calculation of the  
potential  diagram  of  such  a  nanosystem.  However,  it  should  be  concluded  that  none  of  the  
indicated  software  systems  even  approximately  possesses  the  functionality  required  to  solve 
inverse problems of identifying the geometric confinement of nanostructures, despite their fairly 
rich functionality for manipulating the input parameters of nanostructures and the materials from 
which they are formed. In light of the existing challenges associated with this topic, two relevant  
studies [2, 13] are noteworthy in which machine learning methods were directly applied to the 
development of nanostructures and the modeling of their properties. This allowed us to improve 
the input parameters of the nanostructures and optimize the performance of the final nanodevices, 
although  these  studies  did  not  resolve  the  underlying  issues.  Nevertheless,  they  demonstrate 
progress in the application of artificial intelligence tools in this subject area. Therefore, given the 
objectives set in this paper, we will continue to develop this direction, using these studies as a 
bridge for further research.

3. Methods

We are beginning to address the stated problem of establishing a general approach, according to 
which we are working with input data networks that characterize the electronic spectrum 𝐸𝑛,  =𝑛  



1, 2, .. in a nanostructure. We cannot directly apply datasets obtained from experimental spectral  
measurements, as such datasets do not directly correspond to the geometric structure 𝑥𝑖,  = /𝑖 𝐿 𝑀
(  𝐿 – is the characteristic size of the nanostructure) of nanostructures. Therefore, we link spectral  
datasets to basic mathematical models that most accurately describe the spectral characteristics of 
electrons in such systems.

Figure  1: Modeling  nanostructure  properties  using  the  nextnano  software  system
(source: https://www.nextnano.com/ products/nextnanomat.php).

This  basic  mathematical  model  is  based  on  the  application  of  the  stationary  Schrödinger  
equation  and  the  conditions  of  continuity  of  the  wave  function  and  probability  flows  for  a 
nanosystem with any number of layers. This mathematical model can be represented as follows:

[− ℏ2

2m
∂2

∂ x2
+U (x)−E]Ψ(x)=0 ;    { Ψ( p)(x)|x=x p=Ψ( p+1)(x)|x=x p ,
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∂ x |
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=
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∂ x |
x=x p

,
                   (1)

where ( ) is the geometric confinement to be identified,  is the electronic spectrum,  is the𝑈 𝑥 𝐸 𝑚  
effective mass of the electron in the given structure.

Next, we present the Schrödinger equations and boundary conditions in discretized form on a 
one-dimensional uniform grid:
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As a result, the spectral problem is reduced to a matrix equation describing the relationship 
between the energy spectrum and the geometric confinement of the nanostructure on a discrete 
grid:

H Ψ=EΨ ,    Ψ=(Ψ1 , ... ,ΨN−1)
T ,

H=(
2α +U 1 −α 0 ⋮ 0

−α 2α +U 2 −α ⋱ ...
0 −α ⋱ ⋱ 0
... ⋱ ⋱ 2α +U N−2 −α
0 ⋮ 0 −α 2α +U N−1

).                              (3)

We will  use the resulting table dependencies  = ( )  as input datasets  for training the𝑥𝑖 𝑥𝑖 𝐸𝑛  
neural  network.  Another  mathematical  model  we  will  use  takes  into  account  the  kinetics  of 
processes in nanostructures. It is based on the full Schrödinger equation and its limiting conditions. 
This mathematical model is represented as follows:
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Approximating this mathematical model on a two-dimensional discrete variable grid ( , ), we𝑥 𝑡  
will have the following Crank-Nicholson type schemes for a multilayer system:
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Figure  2: Example  of  tabular  data  used  to  train  the  neural  network  (a)  and  its  graphical 
visualization (b).

Representing the result in a convenient matrix form, we will obtain:

AΨn+1=BΨn ,    Ψn=(Ψ1
n , ... ,ΨN−1

n )T ,

A=(
1+λ (2α +U 1) −λα 0 ⋮ 0

−λα 1+λ (2α +U 2) −λα ⋱ ...
0 −λα ⋱ ⋱ 0
... ⋱ ⋱ 1+λ (2α +U N−2) −λα
0 ⋮ 0 −λα 1+λ (2α +U N−1)

),
B=(

1−2λ(2α+U 1) 2λα 0 ⋮ 0
2λα 1−2λ(2α+U 2) 2λα ⋱ ...
0 2λα ⋱ ⋱ 0
... ⋱ ⋱ 1−2λ(2α+U N−2) −2λα
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).   (6)

By  now  substituting  into  this  difference  scheme  the  data  obtained  from  experimental 
measurements  of  the  energy  spectrum (𝐸𝑛),  we  again  obtain  datasets  (in  form 𝑥𝑖 =  𝑥𝑖(𝐸𝑛,  𝑡𝑖)) 
convenient for use in training a neural network.

The data obtained by substituting the experimental results into models (5) and (6) underwent 
minimal preprocessing. The primary goal of the data processing was to organize the values into  
columns:  the first  contained the coordinates  𝑥𝑛 of  the  difference scheme corresponding to  the 
partition of the structure’s localization region, while the remaining columns contained the spectral 
values 𝐸𝑛. An example of such tabular data and its visualization is presented in Figures 2a and 2b, 
respectively.

4. Experiment

We begin working with the input data directly based on model (5), (6). We will accept the input 
data as vectors, which leads to the following matrix equation:

H (U )=EΨ ,                                                                      (7)



where  ( )  is  a  tridiagonal  Hamiltonian  that  depends  on  the  vector  of  potentials𝐻 𝑈
 = (𝑈 𝑈1, 𝑈2, ...,𝑈 −1𝑁 ). In our case, the experimental spectral data is a set of energy levels  En. As a 

result, we need to construct a mapping as follows:

f NN : {En , t i}→ {x i},                                                                  (8)

or is it the same as a dependency relationship:

{U i}i=1
N−1=U i({x i}) .                                                                 (9)

To preprocess and normalize the data, we used the Wolfram Mathematica 13.2 environment, 
which implements this as follows:

data = Import["spectra_table.csv"];

xGrid = data[[2 ;; , 1]];
Edata = data[[2 ;; , 2 ;;]];
scaledE = Standardize /@ Transpose[Edata];
scaledE = Transpose[scaledE];

scaledX = (xGrid - Mean[xGrid])/StandardDeviation[xGrid];
dataset = MapThread[Association["Input" -> #1, "Target" -> #2] &, {scaledE, scaledX}];
{train, val} = TakeDrop[dataset, Round[0.8 Length[dataset]]];

where in our case scaledXList is a list of corresponding labels for training the neural network: 
coordinates and -vectors for each dadaset. The neural network architecture was designed to use𝑈  
the vector 𝐸𝑛 itself to reconstruct the vectors 𝑥𝑛 and 𝑈𝑛.

For  this,  we  use  a  multi-layer  perceptron  (MLP)  (NetChain  /  NetGraph).  In  Wolfram 
Mathematica, we implemented this as follows:

inputDim = Length[scaledE[[1]]];
outputDim = Length[scaledXList[[1]]];

net = NetChain[{
              LinearLayer[256],
              ElementwiseLayer[Ramp], (* ReLU *)
              DropoutLayer[0.2],
              LinearLayer[128],
              ElementwiseLayer[Tanh],
              LinearLayer[outputDim]
},
"Input" -> inputDim
];

When training the neural network, the process was controlled by a loss function in the form:

LMSE=
1
M

∑
j=1

M

|x j(true)−x j( pred)|
2
.                                                    (10)

In  Wolfram  Mathematica,  this  parameter  was  taken  into  account  automatically  using  the 
NetTrain directive:



trainedNet = NetTrain[net, train,
ValidationSet -> val,
TrainingProgressReporting -> "Panel",
BatchSize -> 32,
MaxTrainingRounds -> 200,
TargetDevice -> "GPU",
LossFunction -> MeanSquaredLossLayer[]
];

After the initial good approximation was made, the predicted values of 𝑥𝑛 and 𝑈𝑛 were updated 
by  minimizing  the  discrepancy  between  the  experimental  energy  data  𝐸𝑒𝑥𝑝 and  the 
eigenvalues 𝜆𝑗( ) obtained in the model (5), (6), where the objective function is as follows:𝑈

J (U )=∑
j=1

K

[λ jH (U )−E j
exp ]2+ γ R (U ) ,                                         (11)

where  is the weighting coefficient and the regularizer has the form:𝛾

R (U )=∑
j=1

K

(U j+1+U j)
2 .                                                        (12)

Now the  implementation  of  the  construction  of  a  tridiagonal  matrix,  the  formation  of  the  
objective function and minimization using a combined scheme looks as follows:

makeH[U_List, alpha_] := Module[{n = Length[U]},
SparseArray[{
               Band[{1, 1}] -> 2 alpha + U,
               Band[{1, 2}] -> -alpha,
               Band[{2, 1}] -> -alpha
}, {n, n}]
];

lossFunc[Uvec_?VectorQ] := Module[{H, eig},
H = makeH[Uvec, alphaVal];
eig = Sort[Eigenvalues[H]];
Total[(eig[[1 ;; K]] - Eexp)^2] + gamma Total[(Differences[Uvec])^2]
];

Ustart = NetPredict[trainedNet, singleEInput];

res = FindMinimum[
lossFunc[U],
{U, Ustart, StepMonitor :> Null},
MaxIterations -> 200
];

Uopt = U /. res[[2]];



Figure 3 schematically presents the principle of  training a neural  network using the vector 
representation of the spectrum 𝐸𝑛 as a function of the discrete grid coordinates 𝑥𝑛.

Figure 3: Scheme of training a neural network using tabular spectra 𝐸𝑛 = 𝐸𝑛(𝑥𝑖).

5. Results

Let us first focus on the training process of the neural network used to identify the parameters of  
the nanosystems in all the samples studied.

Table 1
Results  of  neural  network  training  for  identifying  precise  nanostructure  parameters  (PINN 
approach)

Parameter Symbol Value

Number of layers 𝑁layers 5

Neurons per layer 𝑁neurons 64

Activation function ( )𝜑 𝑥 tanh( )𝑥

Learning rate 𝜂 5 × 10−4

Optimizer Adam

Batch size B 128

Training epochs 𝑁epochs 2000

Loss function type ℒPINN = ⟨𝑅2⟩ + 𝑤BC⟨(Ψ − ΨBC)2⟩ PINN residual + boundary

Boundary condition weight 𝑤BC 0.1

Mean residual error 𝜀res 2,3 × 10−4

Potential identification error Δ ( )𝑈 𝑥 ≤ 1.5%

Computation time 𝑡train 38 min

Hardware used Intel Core i7-12700H,
16 GB RAM

Framework Wolfram Mathematica 13.3 
(NetTrain)

Table  1  presents  the  main  parameters  and  initial  training  results  for  a  neural  network 
implemented using the general Physics-Informed Neural Network (PINN) approach. The neural 



network was directly applied to the task of  identifying precise nanostructure parameters from 
experimental data based on the stationary Schrödinger equation in difference form. This model was 
trained  using  experimentally  derived  data  from  published  experimental  papers  [14–17]  (170 
datasets taken from 74 structures of different symmetry were used; the criterion for selecting the  
data was to use all experimentally measured values of the energy spectra related to the geometric  
configuration of the structure), taking into account only the boundary conditions and the general 
differential equation scheme. As shown by the obtained results,  the use of a loss function that 
includes a physical (PINN) component and an additional penalty term for the boundary conditions 
ensures high accuracy in identifying nanostructure confinement with minimal mean square error.  
The training process was carried out on a personal computer with relatively modest computational 
resources, demonstrating the efficiency of the proposed implementation without the need for high-
performance systems or computing clusters.

A key factor in selecting the datasets used to train the neural network was their consistency 
with experimental results obtained for various nanostructures possessing diverse physic-chemical 
parameters and geometric confinement. The only unifying feature among them is that all of these 
structures are two-dimensional in terms of geometry.

To test the performance of the neural network trained on experimental datasets, experimental  
measurement data were used that did not overlap with the input data employed for training. Key 
factors  for  evaluating  the  neural  network’s  performance  included  its  speed  and  its  ability  to  
accurately identify parameters compared to other available models. The reference model, currently 
the standard, is based on self-consistent solutions to the Schrödinger-Poisson system of equations 
(Schrödinger-Poisson  solver).  The  theoretical  foundation  of  this  method  was,  for  example, 
developed in our previous paper [18].

6. Discussion

To  demonstrate  the  performance  of  the  trained  neural  network  in  identifying  nanostructure 
parameters,  five  samples  composed  of  different  materials  were  randomly  selected.  The 
experimental studies from which the verification data were obtained correspond to papers [1, 2, 5,  
6, 14]. The computation speed results for the developed neural network, compared to the direct 
analytical method, are presented in Table 2. As shown in Table 2, the developed neural network 
identifies the geometric confinement parameters of nanostructures in all samples nearly an order of 
magnitude faster than the conventional direct calculation method. Moreover, the neural network’s 
execution  time  is  independent  of  the  sample  type,  as  the  input  and  experimental  data  were 
previously normalized so that their weights were approximately equal.

Table 2
Comparison of computational speed of neural network versus direct calculation method

Sample No Neural Network Time (min) Direct Method Time (min)

1 23 210

2 16 187

3 14,2 114

4 17 142

5 27,1 217

Further, Figures 4a and 4b present the results of calculating the full spatial confinement for two 
different  nanostructure  samples  using  both  the  neural  network  and  the  direct  computational 
method. Moreover, both samples were fabricated from entirely different types of semiconductors:  
arsenide (a) and nitride (b). As shown, both methods produce virtually identical results; however, 
the  neural  network-based  approach,  due  to  its  speed,  is  more  efficient  and  streamlines  the 



computational  process.  This  represents  a  significant  advantage  for  direct  applications  in 
nanoelectronics, as it considerably facilitates the automation of computational work with samples.

Figure 4: The potential profiles of two nanostructure samples were calculated using two methods: 
a trained neural network based on experimental data (solid line) and the direct method (circles).

7. Conclusions

An  approach  to  the  automated  identification  of  geometric  and  spatial  confinement  in
low-dimensional structures using machine learning methods is proposed.

The developed neural network, trained on input experimental data corresponding to measured 
electronic spectra and aligned with a difference scheme based on a mathematical model of the
low-dimensional  system,  enables  efficient  identification of  nanostructure  shapes  with  arbitrary 
input physical parameters. Its performance is nearly one order of magnitude higher than that of the 
Schrödinger-Poisson model.

The obtained results demonstrate that the proposed methodology provides efficient processing 
of experimental samples and reliable identification of their parameters. These results show promise 
for the development of software with broad applications in specialized areas of nanotechnology 
and electronics.

Declaration on Generative AI
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