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Abstract
Large language models are opening new opportunities for intelligent decision support, with urban travel planning
as a challenging and high-impact use case. Effective planning requires integrating real-time, multi-source data
(e.g., such as points of interest, transportation, and user preferences), while reasoning spatially to generate feasible
itineraries. This paper proposes AgentTravel, a unified framework that combines knowledge-grounded modeling,
agentic reasoning, and multi-perspective evaluation. It includes: (1) TravelLLM, a domain-adapted model enriched
with urban and spatial knowledge, (2) TravelAgent, an agentic planner with structured itinerary memory and
real-time data retrieval, and (3) TravelBench, a benchmark assessing both knowledge grounding and plan quality.
Experiments on five Chinese cities show that AgentTravel outperforms strong baselines in factual reasoning and
itinerary feasibility in the majority of cases, offering a promising step toward grounded and adaptive LLMs for
urban intelligence. Source code and datasets are available at https://github.com/csjiezhao/AgentTravel.
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1. Introduction

The rapid advancement of large language models (LLMs) has opened new opportunities for building
agentic intelligent systems in real-world decision-making tasks. Among these, urban travel planning
has emerged as a particularly promising and impactful application domain [1, 2]. As a representative
case of urban intelligence, travel planning inherently integrates multiple subtasks: retrieving up-to-date
information about points of interest (POIs), reasoning over spatial relationships, selecting transportation
options, and organizing itineraries that satisfy diverse user preferences and constraints. Such complexity
requires LLM-driven systems not only access and integrate heterogeneous knowledge sources, but also
demonstrate spatial reasoning and multi-step decision-making capabilities to operate effectively in
dynamic urban environments.

Despite recent advances in benchmarking [3], agent architectures [4], and iterative plan refine-
ment [5], several fundamental challenges remain unresolved. First, current LLMs exhibit limited spatial
reasoning capabilities, they often fail to accurately account for geographic distances, travel times,
or accessibility constraints when generating feasible itineraries [6, 7]. Second, integrating heteroge-
neous and real-time information from open APIs, transportation platforms, and local knowledge bases
remains non-trivial: most existing systems either ignore dynamic contextual factors or depend on
narrow, domain-specific data sources. Third, while prior work such as TravelPlanner [1] has proposed
evaluation frameworks based on commonsense and hard constraints, there is still a lack of scalable,
multi-perspective benchmarks that jointly assess knowledge grounding, contextual reasoning, and the
practical quality of generated travel plans.

To address these challenges, we propose AgentTravel, a unified framework designed to advance
urban travel planning through knowledge-augmented LLM agent. The framework integrates three
complementary components designed for reasoning, planning, and evaluation: (1) TravelLLM, a
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domain-adapted base model fine-tuned with curated knowledge about cities and POIs. This compo-
nent enhances the model’s spatial reasoning and domain adaptability for diverse urban contexts; (2)
TravelAgent, an online agentic planner built upon TravelLLM that leverages open Web APIs for
real-time information retrieval, maintains structured itinerary memory, and employs adaptive planning
strategies to meet user preferences and contextual constraints; (3) TravelBench, a scalable benchmark
suite with two complementary modules: KnowEval, which evaluates factual and spatial knowledge
integration using curated urban datasets, and TripEval, which measures plan feasibility, personalization,
and constraint satisfaction across realistic travel scenarios.

The contributions of this paper are threefold: (1) We release a multi-source urban knowledge dataset
covering five representative Chinese cities, encompassing road networks, POIs, attractions, accom-
modations, and restaurants. The dataset supports both LLM fine-tuning and knowledge-grounded
evaluation for urban planning tasks. (2) We develop an online agentic framework that integrates
real-time information retrieval, spatially aware planning strategies, and persistent itinerary mem-
ory to generate user-centered travel plans. (3) We introduce a comprehensive evaluation suite that
jointly assesses knowledge grounding and multi-criteria plan quality, enabling a holistic assessment of
knowledge-augmented LLM agents for urban travel planning.

2. Related Work

Recent research on LLM-based travel planning [5, 8] can be broadly categorized into two paradigms:
LLM as Planner and LLM as Translator. The former treats the LLM as the central reasoning and
generation engine that directly produces travel itineraries, often enhanced with tool use, agent-based
strategies, or prompt optimization. The latter leverages the LLM primarily as a natural language
interface, translating user requirements into formal or symbolic representations that external solvers
can optimize.

LLM as Planner. Planner-based approaches focus on empowering LLMs to handle the end-to-
end travel planning pipeline, from understanding user constraints to generating detailed itineraries.
Early efforts such as TravelPlanner [1] established a benchmark for evaluating an LLM agent’s ability
to use tools and satisfy commonsense and hard constraints. TravelPlanner+ [9] extended this with
personalized user models, highlighting the impact of tailoring itineraries to user preferences. Flex-
TravelPlanner [10] examined the robustness of planning under dynamic and uncertain conditions,
while NATURAL PLAN [3] revealed persistent challenges in multi-city, long-duration scenarios despite
providing full task information. Beyond benchmarking, multi-phase planning frameworks [11] such
as TDAG [12] and HyperTree Planning [13] decomposed complex trips into manageable sub-tasks,
improving scalability. Additional work has targeted prompt optimization [14, 15], multi-module agent
designs such as TravelAgent [4], and dialogue-driven multi-agent planning [16]. Collectively, these
studies advance the ability of LLMs to operate as autonomous planners, but most still face limitations
in robust spatial reasoning and in integrating diverse real-time data streams into the planning loop.

LLM as Translator. Translator-based approaches shift the focus from direct itinerary generation
to bridging natural language and structured reasoning systems. In these methods, LLMs convert user
queries into machine-interpretable formats—such as symbolic constraint sets, semantic graphs, or
formal planning languages—that are then processed by external solvers. For instance, Hao et al. [17]
formulated travel planning as a satisfiability modulo theories (SMT) problem, enabling precise constraint
handling. ItiNera [18], TRIP-PAL [19], and TTG [20] followed similar pipelines, combining LLM-based
parsing with solver-based optimization. ChinaTravel [21] contributed an open benchmark for scalable
evaluation of travel planning, focusing on aligning generated plans with real-world travel demands.
This paradigm offers strong guarantees on constraint satisfaction and optimality, but often relies on
static or incomplete knowledge bases, making it less adaptive to dynamic, multi-source inputs and less
capable of leveraging LLMs’ generative flexibility for nuanced user preferences.



3. Preliminaries

Definition 1 (Urban Travel Plan). An urban travel plan 𝑝 is a structured itinerary spanning 𝑀 con-
secutive days for 𝑁 travelers within an urban environment. It can be represented in a JSON-like format
containing fields such as date, attractions, restaurants, accommodations, and transportation, along with
optional metadata.

Definition 2 (Online Trip Data). Online trip data 𝒟on denotes real-time travel information retrieved
from external APIs during planning. It includes attributes of attractions (name, price), restaurants (name,
price, cuisine), and accommodations (name, price, hotel type), providing up-to-date references for generating
feasible and cost-aware itineraries.

Definition 3 (Offline City Data). Offline city data 𝒟off refers to static, city-specific information col-
lected before planning. It comprises road networks, POI datasets, and tourism-related data (e.g., attractions,
restaurants, hotels) obtained from public sources. This data serves as a persistent knowledge base that
enhances the spatial reasoning and domain knowledge of the underlying LLM.

Problem Statement. Given a user query 𝑞 in natural language, the goal of urban travel planning is to
generate an itinerary 𝑝 under accessible online data 𝒟on:

𝑝 = ℱ (𝑞,𝒟on)

where ℱ denotes an agentic planner built upon LLMs and augmented with offline city data 𝒟off .

4. AgentTravel

Figure 1 demonstrates the architecture of AgentTravel, which integrates knowledge-augmented model-
ing, agentic real-time planning, and multi-perspective evaluation. The process starts with a natural-
language query, which activates TravelAgent to coordinate interactions among TravelLLM, real-time
trip data, and a structured memory that tracks the itinerary in progress. The generated plan is then
assessed by TravelBench, which combines KnowEval and TripEval for a comprehensive evaluation of
knowledge grounding and planning quality.
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Road Networks POIs Attractions Hotels Restaurants
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Figure 1: Overview of AgentTravel.



4.1. TravelLLM

TravelLLM is a knowledge-augmented large language model tailored for urban travel planning. It equips
the base LLM with two complementary capabilities often missing in general-purpose models: (1) spatial
reasoning over urban environments, including road networks, POI relations, and travel distances; and (2)
domain-specific travel knowledge, such as details about attractions, accommodations, and restaurants.

We use Qwen 2.5-7B as the backbone model and apply Low-Rank Adaptation (LoRA) for efficient
domain and spatial knowledge injection. The model is fine-tuned on a hybrid corpus that combines two
domain-specific instruction sets: CityInstruction and TripInstruction.

4.1.1. CityInstruction: Urban Spatial Knowledge

CityInstruction focuses on enhancing an LLM’s spatial understanding and reasoning capabilities in
urban contexts. It is built from instruction–response pairs derived from our curated offline city data
𝒟off , covering two primary categories:

• Intersection: mapping intersection names to geographic coordinates (name2coords), perform-
ing reverse lookups from coordinates to names (coords2name), and computing distances between
two intersections (between_distance).

• Points of Interest: linking POI names to their corresponding addresses (name2address) and
categories, enabling the model to recognize and reason about relevant locations.

These instructions equip the model with fine-grained spatial grounding, facilitating more accurate
reasoning over locations, navigation, and proximity when generating travel itineraries.

4.1.2. TripInstruction: Travel-Specific Knowledge

TripInstruction focuses on travel-specific entities, enriching the model’s understanding of attractions,
accommodations, and restaurants to produce realistic and personalized itineraries. It is also derived
from 𝒟off and includes three main categories:

• Attractions: mapping attraction names to their addresses (name2address), ticket information
(name2ticket), and operating hours (name2opentime), allowing the model to recommend
feasible and timely visits.

• Hotels: providing hotel addresses (name2address) and average prices (name2price), enabling
accommodation suggestions that fit budget and location constraints.

• Restaurants: associating restaurant names with their addresses (name2address), price
(name2price), and cuisine types (name2cuisine), supporting meal planning for users.

By incorporating these fine-grained attributes, the model gains domain-specific grounding to generate
itineraries that are both factually accurate and preference-aware. To retain broad conversational and
task-following abilities while injecting urban knowledge, we augment the domain-specific instructions
with three open instruction datasets: ShareGPT 1, UltraChat [22], and Open-Platypus [23]. This hybrid
mix stabilizes the model’s general reasoning and dialogue quality during LoRA fine-tuning, mitigating
over-specialization to the travel domain.

4.2. TravelAgent

TravelAgent is the agentic controller in the framework, responsible for translating user requirements
into concrete, constraint-aware itineraries through real-time interaction with online trip data 𝒟on

and the knowledge-enhanced model TravelLLM. It operates through three tightly coupled modules:
a structured memory for state tracking, a domain-specific toolbox for real-time data retrieval, and a
ReAct-style planning loop for interleaved reasoning and action.
1https://huggingface.co/datasets/shareAI/ShareGPT-Chinese-English-90k



4.2.1. Structured Memory for State Tracking

Urban travel planning involves numerous interdependent elements and evolving contextual factors.
TravelAgent maintains a day-by-day structured memory that records itinerary details (e.g., attractions,
meals, accommodations, transportation, and estimated per-capita costs), thus providing a persistent
state for iterative updates as planning progresses. The schema for each day is defined as:

{
"date": str,
"num_people": int,
"visit_attractions": list,
"breakfast": {"name": str, "cuisines": str},
"lunch": {"name": str, "cuisines": str},
"dinner": {"name": str, "cuisines": str},
"accommodation": {"name": str, "type": str},
"transportation": {"org-dst": str},
"cost_per_capita": dict

}

4.2.2. Domain-Specific Toolbox

The domain-specific toolbox is a suite of parameterized functions implemented via JSON-schema-based
calls, enabling TravelAgent to retrieve, filter, and integrate external travel information during itinerary
construction. Each tool serves a specific role in the planning workflow:

• MemoryInit – initializes global trip parameters, such as travel dates and number of travelers,
providing a consistent context for subsequent planning steps.

• AttractionSearch – queries online trip data sources to obtain detailed information about
candidate attractions, including names, locations, and basic attributes.

• NearbyRestaurantSearch – identifies restaurants within a specified radius of a given point
of interest, allowing the integration of geographically coherent dining options.

• NearbyHotelSearch – retrieves available accommodations in the vicinity of a target location,
facilitating proximity-based lodging selection.

• TransportationSearch – returns feasible transportation routes between two locations, sup-
porting realistic scheduling and connectivity.

• MemoryWrite – updates the structured memory with newly retrieved or revised itinerary ele-
ments, ensuring that intermediate planning states remain accessible for reasoning.

• PlanOutput – compiles the current itinerary state into a coherent, user-facing travel plan
representation.

By encapsulating external interactions in modular, parameterized tools, the framework can adapt
to diverse data providers, geographic contexts, and planning requirements without altering its core
reasoning and control logic.

4.2.3. ReAct-Style Planning Loop

TravelAgent follows a ReAct-style planning paradigm [24], interleaving reasoning and tool invocation
in an iterative feedback loop. At each iteration, the agent performs three coordinated steps: (1)
State Interpretation: analyzes the structured memory to evaluate progress and identify missing or
inconsistent elements. (2) Action Selection: decides between internal reasoning (e.g., sequencing
attractions, allocating time slots) and external tool invocation (e.g., querying restaurants, retrieving
routes). (3) State Update: integrates the results of reasoning or retrieved data into the structured
memory, incrementally refining the itinerary state.



4.3. TravelBench

TravelBench is a two-part benchmark designed to evaluate both knowledge grounding and itinerary
quality for LLM-based urban travel planning. Unlike prior evaluations such as TravelPlanner [1], it
is built on (1) curated real-world POI and route datasets from major tourist cities, and (2) a unified
framework that jointly assesses factual knowledge of urban entities and the feasibility of multi-day
itineraries under commonsense and user-preference constraints.

4.3.1. KnowEval

KnowEval assesses an LLM’s capability to retrieve and reason over factual urban knowledge before the
planning stage. It consists of two complementary subsets: CityQA, which focuses on spatial knowledge
such as road networks and general POIs, and TripQA, which targets domain-specific travel entities
including attractions, hotels, and restaurants.

Each subset is further structured around fine-grained attribute categories derived from the curated
offline dataset 𝒟off . Specifically, CityQA covers: (1) Road attributes - OD pairs, connectivity, and
distances; (2) POI attributes - name-to-address mappings. TripQA includes: (1) Attractions - address,
ticket price, and opening hours; (2) Hotels - address and average price; (3) Restaurants - address, average
price, and cuisine tags.

We converte the knowledge item into a multiple-choice question (MCQ) automatically generated
by GPT-4o-mini from 𝒟off and validated by human annotators for factual accuracy and clarity. All
question text is presented in Chinese to maintain fidelity with real-world POI names and descriptions,
but the underlying methodology is language-agnostic and can be readily applied to other languages
or regions by replacing the source datasets. This ensures that the evaluation is grounded in authentic
curated resources while remaining broadly extensible.

4.3.2. TripEval

TripEval evaluates the feasibility and personalization quality of travel plans generated by LLM-based
agents. It operates on the structured memory produced by the agent and applies a suite of rule-based
validators that cross-reference curated POI databases and real-time transportation APIs. The evaluation
metrics are grouped into two major categories, as summarized in Table 1.

Commonsense Constraints

Valid Fields All required fields in the travel plan are populated.
Valid Days The number of planned days matches the requested trip length.
Valid Attractions Every listed attraction is real and publicly accessible.
Valid Restaurants Every listed restaurant is real and currently operating.
Valid Accommodations All accommodations are valid and bookable.
Available Transportation Transportation between locations is feasible.
No Repeated Attractions No attraction is visited more than once.
No Repeated Restaurants No restaurant is visited more than once.

Preference Constraints

Reasonable Budget The total cost remains within the user-specified budget.
Favorite Cuisine The itinerary includes the user’s preferred cuisines.
Preferred Hotel Type Accommodation matches the specified hotel category.

Table 1
Constraint categories in TripEval.



5. Experiments

5.1. Settings

5.1.1. City & Trip Datasets

We construct the datasets from five representative tourist cities in China: Beijing, Shanghai, Guangzhou,
Chengdu, and Xi’an. These cities were selected for the rich cultural heritage, diverse urban layouts, and
high tourist activity, making them ideal testbeds for evaluating urban travel planning systems.

The city-level data is sourced from OpenStreetMap2 and Amap3 , covering road networks and POIs.
The trip-level data comes from Ctrip4 , including attractions, accommodations, and restaurants with
rich attributes such as prices, operating hours, and category labels. Table 2 summarizes the dataset
statistics. All data is in Chinese to match real-world place names and descriptions, but this does not
impact the generality of our approach. The framework and evaluation pipeline are language-agnostic
and can be applied to other languages or cities.

City Data Trip Data
Num. Roads Num. Intersections Num. POIs Num. Attractions Num. Hotels Num. Restaurants

Beijing 33,794 20,327 288,852 3,471 1,473 132,379
Shanghai 38,281 18,871 424,198 3,967 1,417 117,880
Guangzhou 25,142 17,556 483,344 3,552 1,406 82,603
Chengdu 28,564 16,389 422,244 3,312 1,411 100,405
Xi’an 23,176 14,215 279,080 3,107 1,439 53,263

Table 2
Statistics of City and Trip Datasets.

5.1.2. Query Generation

To simulate realistic and diverse user requests for itinerary planning, we develop an automated pipeline
that generates natural-language queries paired with structured JSON representations. Given a target
city and difficulty level, the generator samples key trip parameters - duration, number of travelers, start
date, and budget - through controlled randomization. Budgets are derived from a per-capita-per-day
baseline cost and adjusted by multiplicative factors for different hotel categories, ensuring internal
consistency across trip attributes.

Preference constraints are injected in three tiers: (1) No preference - budget constraint only; (2)
Single preference - one hotel category or one to three preferred cuisines; (3) Combined preferences
- both hotel category and multiple cuisines. We generate 100 queries per city with difficulty levels, and
prompt GPT-4o-mini to produce a fluent, user-like query.

5.1.3. Metrics

We evaluate model performance using five complementary metrics: Delivery Rate (DR): the percentage
of itineraries successfully completed within the allowed number of reasoning and tool-invocation
steps; Commonsense Pass Rate (CPR): the proportion of itineraries satisfying all commonsense
constraints defined in TripEval (e.g., valid POIs, non-repetition, feasible transportation); Preference
Pass Rate (PPR) – the proportion satisfying all user-specified preference constraints (e.g., budget,
cuisine, accommodation type); Final Pass Rate (FPR) – the percentage of itineraries simultaneously
meeting both commonsense and preference constraints; Accuracy (ACC) – the fraction of correctly
answered multiple-choice questions in KnowEval, reflecting factual and spatial knowledge grounding.

2https://www.openstreetmap.org/
3https://lbs.amap.com/
4https://ctrip.com/

https://www.openstreetmap.org/
https://lbs.amap.com/
https://ctrip.com/


Beijing (#200) Shanghai (#200) Guangzhou (#200) Chengdu (#200) Xi’an (#200)
Model CityQA TripQA CityQA TripQA CityQA TripQA CityQA TripQA CityQA TripQA

Qwen2.5-7B 0.420 0.580 0.445 0.645 0.475 0.655 0.475 0.515 0.450 0.585
GLM4-9B 0.430 0.465 0.420 0.555 0.425 0.535 0.470 0.410 0.450 0.530
Gemma3-12B 0.325 0.490 0.420 0.475 0.330 0.455 0.435 0.455 0.390 0.550
GPT4o-mini 0.500 0.530 0.500 0.610 0.500 0.585 0.550 0.430 0.490 0.620
TravelLLM 0.445 0.630 0.410 0.625 0.525 0.620 0.505 0.535 0.550 0.635

Table 3
Comparison of different LLMs on KnowEval. Bold denotes the best result, underline denotes the second-best.

Beijing (#100) Shanghai (#100) Guangzhou (#100) Chengdu (#100) Xi’an (#100)
Model DR CPR PPR FPR DR CPR PPR FPR DR CPR PPR FPR DR CPR PPR FPR DR CPR PPR FPR

Qwen2.5-7B 0.97 0.18 0.43 0.15 0.89 0.12 0.25 0.04 0.91 0.11 0.18 0.00 0.94 0.18 0.47 0.11 0.90 0.19 0.53 0.19
GLM4-9B 0.94 0.20 0.51 0.19 0.98 0.06 0.31 0.02 0.91 0.12 0.34 0.08 0.97 0.04 0.50 0.03 0.96 0.17 0.55 0.16
Gemma3-12B 0.29 0.00 0.17 0.00 0.34 0.00 0.15 0.00 0.31 0.00 0.14 0.00 0.31 0.02 0.09 0.01 0.13 0.00 0.07 0.00
GPT4o-mini 1.00 0.41 0.40 0.19 1.00 0.41 0.02 0.01 1.00 0.39 0.14 0.07 1.00 0.08 0.13 0.03 1.00 0.11 0.52 0.05
AgentTravel 0.98 0.42 0.34 0.24 0.99 0.20 0.12 0.10 1.00 0.31 0.05 0.01 0.99 0.14 0.42 0.15 1.00 0.31 0.40 0.24

Table 4
Results of different LLMs on TripEval. Bold denotes the best result, underline denotes the second-best.

5.2. Results

We evaluate AgentTravel against several competitive LLM baselines on both KnowEval and TripEval.
To ensure a fair and controlled comparison, all models operate within the same TravelAgent planning
framework, sharing an identical prompting template, structured memory schema, ReAct-style reasoning
loop, and domain-specific toolbox.

Table 3 reports results on CityQA and TripQA across five cities. TravelLLM ranks first or second
in nearly all cases, showing the best overall balance. On TripQA, TravelLLM achieves the highest
scores in Beijing, Chengdu, and Xi’an, and competitive results in Shanghai and Guangzhou. These
gains confirm that domain-specific fine-tuning improves factual recall and reasoning on travel entities.
On CityQA, GPT-4o-mini leads in Beijing, Shanghai, and Chengdu, while TravelLLM performs better
in Guangzhou and Xi’an. This shows that city-level adaptation can match or surpass larger models in
localized spatial reasoning.

Table 4 reports delivery (DR), commonsense (CPR), preference (PPR), and final pass rate (FPR) across
five cities. AgentTravel achieves near-perfect delivery (≥0.98) across all settings, indicating strong
execution stability. GPT-4o-mini performs best on commonsense reasoning, while AgentTravel remains
competitive in Beijing and Xi’an, outperforming other open models. On personalization, performance
is moderate but consistent, slightly below Qwen and GLM in some cities. Notably, AgentTravel attains
the highest FPR in four cities, reflecting improved overall feasibility.

Despite these advances, LLM-based travel planning remains challenging. Our results suggest that
integrating knowledge-grounded reasoning with structured memory offers a promising path toward
more reliable and adaptive LLM planners.

6. Conclusion

This paper introduced AgentTravel, a unified framework for LLM-based urban travel planning, combin-
ing knowledge-grounded modeling, agentic reasoning, and multi-perspective evaluation. Experiments
across five Chinese cities show that domain- and city-specific fine-tuning strengthens factual reasoning,
while structured agentic planning improves itinerary feasibility. Despite these gains, LLM-based travel
planning remains a challenging task, requiring better commonsense reasoning, preference alignment,
and adaptability to real-world data.
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A. CityInstruction & TripInstruction Examples

Example (Intersection-name2coords):

{
"instruction": "Please provide the geographical coordinates of a given

intersection",
"input": "Zhouzhang Road and Fangyi Road Intersection",
"output": "115.6906259, 39.5750395"

}

Example (POI-name2address):

{
"instruction": "Please provide the address of a given Point of Interest.",
"input": "Sanyuan Ecological Park in Beijing",
"output": "No. 8, Xiaoyunli, Sanyuan Park, Taiyanggong Township, Chaoyang

District"
}

Example (Attractions-name2ticket):

{
"instruction": "Please tell me the ticket price of a given attraction.",
"input": "Old Summer Palace in Beijing",
"output": "The ticket price for the Old Summer Palace in Beijing is 10 CNY."

}



Example (Restaurants-name2cuisine)

{
"instruction": "What is the main cuisine offered by this restaurant?",
"input": "Zi Shan Restaurant, Mandarin Oriental Wangfujing, Beijing",
"output": "Zi Shan Restaurant offers ['Cantonese Cuisine', 'Cantonese Dim Sum

']."
}

B. CityQA & TripQA Examples

CityQA Example (Road Connectivity):
Q: Which road is directly connected to Yunquan Road?
A. Haidian South Road B. Zhiquan Road C. Yuanboyuan South Road D. Zhaitang
Street
Answer: B

TripQA Example (Hotel Price):
Q: What is the average per-capita price of Lavande Hotel (Beijing Headquarters
Base)?
A. 285 CNY B. 699 CNY C. 535 CNY D. 313 CNY
Answer: D

C. Prompts

C.1. ReAct Planning Prompt

You are a travel planning assistant. Your task is to help users create detailed
daily travel itineraries (in Chinese) by strictly following the instructions
below.

→˓

→˓

### Responsibilities
1. Understand user requirements: Accurately extract travel start/end dates, number

of people, budget, preferences, etc.→˓

2. Retrieve information using tools: Use designated tools to gather data on
attractions, restaurants, accommodations, and transportation.→˓

3. Preliminary setup: Before starting the planning task, use `MemoryInit` to
initialize the memory and set up essential information such as travel dates and
group size.

→˓

→˓

4. Timely record-keeping: Each time a restaurant, accommodation, or transportation
item is obtained, immediately write it to the memory using `MemoryWrite`.→˓

5. Step-by-step itinerary construction: First determine the full list of
attractions to be visited across the trip. Then, collect and record restaurants,
accommodations, and transportation information on a day-by-day basis.

→˓

→˓

### Task Execution Flow
#### Phase 1: Plan Attractions Across the Entire Trip
1. Use `MemoryInit` to initialize the memory with travel dates and number of people.
2. Call `AttractionSearch` to retrieve information about attractions in the target

city.→˓

3. Select appropriate attractions and assign them to each day in a balanced manner
(avoid overcrowded schedules).→˓

4. Use `MemoryWrite` to record the attractions for Day 1. Repeat this for each day
until all attractions have been assigned and recorded.→˓



#### Phase 2: Daily Information Collection and Logging
For each day, perform the following steps in sequence:
1. Call `NearbyRestaurantSearch` to obtain breakfast options.
2. Write the breakfast information to the memory using `MemoryWrite`.
3. Repeat the above two steps for lunch.
4. Repeat the above two steps for dinner.
5. Call `NearbyHotelSearch` to find accommodation near the day's attractions.
6. Record accommodation details with `MemoryWrite`.
7. Call `TransportationSearch` to get transportation plans between all visited

attractions for the day.→˓

8. Log the transportation details using `MemoryWrite`.

### Using Thought-Action-Observation Loop
- Thought: Express your current reasoning using natural language. Do not include any

tool calls in this phase.→˓

- Action: Based on your thought, invoke the appropriate tool using valid parameters.
Use the system’s function-calling mechanism where possible.→˓

- Observation: Examine the tool's output and use it to guide the next thought.

### Important Guidelines
- Do not use attraction/restaurant/hotel names unless they come from the results

returned by `AttractionSearch` or `NearbySearch`.→˓

- Each piece of information must be collected and recorded **independently**;
merging multiple tasks is not allowed.→˓

- To avoid forgetting data, each collected item must be immediately written to the
memory using `MemoryWrite`.→˓

- For days with multiple attractions, transportation between each pair must be
queried and written separately.→˓

- Each Action phase should involve only one tool invocation for a single specific
task. Multiple tool uses in one action are not allowed.→˓

- After all daily information has been recorded in the memory, call `PlanOutput` to
generate the final complete travel plan.→˓

C.2. Knowledge Evaluation Prompt

Here is a multiple-choice question related to urban travel knowledge. You need to
choose the most appropriate answer from A, B, C, and D. Please output only the
letter corresponding to the correct answer, with no additional content.

→˓

→˓

D. Example Query and Generated Plan

Below is an example of a user query in English and the corresponding structured travel plan produced
by our system.
User Query

I would like a 1-day travel plan in Beijing for 2 people, starting on July 20, 2025,
with a budget of around 2,200 CNY.→˓

Generated Plan

{
"date": "2025-07-20",
"num_people": 2,
"visit_attractions": [

"Summer Palace",



"Palace Museum (Forbidden City)",
"Temple of Heaven"

],
"breakfast": {

"name": "Palace Museum Restaurant",
"cuisines": "Chinese"

},
"lunch": {

"name": "Tingliguan Restaurant (Summer Palace Branch)",
"cuisines": "Chinese"

},
"dinner": {

"name": "Donglaishun Restaurant (Temple of Heaven Branch)",
"cuisines": "Beijing Cuisine"

},
"accommodation": {

"name": "Atour Light Hotel Beijing Qianmen Temple of Heaven",
"type": "Comfort"

},
"transportation": {

"Summer Palace → Palace Museum": "From the Summer Palace, walk 791 meters
to ...",→˓

"Palace Museum → Temple of Heaven": "From the Palace Museum, walk 870
meters to ..."→˓

},
"cost_per_capita": {

"Palace Museum": 60,
"Summer Palace": 30,
"Temple of Heaven": 10,
"breakfast": 86,
"lunch": 153,
"dinner": 147,
"accommodation": 300,
"transit": 8.0

}
}
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