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Abstract
In this work, we propose that reasoning in knowledge graph (KG) networks can be guided by surprise minimization.
Entities that are close in graph distance will have lower surprise than those farther apart. This connects the
Free Energy Principle (FEP) [1] from neuroscience to KG systems, where the KG serves as the agent’s generative
model. We formalize surprise using the shortest-path distance in directed graphs and provide a framework for
KG-based agents. Graph distance appears in graph neural networks as message passing depth and in model-based
reinforcement learning as world model trajectories. This work-in-progress study explores whether distance-based
surprise can extend recent work showing that syntax minimizes surprise and free energy via tree structures [2].
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1. Introduction

The Free Energy Principle (FEP) suggests that biological systems minimize surprise by maintaining
accurate world models [1, 3, 4]. Recently, Murphy et al. [2] demonstrated that syntactic operations
minimize surprise through shallow tree structures. They quantified surprise via tree depth (geometric
complexity) and Kolmogorov complexity (algorithmic complexity), approximated through Lempel-Ziv
compression [5, 6].

In FEP, agents minimize variational free energy 𝐹 = − log𝑃 (𝑜, 𝑠)−𝐻[𝑄(𝑠)], where 𝑜 represents
observations, 𝑠 hidden states, 𝑃 the generative model, and 𝑄 the agent’s beliefs [1]. The first term,
− log𝑃 (𝑜, 𝑠), quantifies surprise: entities with high probability under the generative model (high
𝑃 (𝑜, 𝑠)) yield low surprise (low − log𝑃 (𝑜, 𝑠)). For syntactic trees, Murphy et al. [2] used tree depth to
proxy this probability; we extend this principle to general graphs using shortest-path distance.

In active inference, minimizing free energy drives both perception (updating beliefs 𝑄(𝑠)) and action
(selecting policies that reduce uncertainty) [3]. We apply this principle to KG reasoning: entities at
shorter graph distances have a higher probability under the agent’s graph-based generative model.
The central question we address is: given a KG serving as an agent’s generative model, which entity
groundings are plausible for a query in context? We propose one principled approach: plausibility
inversely correlates with graph distance.

Knowledge graphs (KGs) are increasingly integrated with modern AI agents, with the ability to
improve reasoning, memory, and planning [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Unlike syntactic tree
structures, KGs are directed graphs that can contain cycles and multiple paths between nodes (entities).
In this preliminary work, we propose that surprise in KG reasoning corresponds to graph distance,
where the KG serves as the agent’s generative model. Entities that require shorter paths from context
are unsurprising, whereas distant or disconnected entities are more surprising. This is unlike surprise-
driven exploration in RL [17, 18], where agents maximize surprise to explore, FEP agents minimize
surprise by maintaining accurate generative models. Our work connects the FEP to practical KG systems
through shortest-path distance, providing theoretical foundations for graph neural networks [19, 20, 21]
and model-based reinforcement learning [22, 23].
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2. From Syntax to Semantics

Murphy et al. [2] quantified syntactic surprise via tree depth. We extend this to arbitrary directed
graphs with cycles. Given a KG 𝒢 = (ℰ ,ℛ, 𝒯 ) with entities ℰ , relationsℛ, and triples 𝒯 ⊆ ℰ ×ℛ×ℰ ,
geometric surprise is:

𝑆geo(𝑒 | 𝐶) =

⎧⎨⎩min
𝑐∈𝐶

𝑑𝒢(𝑐, 𝑒) if path exists

𝛼 otherwise
(1)

where 𝑑𝒢(𝑐, 𝑒) is the shortest directed path length from context 𝑐 ∈ 𝐶 to entity 𝑒 (computed via BFS,
Appendix B), and 𝛼 is a hyperparameter penalizing disconnection. In our worked example, we set 𝛼 = 5;
in general, 𝛼 should exceed the graph’s diameter (longest shortest-path distance) to ensure disconnected
entities always have higher surprise than any connected entity. Combined with algorithmic complexity
[2]:

𝐹 (𝑒 | 𝐶) = 𝑆geo(𝑒 | 𝐶) + 𝜆𝐾(𝜋𝐶→𝑒) (2)

where 𝐾(𝜋𝐶→𝑒) is Kolmogorov complexity of the relation path, approximated via Lempel-Ziv compres-
sion, and 𝜆 weights the components. For trees, this recovers Murphy’s tree depth; for general graphs, it
handles cycles naturally.
Connection to FEP: Under FEP, agents minimize 𝐹 = − log𝑃 (𝑜, 𝑠)−𝐻[𝑄(𝑠)] [1]. Interpreting

the KG as the agent’s generative model, we posit − log𝑃 (𝑒 | 𝐶) ∝ 𝑑𝒢(𝐶, 𝑒): shorter distances indicate
higher probability. Thus𝑆geo implements the surprise term, while𝐾(𝜋) approximates𝐻[𝑄(𝑠)]. Figure 1
illustrates this with a political KG example (detailed calculations in Appendix A).
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Figure 1: Extending surprise from trees to knowledge graphs. Following standard KG design (e.g., Wikidata),
we model “Prime Minister” as a position node. Given context “Canada”, leaders (Trudeau, Harper) are at distance
1, the position node at distance 2, while disconnected entities (Biden) have distance∞. The successor relation
demonstrates cycle handling.

3. Theoretical Justification

Three principles justify the shortest-path distance: (1) Proper generalization: For trees, it recovers
Murphy’s tree depth. (2) Least-action: Shortest paths minimize cumulative cost, aligning with active
inference where agents minimize expected free energy [3]. (3) Computational grounding: In GNNs,
𝑘 message-passing iterations aggregate 𝑘-hop neighborhoods [19, 21]; minimizing iterations minimizes
distance and surprise. Cycles pose no issue: FEP accommodates circular causality [24], and BFS handles
cycles via visited sets (Appendix B).



4. Implications and Future Work

This work-in-progress connects FEP from neuroscience to KG reasoning in AI systems. The presented
framework offers practical implications: (1) Entity grounding: LLM-KG systems could rank candidate
entity groundings by computing 𝑆geo via BFS from discourse context entities, preferring groundings
with lower free energy [10, 9]; (2) KG embeddings: embedding methods could preserve distance-based
surprise structure [25]; (3) GNN architecture: depth could be selected to balance computational cost
against the surprise horizon needed for a task.

Future work includes empirical validation on benchmark KG datasets (FB15k-237 [26], YAGO [27]),
comparison with human semantic similarity judgments, integration with existing KG reasoning systems
[10, 28, 9], and extension to temporal KGs.

This work represents an early-stage exploration of applying FEP to knowledge graph reasoning. While
we proposed the shortest-path distance as a principled formalization of surprise, other formulations
may be more elegant or practical.

We aim to present this contribution as an initial research direction rather than a definitive solution.
We also encourage the community to develop complementary or improved approaches to connecting
FEP principles with graph-based reasoning.
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A. Worked Example: Free Energy Calculations

We demonstrate free energy calculations using the Canadian Prime Minister knowledge graph from
Figure 1.

A.1. Scenario and Knowledge Graph

Consider query “Who is the Prime Minister?” with context 𝐶 = {Canada}. The knowledge graph
contains:
Entities: ℰ = {Canada,Trudeau,Harper, PrimeMinister,Biden}
Relations: (Canada, hasLeader, Trudeau), (Canada, hasLeader, Harper), (Trudeau,

holdsPosition, PrimeMinister), (Harper, holdsPosition, PrimeMinister),(Trudeau, successor,
Harper), (Harper, predecessor, Trudeau)

The successor/predecessor relations form a cycle: Trudeau↔ Harper. Importantly, Biden has no
directed path from Canada (separate subgraph).

A.2. Computing Geometric Surprise

Using BFS from Canada, we compute shortest directed paths:

• 𝑑(Canada,Trudeau) = 1 (direct via hasLeader)
• 𝑑(Canada,Harper) = 1 (direct via hasLeader)
• 𝑑(Canada, PrimeMinister) = 2 (via hasLeader then holdsPosition)
• 𝑑(Canada,Biden) =∞ (no path)

Therefore: 𝑆geo(Trudeau) = 𝑆geo(Harper) = 1, 𝑆geo(PrimeMinister) = 2, and 𝑆geo(Biden) = 𝛼 =
5.

The cycle between Trudeau and Harper does not affect distances: BFS selects the shortest path (direct
edge) and handles cycles via visited set (Appendix B).

A.3. Computing Algorithmic Complexity

For each grounding, we estimate Kolmogorov complexity via relation path patterns:
Trudeau & Harper: Paths 𝜋 = [hasLeader] use frequent relations, yielding high compression (low

𝐾(𝜋)).
PrimeMinister node: Path 𝜋 = [hasLeader, holdsPosition] uses standard role-modeling pat-

terns, also yielding low 𝐾(𝜋).
Biden: No path from Canada. The grounding requires irregular cross-country reasoning not repre-

sented in the graph (high 𝐾(𝜋)).

A.4. Free Energy Results

Combining components with 𝜆 = 1:

Entity 𝑆geo 𝐾(𝜋) 𝐹

Trudeau 1 Low ∼1.3
Harper 1 Low ∼1.3
Biden 5 High ∼5.5

Interpretation: Real groundings (Trudeau, Harper) exhibit low free energy: (1) short distance (1
hop), (2) regular relation patterns. The impossible grounding (Biden) exhibits high free energy: (1)
disconnection (no path), (2) irregular pattern. The framework correctly identifies both Trudeau and
Harper as plausible (both were Canadian PMs) while rejecting Biden (US president).



We focus on entity groundings (Trudeau, Harper, Biden) rather than the position node itself, as
queries about leadership typically seek individuals rather than abstract roles. The PrimeMinister node,
at distance 2, would have intermediate surprise (𝑆geo = 2, 𝐹 ≈ 2.3), but is not a direct answer to “Who
is the Prime Minister?” This demonstrates how our framework naturally distinguishes between entities
at different levels of abstraction in reified KG schemas.

This demonstrates three key properties: (1) cycles handled naturally, (2) multiple valid answers
coexist with equal surprise, (3) disconnected entities correctly penalized.



B. Mathematical Details

B.1. Breadth-First Search Algorithm

Given directed graph 𝒢 = (ℰ ,ℛ, 𝒯 ) and context 𝐶 ⊆ ℰ , we compute 𝑆geo(𝑒 | 𝐶) via BFS:

Algorithm 1 Compute Geometric Surprise
Require: Knowledge graph 𝒢, context 𝐶 , target entity 𝑒
Ensure: Geometric surprise 𝑆geo(𝑒 | 𝐶)

1: Initialize: 𝑑(𝑐)← 0 for all 𝑐 ∈ 𝐶 ; 𝑑(𝑣)←∞ for 𝑣 /∈ 𝐶
2: 𝑄← 𝐶 (queue), 𝑉 ← 𝐶 (visited set)
3: while 𝑄 ̸= ∅ do
4: 𝑢← dequeue from 𝑄
5: for each outgoing edge (𝑢, 𝑟, 𝑣) ∈ 𝒯 do
6: if 𝑣 /∈ 𝑉 then
7: 𝑑(𝑣)← 𝑑(𝑢) + 1
8: 𝑉 ← 𝑉 ∪ {𝑣}, enqueue 𝑣 to 𝑄
9: end if

10: end for
11: end while
12: return 𝑑(𝑒) if 𝑑(𝑒) <∞, else 𝛼

Properties: (1) Correctness: BFS finds shortest paths in 𝑂(|ℰ|+ |𝒯 |) time. (2) Cycle handling: Visited
set 𝑉 prevents re-visiting nodes, ensuring termination. (3) Directionality: Only outgoing edges followed,
respecting direction.

B.2. Kolmogorov Complexity Approximation

We approximate 𝐾(𝜋𝐶→𝑒) via Lempel-Ziv compression: (1) Extract relation sequence 𝜋 = [𝑟1, . . . , 𝑟𝑘]
from shortest path. (2) Encode as string (e.g., “pm|successor”). (3) Compress with LZ77. (4) Compute
ratio 𝐾(𝜋) = compressed/original.
Interpretation: Regular patterns (frequent relations, short sequences) achieve high compression

(low 𝐾). Irregular patterns (rare relations, long sequences) achieve low compression (high 𝐾). This
approximates Kolmogorov complexity, which is uncomputable [5]. Murphy et al. [2] use the same
approximation for syntactic patterns.

B.3. Connection to Active Inference

In active inference, agents minimize expected free energy 𝐺(𝜋) [3, 4]:

𝐺(𝜋) = 𝐷𝐾𝐿[𝑄(𝑜|𝜋)‖𝑃 (𝑜)]⏟  ⏞  
Pragmatic

+E𝑄(𝑜|𝜋)[𝐻[𝑃 (𝑠|𝑜)]]⏟  ⏞  
Epistemic

(3)

balancing pragmatic value (exploitation) and epistemic value (exploration).
Pragmatic value: Entities at shorter distances are more likely: 𝑃 (observe 𝑒 | 𝐶) increases as 𝑆geo

decreases, making low-distance entities preferred for goal-directed actions.
Epistemic value: Entities at longer distances provide higher information gain: observing distant

entities reduces uncertainty about unexplored graph regions, making high-distance entities preferred
for exploration.

Our 𝑆geo implements pragmatic value: low surprise entities preferred for exploitation. Extensions
could weight distance inversely for epistemic value, valuing high-surprise entities for exploration.
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