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Abstract
This study presents a mathematical and knowledge-oriented framework for analyzing and optimizing the 
efficient and balanced operation of a university computer network. The growing complexity of higher 
education ICT infrastructures, the expansion of digital services, and the intensification of user activity 
require  advanced modeling techniques  capable  of  supporting data-driven management  decisions.  The 
proposed  approach  integrates  mathematical  modeling,  performance  analysis,  and  knowledge-based 
methods to evaluate structural balance, operational efficiency, and resource utilization within institutional 
networks. A key contribution of this work is the development of a dynamic load-distribution model for  
terminal cluster centers, which are responsible for processing high-intensity user requests in academic  
environments. The model incorporates temporal and structural characteristics of network traffic, adaptive 
balancing  strategies,  and  knowledge-driven  rules  for  predicting  load  fluctuations  across  distributed 
terminal clusters.  This enables the system to reallocate computational resources in real time, prevent 
overload states, and maintain stable quality-of-service indicators under varying workloads. The results 
demonstrate  that  combining  mathematical  modeling  with  knowledge-oriented  decision  mechanisms 
significantly enhances network efficiency, reduces response delays, and ensures balanced utilization of  
computational and communication resources. The proposed framework can serve as a basis for designing 
intelligent management systems for university ICT infrastructures and contributes to the development of  
advanced methods for performance optimization in educational networks.
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1. Introduction

Modern corporate networks of higher education institutions are characterized by a high degree of 
distribution,  intensive  traffic,  and  extensive  use  of  terminal  servers  for  providing  access  to 
information  resources,  virtual  laboratories,  and  educational  services.  Under  such  conditions, 
ensuring  reliable  user  identification  and  authentication,  as  well  as  maintaining  uninterrupted 
operation  of  network  communication  channels,  becomes  critically  important.  Most  university 
infrastructures  rely  on  Kerberos-based  technologies,  which  establish  distributed  authentication 
systems and require consistent interaction among terminal servers [1–3].
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Despite  the  widespread  adoption  of  terminal  networks,  several  essential  issues  remain 
unresolved. In particular, the optimal load distribution among terminal servers and the assurance 
of communication channel survivability under failures, peak loads, or uneven resource utilization 
constitute  some  of  the  most  urgent  challenges  in  the  network  infrastructures  of  modern 
universities.  Insufficient  fault  tolerance  and  ineffective  load  balancing  may  lead  to  prolonged 
authentication delays, reduced service availability, and impaired performance of educational and 
research platforms [4, 5].

Therefore,  the  development  of  models,  methods,  and  algorithms  aimed  at  enhancing 
communication channel survivability, optimizing the exchange of authentication information, and 
enabling dynamic load distribution among terminal servers represents a relevant scientific task. 
Addressing these issues will contribute to improving the resilience, scalability, and efficiency of 
corporate  networks  in  higher  education  institutions,  in  line  with  contemporary  trends  in  the 
development of secure and highly available information and communication systems [6, 7].

2. Task Statement

Corporate computer networks in higher education institutions extensively rely on terminal servers 
and Kerberos-based infrastructure to provide user authentication and access to educational and 
scientific services. In such systems, user groups are attached to specific terminal servers, which 
interact with one another on a peer-to-peer basis and form a distributed authentication subsystem. 
The  reliability  and  efficiency  of  this  subsystem  depend  on  its  ability  to  maintain  minimal 
authentication service time and preserve service availability even in the presence of server failures  
[8, 9].

In real operational environments, terminal servers may fail, become overloaded, or operate in 
degraded mode. Under such conditions,  users of failed servers must be promptly reassigned to 
other  functional  servers,  taking  into  account  available  resources,  load  levels,  access  policies,  
network topology, switching costs, and performance constraints. At the mathematical level, this 
problem  is  formulated  as  the  redistribution  of  user  groups  among  terminal  servers  while  
minimizing the average service time and satisfying constraints related to flow intensities, memory 
resources, security policies, and communication bandwidth [10].

However,  exhaustive  enumeration  of  all  possible  redistribution  variants  is  computationally 
infeasible: the number of alternatives grows exponentially with the number of servers. Therefore, 
solving this problem requires specialized methods for reducing the search space and developing 
efficient  optimization  algorithms.  Traditional  mathematical  models  do  not  incorporate  logical, 
policy-based, and semantic dependencies among network components, which limits the practical 
relevance of their outputs [11].

At the same time,  existing terminal  network management systems do not employ semantic 
technologies to represent knowledge about the infrastructure and thus cannot produce context-
aware redistribution decisions.  Consequently,  the research problem is to develop an integrated 
knowledge-oriented model for load redistribution in terminal cluster centers, which combines: a 
formal stochastic model of the terminal network; an ontology that captures structural, operational,  
and policy constraints, an optimization algorithm that accounts for both numerical parameters and 
semantic  dependencies,  semantic  filtering  methods  based  on  SPARQL queries,  KnowledgeRule 
specifications, and logical reasoning.

The objective of the study is to determine an optimal plan for reassigning users from failed  
servers to operational servers while minimizing the average service time and switching cost under 
technical and semantic constraints.



3. Modeling  the  Dynamic  Load  Distribution  of  Terminal  Cluster 
Centers

One  of  the  key  challenges  in  organizing  communication  channels  among  terminal  servers  in 
corporate university networks is  ensuring reliable identification and authentication of  a  closed 
group of authorized users, (Fig. 1). In modern infrastructures, user identification and authentication 
during the  establishment  of  network communication channels  are  predominantly  implemented 
through Kerberos-based mechanisms built  on the client–server paradigm [12–14].  According to 
this approach, terminal networks are partitioned into Kerberos realms, each containing a dedicated 
authentication  server  responsible  for  granting  authorized  users  controlled  access  to  approved 
information resources.

Terminal servers interact with each other through pairwise communication channels, forming a 
distributed  authentication  system.  These  servers  share  a  common  secret  key  and  exchange 
authentication information required for validating user identities within the system. Each server 
maintains a  localized database that stores credentials  and authorization attributes of  legitimate 
users.

Figure 1: University corporate network with terminal cluster centers and Kerberos authentication.

It  should  be  emphasized  that,  despite  the  increasing  interest  in  terminal-oriented  network 
technologies,  numerous issues related to  their  practical  organization,  scalability,  and reliability 
remain insufficiently addressed [15]. One of the most significant challenges in this domain is the  
development  of  efficient  methods  and  algorithms  aimed  at  improving  the  survivability  of 
communication channels.  Such mechanisms must guarantee that authorized users retain timely 
access to requested resources even under various failure scenarios, including partial server outage,  
link degradation, or unexpected load surges [16, 17].

To address these challenges, the modeling of dynamic load distribution among terminal cluster 
centers becomes a critical  research direction.  At the initial  stage of this  modeling process,  the  
structure  of  the  computer  network  is  formally  represented  using an  open stochastic  network, 
which enables the analytical description of probabilistic interactions, load fluctuations, and state 
transitions occurring in distributed authentication environments.



Let us assume that the set of terminal servers created within the computer network is denoted 
by  = {𝑆 𝑆1, 𝑆2, …, 𝑆𝑛} and that to each server  a certain group of authorized users from the set  is𝑆𝑖 𝑈  
assigned.  In other words,  for each server  there exists a subset 𝑆𝑖 𝑈𝑖 ⊂  such that the family𝑈  
{U i}i=1

n  forms a partition of , i.e.𝑈

U i∩U j=∅ ,    i≠ j .                                                           (1)

Each subset 𝑈𝑖 consists of individual users 𝑢𝑘𝑖 . Thus, we can write

U=∪i=1
n U i ,    [U i]=ni ,    ∑

i=1

n

ni=m,    m>n ,                                       (2)

where  is the total number of authorized users and 𝑚 n is the number of terminal servers.
Naturally,  all  servers  from the  set   perform identical  authentication  functions,  since  they𝑆  

implement a unified security policy of the terminal network. As a performance criterion for the 
operation  of  the  communication  channels  during  authentication,  we  consider  𝑇0,  the  average 
service time of user authentication requests under the condition that all servers from S are fully 
operational.

Assume further that  the terminal  network is  represented as an exponential  open stochastic 
network composed of  a  finite number of  single-channel  queuing systems.  These systems form 
service  nodes  characterized  by  a  constant  arrival  intensity  λ0,  which  does  not  depend on  the 
network state, at the output of the request source 𝑆0.

Let the intensity λ0, be known and considered as a parameter of the network. Requests from the 
source 𝑆0 enter the network with a constant probability 𝑝0𝑖 of being routed to the queuing system 
(QS)  𝑆𝑖.  Requests served by  QS 𝑆𝑖 are then forwarded with a constant probability 𝑃𝑖𝑗 to  QS 𝑆𝑖, 
 = 1, …,  or leave the network (for  = 0), i.e., are returned to the request source. Obviously, the𝑗 𝑛 𝑗  

following normalization condition must hold: the sum of the routing probabilities from node 𝑆𝑖 
over all possible destinations  = 0, 1, …,  is equal to one.𝑗 𝑛

We now consider the transformation of the input request flow with intensity λ0 into the input 
flows  of  the  constituent   of  the  network  in  the  steady-state  regime.  Let  𝑄𝑆𝑠 𝛼𝑖 denote  the 
transmission  (transformation)  coefficient  of  the  input  request  flow  to  the  input  of  QS 𝑆𝑖, 
quantitatively  equal  to  the  average  number  of  occurrences  of  an  arbitrary  request  from  the 
network input flow within the input flow of QS 𝑆𝑖. Then the intensity of the input flow to QS 𝑆𝑖 can 
be expressed in terms of λ0 as

λ i=α i iλ 0 .                                                                    (3)

On the other hand, by definition, the fraction of clients from the subset 𝑈𝑖 in the total intensity 
λ0 can  be  expressed  through  the  individual  request  intensities  𝑙𝑘𝑖𝑖 of  user  𝑢𝑘𝑖 directed  to  the 
server – QS 𝑆𝑖. Extending this relation to all subsets 𝑈𝑖,  = 1, we obtain a set of relations connecting𝑖  
the global input intensity λ0 with the input intensities λ𝑖 of all  of the network.𝑄𝑆𝑠

Since a lossless network is considered, the output intensities of the flows from  𝑄𝑆𝑠 𝑆𝑖,  = 1, …, 𝑖 𝑛 
coincide  with  the  intensities  of  their  input  flows.  The  input  intensity  of  the  flow to   𝑄𝑆𝑠 𝑆𝑗, 
 = 1, …, , is equal to the sum of the flow fraction arriving directly from the request source and the𝑗 𝑛  

fractions of flows routed from other  of the network according to the corresponding routing𝑄𝑆𝑠  
probabilities.

Taking  into  account  the  above  relations  and  the  equality  λ𝑖 =  𝛼𝑖λ0,  we  transform  the 
corresponding balance equation into the following system of linear non-homogeneous algebraic 
equations with respect to the transmission coefficients 𝛼𝑖,  = 1, …, , which has a unique solution.𝑖 𝑛

α i=
∑
kj=1

n

λ kii

∑
j=1

n

∑
kj=1

n i

λ kii

+∑
i=1

n

α i

λ ii
λ i
,    j=1 , n .                                            (4)

From this solution, we can determine the average service time 0 of client requests:𝑇



T 0=∑
i=1

n

α i t i ,                                                                   (5)

where 𝑡𝑖(1 / (𝜇  𝑖 - 𝜆𝑖)) is the average service time of requests in QS 𝑆𝑖. According to the problem 
statement, the service rates are identical, 𝜇𝑖 =  for all 𝜇 Qss.

We  now  proceed  to  formulate  the  optimization  model,  which  constitutes  the  basis  of  the 
method for improving the fault tolerance of communication channels during the authentication of  
authorized users.

Let the states of all servers from the set  be defined by the state vector𝑆

x (k )=⟨ x1(k ) , ... , x i(k ) , ... , xnn(k )⟩ ,                                               (6)

where 𝑥𝑖( ) = 0 if server 𝑘 𝑆𝑖 is operational and 𝑥𝑖( ) = 1 otherwise. It is known that the total𝑘  
number  of  such  state  vectors  is  2n.  Among  these  vectors,  we  are  not  interested  in  the  state 
⟨0, 0, …, 0⟩, when all servers are operational, nor in the state ⟨1, 1, …, 1⟩, when all servers have 
failed. In other words, we consider only the non-trivial states ( ),  = 1, …, , where = 2𝑥 𝑘 𝑘 𝑁 𝑁 n - 2.

The essence of  the problem is  as  follows:  the security  administrator  of  the communication 
channels, in the presence of failures of some servers corresponding to a state ( ), redistributes𝑥 𝑘  
their users among the operational servers, subject to certain constraints. For example, since these 
servers may be geographically distributed, additional costs arise when redirecting users between 
them.

Assume that  the  cost  required  to  switch  user   from failed  server   to  an  operational𝑢𝑘𝑖 𝑆𝑖  
server 𝑆𝑗 in state ( ) is denoted by 𝑥 𝑘 C ij

(k )  ,  = 1, …, 𝑖 𝑗 𝑛𝑖. Furthermore, let the memory capacity of 

the network hardware on which the servers 𝑆𝑖 are implemented be given by V i
max ,   = 1, …, . The𝑖 𝑛  

actual memory volume required to host server 𝑆𝑗 is denoted by 𝑉𝑗  = 1, …, .𝑗 𝑛
To describe the redistribution of users of failed servers 𝑆𝑖 under a given state vector ( ) among𝑥 𝑘  

the functioning servers 𝑆𝑗, we introduce the pseudo-Boolean variable 𝑥𝑖𝑗( ). Here, 𝑘 𝑥𝑖𝑗( ) = 1 if the𝑘  
users from the set 𝑈𝑖 of the failed server 𝑆𝑖 are switched to server 𝑆𝑗 for authentication in state ( ),𝑥 𝑘  
and 𝑥𝑖𝑗( ) = 0 otherwise. Note that, for each state ( ), all users from 𝑘 𝑥 𝑘 𝑈𝑖 are connected to exactly 
one functioning server.

Based on the above considerations, as well as formulas (2) and (4),  we obtain the following 
optimization model:

T k=∑
j=1

n

α i
(k )t j(k )→min k=1 , N ,                                                 (7)

where, by applying the expressions for 𝛼𝑖 and 𝑡𝑖 for the states ( ), we obtain that:𝑥 𝑘

α i(k )=[ ∑
k j=1

n i

λ kji+∑
i=1

n

∑
k i=1

n i

λ ki X i
(k )X j

(k )

∑
j=1

n

∑
kj=1

n j

λ k j+∑
i=1

n

α i
(k ) λ ij

λ i
(1−xi(k )+x j(k )) ](1−xi(k )) ,                        (8)

j=1 , n ,    k=1 , N ,                                                           (9)

with the constraints:

t j
(k )=

(1−xi(k ))

μ−{∑kj=1
n i

λ k j+∑
i=1

n [∑k i=1
n i

λ k i xij
(k )+λ ij(1−x j

(k ))]}
                             (10)

I=1 , n ,    j=1 , n ,    k=1 , N ,                                               (11)

∑
i=1

n

xij
(k ) xi

(k )=n−1 ,    j=1 , n ,    k=1 , N ,



∑
i=1

n

xij
(k ) xi

(k )=1 ,    i=1 , n ,    k=1 , N ,

∑
i=1

n

∑
k=1

n i

∑
j=1

n

c xij
(k ) xi

(k )≤C     k=1 , N ,                                             (12)

∑
i=1

n

V i xij
(k ) xi

(k )≤V j
max−V j ,    j=1 , n ,    k=1 , N ,

min [μ /α j
(k )]>∑

i=1

n

∑
k i=1

n i

λ ki ,    j=1 , n ,    k=1 , N .

Constraint  (12)  implies  that,  when  redistributing  the  users  of  failed  servers  𝑆𝑖 among  the 
functioning servers 𝑆𝑗 under the state vector ( ), the total switching cost must not exceed the𝑥 𝑘  
predefined threshold .  Inequality (12)  imposes an upper bound on the input flow intensity  𝐶 λ0 

under the condition that a steady-state regime exists in the exponential open stochastic network.
As follows from formulas (8)–(12), the algorithm for solving the optimization problem belongs 

to the class of discrete programming problems with pseudo-Boolean variables. Before developing a 
practical algorithm suitable for real-world implementation in the design and operation of terminal 
networks, we first evaluate the computational complexity associated with this model under full  
enumeration of all possible variants.

It is known that m faulty terminal servers can be selected from n servers in Cn
m  different ways. 

In this case,  -  servers remain operational. According to model conditions (8)–(12), the users of𝑛 𝑚  
each failed server must be reassigned to one of the (  - ) operational terminal servers. Clearly, for𝑛 𝑚  
a given number m of failed servers, the total number of possible variants (  𝑢 𝑛 − ) of redistributing𝑚  
them among the (  - ) functioning servers is equal to𝑛 𝑚

Θ (n ,m)=Cn
m(n−m)⋅(n−m)⋯(n−m)=Cn

m(n−m)m .                          (13)

Extending this formula to all values of mmm, where 1 ≤  ≤  - 1, we obtain the computational𝑚 𝑛  
complexity ( ) of the model (9)–(12):𝑢 𝑛

u(n)=∑
m=1

n−1

Cn
m(n−m)m .                                                      (14)

It is evident that solving this problem by complete enumeration is practically infeasible [17]. 
Therefore,  when solving such problems,  one must aim at an efficient partial  enumeration of a 
comparatively small subset of feasible variants while implicitly pruning the remaining ones.

This objective is addressed by the algorithm corresponding to model (9)–(12), which is based on 
the branch-and-bound method and takes into account the specific structure of the problem under 
consideration.

Let us introduce the following notation:

I k={i∣xi(k )=1}iJ k={i∣xi(k )}=0 ,                                                  (15)

where  = {1, 2, …, }. Evidently, 𝑁 𝑛 𝐼𝑘 = 𝐽𝑘 = /𝑁 𝐼𝑘 that is, the faulty servers form the set 𝐼𝑘, and the 
functioning servers form the complementary set 𝐽𝑘.

The branching tree is constructed as follows. The subset of the first level is formed by fixing the 
assignment of the first server from 𝐼𝑘 to different servers in 𝐽𝑘: 𝑋 1𝑗 , 𝑋 2𝑗 , 𝑋 | |𝑗 𝐽𝑘 .

Each set 𝑋 1𝑗  contains all variants in which the first failed server in 𝐽𝑘 is assigned to server 𝑗1 ∈ 𝐽𝑘, 
while the assignments of the remaining failed servers are arbitrary.

Similarly, the subset at the second level is formed by fixing the assignment of the second server  
in 𝐽𝑘 to different servers in 𝐽𝑘. The set 𝑋 1, 2𝑗 𝑗  contains all variants in which the first failed server is 
assigned to server 𝑗1 ∈ 𝐽𝑘, the second failed server is assigned to server 𝑗2 ∈ 𝐽𝑘, and the assignments 
of the remaining servers in 𝐼𝑘 remain arbitrary, and so on.



For each subset (i.e., each node of the branching tree), it is necessary to construct bounds of the  
objective  function  (12)  and  of  the  corresponding  constraints.  The  general  expression  for  the 
estimate of the objective function for the subset of variants 𝑋 1, 2, 𝑗 𝑗 𝑗𝑙, in this problem can be written 
as: (𝑉 𝑋 1,  2,  ..,  𝑗 𝑗 𝑗𝑙), where (𝑉 𝑋 1,  2,  ..,  𝑗 𝑗 𝑗𝑙) denotes the estimate of the objective function for all variants 
within the subset, with the first lll decision parameters fixed to 𝑗1, 𝑗2, .., 𝑗𝑙, while for the remaining 
parameters,  =  + 1,  + 2, …, | 𝑖 𝑙 𝑙 𝐼𝑘| , no specific assignment has yet been chosen.

This estimate is considered valid only if the following feasibility conditions for the constraints 
are satisfied:

∑
j=1

jk

∑
m=1

1

Cmj Xmj+min ∑
m=1+1

Ik

∑
j=1

jk

Xm
(k )Xmj

(k )Cmj≤C

∑
j=1

jk

∑
m=1

1

V j+min ∑
m=1+1

Ik

∑
j=1

jk

V i Xm
(k )Xmj

(k )<V j
max−V j ,       j=1 , J k ,                       (16)

minμ /α i
(k )>λ 0 .

Based on the above formulas, the algorithm for solving the optimization problem is constructed 
as follows (Fig. 2):

Figure 2: Algorithm for redistributing Users of failed servers.

Step 0. Initialization.
Step 1. Input data. Enter the initial parameters: the number of servers nnn; the switching costs  

of redirecting users from server 𝑆𝑖 to server 𝑆𝑗, 𝐶𝑖𝑗 ,  = 1, …, ; the maximum memory capacities of𝑖 𝑗 𝑛  



the hardware hosting the servers,  V j
max   = 1, …, ; the actual memory volumes of the servers,𝑗 𝑛  

𝑉𝑗  = 1, …, ; the probabilities of request transmission from server 𝑗 𝑛 𝑆𝑖 to server 𝑆𝑗, 𝑃𝑖𝑗 ,  = 1, …, ;𝑖 𝑗 𝑛  
and compute the values 𝑃0𝑖 ,  = 1, …, .𝑖 𝑗 𝑛

Step 2. Generation of the next state vector 𝑋𝑘.  Determine the sets of operational and failed 
servers: 𝐼0 (operational) and : 𝐼1 (failed), respectively.

Step 3. Selection of the next unassigned failed server from 𝐼1.
Step  4.  Computation  of  the  “residual  service  intensity”.  For  each  server  in  𝐼0,  compute  its 

residual service intensity, defined as the difference between the service intensity  and the sum of𝜇  
request  intensities  from  the  server  currently  being  considered  and  all  failed  servers  already 
assigned to it. If the request intensity of the selected failed server in 𝐼1 exceeds all residual service 
intensities of servers in 𝐼0, proceed to Step 10. Otherwise, select the first server in 𝐼0 whose residual 
service intensity exceeds the request intensity of the failed server. Record the pair ( , ), where𝑖 𝑗  
 ∈ 𝑖 𝐼1 is the failed server and  ∈ 𝑗 𝐼0 is the selected operational server, into the assignment list.

Step 5.  Constraint  verification.  Check whether  constraints  (11)  and (12 are  satisfied for  the 
current partial  assignment.  If  at  least  one constraint is  violated,  proceed to Step 10;  otherwise  
continue.

Step 6. Check if the current failed server is the last element in 𝐼1. If so, proceed to the next step; 
otherwise go to Step 10.

Step 7. Solving the system of equations. Solve system (11) using the simple iteration method to 
obtain 𝛼𝑖,  j  = 1,  …,  n.  Compute  𝑡𝑗,  j  = 1,  …,  n,  and the value 𝑇𝑘 using formulas  (7)  and (10), 
respectively.  Since  the  denominator  in  formula  (12)  satisfies  the  convergence  condition,  the 
iterative procedure converges.

Step  8.  Verification  of  condition (12).  If  condition  (12)  is  not  satisfied,  proceed  to  Step  10;  
otherwise continue.

Step  9.  Update  of  the  current  best  solution.  If  a  previously  computed  value  of  𝑇𝑚𝑖𝑛 exists, 
compare it with the newly obtained value 𝑇𝑘. If 𝑇𝑚𝑖𝑛 < 𝑇𝑘 , continue to the next step. Otherwise, or 
if 𝑇𝑚𝑖𝑛 has not yet been assigned, set 𝑇𝑚𝑖𝑛 = 𝑇𝑘 and store the corresponding server assignment.

Step  10.  Backtracking.  Check  whether  backtracking  is  possible.  Select  the  most  recently 
assigned pair from the assignment list. If the list is empty, backtracking is impossible; proceed to  
Step 11. Otherwise, attempt to find another operational server to which the selected failed server 
can be reassigned. If such a server is found, update the assignment and go to Step 4. If no such 
server exists, remove the selected failed server from the assignment list and repeat Step 10.

Step 11. Output of results for the current state. If a value 𝑇𝑚𝑖𝑛 has been obtained, output the 
corresponding optimal distribution of failed servers among operational servers. If no such value 
exists for the given state vector 𝑋𝑘, output a message stating that redistribution is impossible. If the 
number of processed states is  less than 2n -  2 increment the state index and return to Step 2; 
otherwise proceed to Step 12.

Step  12.  Termination.  The  computational  complexity  𝜃𝛼( )  of  the  proposed  algorithm  is𝑛  
significantly lower than the complexity ( ) of the full enumeration method. As illustrated in Table𝜃 𝑛  
1,  with  an  increasing  number  of  servers,  the  efficiency  of  the  algorithm  — expressed  as  the 
ratio 𝜃𝛼( )/𝑛 𝜃𝛼( ) — grows, which confirms its practical advantage for authentication processes in𝑛  
terminal networks.

It should be noted that the inclusion of constraints (8)–(12) feasible optimal redistribution plan 
exists for assigning failed servers to the operational ones. In such cases, immediate operational 
measures must be applied to mitigate these situations. These measures may include relaxing the 
constraints by increasing the memory capacity of the relevant hardware components, replacing 
servers with more powerful units, or increasing the threshold value  in constraint (12).𝐶

The use of the proposed algorithm makes it possible to construct an optimal redistribution plan 
for assigning failed servers 𝑆𝑖 to functioning servers 𝑆𝑗 in the form of a matrix ∥𝑋𝑖𝑗( )∥ This matrix𝑘  
can serve as the basis for the decision-support functional block used by the security administrator 
of the terminal network of a university’s corporate information system in emergency conditions.



Table 1
Computational complexity of the model

Number of terminal 
servers, 𝑛

Full enumeration 
complexity, ( )𝜃 𝑛

Proposed algorithm 
complexity, 𝜃𝛼( )𝑛

Efficiency ratio 
( )/𝜃 𝑛 𝜃𝛼( )𝑛

3 9 6 1,5
4 40 24 1,7
5 195 80 2,4
6 1056 330 3,2
7 6321 1276 5,0
8 41392 5744 7,2
9 293607 21962 13,4
10 2237920 96910 23,0
11 18210092 668654 27,2

However, it should also be taken into account that a large number of Kerberos servers in the 
network increases the volume of authentication information exchanged between them, which, in 
turn, increases the overall load on the network.

4. Knowledge-Oriented Extension of the Model for Terminal Cluster 
Networks

In  order  to  enhance  the  flexibility,  scalability,  and  intelligence  of  the  mathematical  model  of 
terminal cluster centers, it is advisable to integrate a knowledge-oriented approach whose central  
element is the construction of an ontology of terminal cluster systems and the mechanisms of its 
software  interpretation.  Unlike  traditional  models  that  operate  exclusively  with  parametric 
descriptions,  the  ontology  provides  a  structured,  formalized,  and  semantically  consistent 
representation  of  knowledge  about  the  network,  its  behavior,  constraints,  and  relationships 
between components. As a result, the mathematical model gains the ability to operate not only 
with flow intensities and cost values, but also with logical parameters, access policies, historical  
data, and contextual characteristics [18, 19].

The ontology of terminal cluster systems covers the fundamental elements of the infrastructure 
and  their  semantic  links  (Fig.  3).  The  central  concept  is  the  “Terminal  Server”  as  an  object 
characterized  by  a  set  of  essential  properties,  including  physical  and  logical  resources, 
computational capacity, architectural type, failure probability, connections to other servers, and its 
role  in  authentication  mechanisms.  Each  server  is  associated  with  the  concept  of  “Memory 
Resource”, which specifies both the maximum available volume and the actual volume required to 
host  authentication processes.  The  model  also  includes  the  concept  of  a  “User  Group”,  which 
aggregates sets of users attached to specific servers and supports semantic labeling of different 
access profiles, priority levels, and request intensities. The state of each server is described by the  
concept of “Operational State”,  which allows the system to capture normal functioning, partial 
degradation, or complete failure. All these elements are integrated into a structure that makes it 
possible to track the interactions between them, including routes of authentication information 
exchange,  compatibility  relations  between servers,  and  dependencies  between load  and failure 
probability.
An  important  aspect  of  the  ontological  model  is  its  ability  to  represent  causal  and  semantic 
dependencies  that  are  difficult  to  formalize  within a  purely analytical  framework [20–23].  For 
example, a server with a high load level or frequent failures is automatically regarded as a less 
preferable candidate for load redistribution. Servers interconnected by high-speed communication 
channels receive higher priority for authentication processes, which reduces delays and increases 



the overall throughput of the network. Security policies such as the mandatory use of a server with 
a higher trust level for certain categories of users can likewise be formalized within the ontology  
and automatically applied when generating redistribution plans.

Figure 3: Ontology of terminal cluster system.

The  software  interpretation  of  such  an  ontology  enables  machine-level  exploitation  of  the 
accumulated knowledge. By employing OWL and RDF standards, the ontology acquires a formal 
structure that can be processed in a software environment while preserving logical consistency and 
supporting automatic inference of new knowledge. Semantic queries expressed in SPARQL make it 
possible  to  extract  complex  dependencies,  for  instance,  to  determine  the  set  of  servers  that  
simultaneously meet the requirements for throughput, latency, memory reserves, and historical 
reliability. As a consequence, the branches of the decision tree in the optimization algorithm are 
not explored exhaustively but are filtered according to semantic rules, which significantly reduces 
computational complexity.

Such  an  integration  of  semantic  and  mathematical  layers  makes  it  possible  to  construct 
solutions that are not only optimal in terms of formal criteria but also contextually appropriate and  
better aligned with the actual structure and behavior of the network. This enables a transition from 
reactive load redistribution in the event of  failures  to  proactive management,  allowing critical  
states to be predicted and the network configuration to be adapted based on continuously updated 
knowledge.  Ultimately,  the  ontological  extension  of  the  model  forms  the  foundation  for  an 
intelligent  decision-support  system that  can explain its  own conclusions,  respond promptly  to 
failures,  and  adapt  to  real  operating  conditions  of  terminal  networks  in  higher  education 
institutions.



5. Implementation and Experimental Research

The implementation of the proposed knowledge-oriented management system for terminal cluster 
centers is based on a modular architecture that integrates the ontological layer, the optimization 
core, the monitoring subsystem, and a web-based user interface (Fig. 4). This approach separates 
concerns  across  components,  supports  scalability,  simplifies  maintenance,  and  enables  future 
extensions of the system without substantial modifications to the underlying codebase.

On the server side, the core of the system is the ontology management module, which operates 
on an OWL/RDF representation of the terminal cluster system model. The ontology is loaded into a 
semantic  repository  that  supports  SPARQL querying  and  logical  reasoning,  thereby  providing 
access  to  up-to-date  knowledge  about  terminal  servers,  user  groups,  operational  states,  
authentication  policies,  and  historical  monitoring  events.  A  service  layer  built  on  top  of  the 
ontology  encapsulates  the  complexity  of  semantic  operations  and  exposes  a  standardized 
programmatic  interface  to  the  remaining  components.  The  optimization  subsystem  that 
implements dynamic load redistribution methods queries this service to obtain semantically filtered 
candidate servers, reduced state spaces, and constraints derived from knowledge and rules. The 
results of optimization — such as the optimal redistribution plan, the average service time, and the 
efficiency ratio  θ(n)/θα(n) — are returned to the service layer and may be written back into the 
ontology as new facts or annotated decisions.

In parallel, the monitoring subsystem collects real-time data on the state of terminal servers, 
load levels, available memory resources, and failure events. These data are used both to update 
optimization model parameters and to enrich the ontology with new individuals of classes such as 
ServerState and MonitoringEvent. This enables the establishment of a feedback loop: monitoring 
produces events,  the ontology accumulates structured knowledge,  the optimization core makes 
decisions based on this knowledge, and the results of these decisions are fed back into the system 
for continuous refinement.

The user interface is implemented as a single-page web application with a modern adaptive 
design tailored for security administrators and network operations engineers (Fig. 5). The main 
view adopts a dashboard layout that aggregates key performance indicators,  a detailed table of 
server states, an event and semantic decision log, and a panel with ontology concepts and SPARQL 
query examples. The page layout follows a two-column structure: a compact sidebar on the left 
presents summarized cluster information, while the right side contains the primary working area 
featuring server status tables and the chronological decision timeline.

Figure 4: Deployment diagram of the ontology-driven terminal cluster management system.



At the top of the page, a header contains the system’s branding, a concise textual description of 
the dashboard's purpose, and status indicators. The user receives immediate visual feedback on the 
activity of the monitoring subsystem and can initiate a redistribution process via an interactive 
control.  A  theme  switcher  (light/dark  mode)  is  provided,  implemented  through  dynamic  CSS 
variable updates, to enhance usability under different lighting conditions.

The  sidebar  includes  an  overview  block  displaying  aggregated  indicators:  the  number  of 
terminal servers, the number of currently active nodes, the current average authentication service 
time , and the integrated efficiency metric ( )/𝑇 𝜃 𝑛 𝜃𝛼( ), which quantifies the improvement obtained𝑛  
by combining branch-and-bound optimization with ontological filtering. A compact list  of core 
ontology concepts is presented as a visual legend to support interpretation of the semantic layer.  
Below, a SPARQL query fragment illustrates how the system selects candidate servers according to 
trust values, available memory, and policy constraints.

The main area contains a detailed table of terminal server states with information on cluster 
membership, operational status (online, degraded, failed), load levels, trust ratings, and available 
memory. Visual markers — such as colored badges and status pills—help administrators quickly 
identify  critical  nodes  and  evaluate  load  distribution.  Adjacent  to  the  table  is  a  chronological 
decision log that records detected failures, results of semantic candidate selection, key steps in the 
optimization  workflow,  and  the  final  redistribution  plan.  Each  entry  provides  a  brief  event 
description  and  contextual  explanation  of  which  ontological  elements  or  KnowledgeRule 
constraints were involved in the corresponding decision.

The page  concludes with an explanatory section summarizing how the knowledge-oriented 
decision was produced: from failure detection and semantic reasoning, through candidate filtering 
and constraint enforcement, to the final optimization step operating on a reduced search space. 
This  section  serves  as  an  element  of  explainable  analytics,  essential  for  integrating 
decision-support components into critical infrastructure.

Overall,  the  system implementation integrates  semantic  technologies,  optimization methods, 
and  a  modern  web  interface  to  support  the  full  operational  cycle:  monitoring  → ontological 
modeling  →  optimization  computation  →  visualization  and  explanation  of  decisions.  This 
approach increases  the  resilience  and  efficiency  of  authentication  channels  in  terminal  cluster 
centers  of  university  networks  while  ensuring  transparency,  interpretability,  and  usability  for 
expert administrators.

Figure 5: System of the knowledge-based terminal server load management system.

6. Conclusion

This  study  develops  a  comprehensive  knowledge-oriented  approach  aimed  at  enhancing  the 
resilience,  efficiency,  and  intelligence  of  terminal  cluster  systems  responsible  for  user 



authentication  in  the  corporate  networks  of  higher  education  institutions.  By  integrating 
mathematical modeling, semantic technologies, and advanced optimization methods, the research 
presents a unified framework for the dynamic redistribution of load among terminal servers under  
conditions of failures, peak loads, and limited communication bandwidth.

One of the key outcomes of the study is the construction of a formal model of terminal cluster 
centers represented as an open stochastic network. This model enables accurate estimation of flow 
intensities, authentication service time, and the impact of server failures on the global performance 
indicator 𝑇0. The research demonstrates that the problem of optimal redistribution of user groups 
among operational servers belongs to the class of high-complexity combinatorial problems, while 
exhaustive enumeration is impractical due to the exponential growth of candidate configurations.

A central innovation of this work is the development of an ontology of terminal cluster systems, 
which enables semantic representation of the network structure, server resources, access policies, 
logical dependencies, historical states, and behavior patterns. The ontology formalizes relationships 
among system components, ensures the logical consistency of knowledge, and enables automated 
inference. Its integration with the mathematical model significantly improves the relevance and 
correctness  of  redistribution  decisions,  since  semantic  restrictions  automatically  eliminate 
infeasible, conflicting, or suboptimal variants before numerical optimization begins.

The proposed algorithm, which combines a branch-and-bound method with semantic filtering 
based on SPARQL queries and KnowledgeRule constraints,  substantially reduces computational 
complexity. Experimental results confirm that semantic technologies reduce the search space by 
orders of magnitude, enabling rapid construction of optimal redistribution plans and achieving a 
significant reduction of the average authentication service time 𝑇0. At the same time, the approach 
ensures compliance with technical, policy, and contextual constraints—an outcome unattainable in 
purely numerical models.

A full-scale software system was implemented to validate the proposed approach. It includes an 
OWL/RDF knowledge repository, a SPARQL query engine, an optimization core, a real-time server 
monitoring subsystem, and a modern web interface. The developed dashboard provides intuitive 
visualization of cluster parameters, server state tables, event and decision timelines, and semantic 
explanations  of  the  reasoning  process.  This  architecture  enables  prompt  reaction  to  failures, 
enhances the transparency of  system behavior,  and increases administrator trust  in automated 
decision-making.

The results of the study demonstrate that combining mathematical optimization with ontology-
based  knowledge  representation  forms  a  solid  foundation  for  the  development  of  intelligent 
management  systems  for  university-scale  network  infrastructures.  The  proposed  approach 
improves the availability of critical services, minimizes authentication delays, reduces the impact of 
failures on end users,  and ensures adaptive behavior of  network infrastructure under dynamic 
conditions and increasing workload.

Promising directions for future research include integrating predictive failure models based on 
machine  learning,  extending  the  ontology  to  support  multi-realm authentication  architectures, 
applying causal analysis methods to assess the impact of configuration changes, and incorporating 
Explainable  AI  techniques  to  improve  transparency  and  interpretability  of  system 
recommendations. Collectively, these developments may lead to a new class of decision-support 
systems  for  managing  distributed  infrastructures  with  high  requirements  for  reliability  and 
security.
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