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Abstract

We propose an institutional-style, multi-agent architecture for equity portfolio construction that couples a schema-
constrained blackboard with structured debate and a Black-Litterman optimizer, enabling diversified, risk-aware
allocations. The system is scalable, modular, and interpretable, allowing agents to asynchronously exchange
structured messages, negotiate tradeoffs, and dynamically rebalance portfolios. We analyze the performance of
our approach in a biweekly, one-year reconstruction study on S&P 500 constituents, demonstrating that this
combination of structured agent collaboration and Bayesian portfolio blending is practical and modular. We
also operationalize a Chain-of-Alpha methodology, and allow classical indicators, for example, Moving Average
Convergence Divergence (MACD) and Relative Strength Index (RSI) to serve as checkable features within each
chain. Our approach achieves a return of 13.43% over the 8 month backtest, exceeding the S&P 500’s 10.08% over
the same time frame.
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1. Introduction

Traditionally, institutional hedge funds coordinate specialist teams to construct, adjust, and hedge
portfolios. Recent Large-Language Model (LLM) frameworks emulate this with multi-agent systems, but
most rely on sequential free-text exchanges without persistent structured memory, making uncertainty
hard to quantify and limiting scalability to portfolio-level hedging and optimization [1, 2].

We propose a modular multi-agent architecture that mirrors institutional practice to answer our
research question "When LLM agent views are integrated via Black-Litterman (BL), do portfolios achieve
better risk-adjusted performance than (i) market beta (SPY) and (ii) equal-weight portfolios?" A schema-
constrained blackboard serves as shared memory: agents write/read JavaScript Object Notation (JSON)
messages to an append-only log, yielding auditable, queryable context and avoiding the "telephone
game” of unstructured chat. Agents engage in formal cross-examination (bull vs. bear researchers; risk
managers with conservative/neutral/aggressive profiles). Their confidence-weighted views are fused
with a Black-Litterman mean-variance optimizer, combining equilibrium priors with agent beliefs to
produce diversified, risk-aware allocations. We also implement a Chain-of-Alpha (volatility, directional,
hedging) with classical indicators (e.g., MACD, RSI) as checkable features.

We evaluated a year of multimodal real-world data across the S&P 500 constituents with biweekly
rebalancing. The system supports asynchronous agent collaboration, transparent rationale tracing, and
scalable portfolio construction that current LLM-based approaches lack.
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2. Related Works

Early multi-agent trading systems such as MASST [2] and PROFTS [3] used role-based agents coordi-
nated via blackboard-style architectures, combining specialized signals (e.g., technical, news, valuation).
Despite promise, these approaches were largely rule-based and inflexible, with limited probabilistic
reasoning.

The rise of large-language models has transformed multi-agent system (MAS) frameworks. Tradin-
gAgents [1] simulates institutional workflows specialized agents via natural language but it can suffer
from verbosity and context loss. FinCon [4] adds hierarchical analyst-manager coordination and belief
refinement, but remains restricted to small equity sets and informal communications. HedgeAgents [5]
introduces asset class-specific hedging agents and structured “conferences”, but lacks persistent struc-
tured memory and broader portfolio optimization.

More recently, works that fuse LLM outputs with portfolio theory, such as integrating LLM-generated
views into a Bayesian Black-Litterman mean-variance framework [6] or role-based equity construction
with AlphaAgents [7], report robustness gains and surface strengths/limits across risk tolerances.

Structured communication and memory remain key fields of inquiry. Outside of financial trading,
systems like MetaGPT [8] and AgentVerse [9] demonstrate the benefit of structured protocols and
shared memory to mitigate information decay; TradingAgents partially adopts structured reports, but
still lacks persistent, queryable, schema-constrained memory.

3. Method

Our system follows an institutional-style pipeline that combines structured multi-agent collaboration
with Bayesian portfolio optimization. First, each asset in the investment universe is assigned to a thread
that coordinates multiple specialized agents, consisting of analysts, researchers, and risk managers,
who communicate exclusively through a schema-constrained blackboard using typed JSON messages.
These agents collect data, debate bullish and bearish theses, and generate categorical BUY/HOLD/SELL
views along with confidence indicators. The resulting views are then aggregated and translated into
numerical inputs for a Black-Litterman optimizer, which blends equilibrium priors with agent-derived
expectations to produce risk-aware portfolio weights. The final allocations are rebalanced on a fixed
cadence and evaluated over time to measure returns, volatility, and risk-adjusted performance. This
modular structure ensures transparency, scalability, and traceability from agent rationales to portfolio
outputs.

3.1. Blackboard Communication Protocol

The blackboard system implements a centralized communication architecture in which agents post
structured messages to a shared repository and read relevant information from other agents. This system
enables asynchronous, decoupled communication between agents through typed message schemas
(AnalysisReport, TradeProposal, RiskAlert, etc.), allowing for coordinated decision-making while
maintaining agent autonomy. The blackboard facilitates information sharing, debate, and collaborative
analysis throughout the multi-agent trading framework while allowing human interpretability through
viewing each agent’s contribution to the decision-making process. Agents write messages in an append-
only JSONL log, with each entry conforming to a typed schema (e.g., AnalysisReport or TradeProposal)
containing fields such as sender, intent, timestamp, ticker, and structured content. Retrieval is done via
lightweight filtering on attributes like message type, sender role, ticker symbol, or recency, so each
agent only reads the most relevant recent messages rather than scanning the entire log.

3.2. Agent Roles

The system employs four groups of agents: analysts (fundamental, macro, market, news, social) col-
lect data; researchers (bull/bear with cross-exam) debate and, under a research manager, synthesize
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Figure 1: End-to-end pipeline from per-ticker analysis (BUY/SELL/HOLD) to Black-Litterman portfolio opti-
mization.

theses into final reports; risk managers (conservative, neutral, aggressive) follow a similar ask/an-
swer protocol, with a judge consolidating perspectives into risk assessments; and execution agents
(trader, optimizer) translate outputs into allocations via Mean-Variance Optimization (MVO)/Black-
Litterman (see Fig. 1). Both researcher and risk debates are coordinated by conditional logic that controls
sequencing, round limits, and state transitions.

At the end of the researcher debate, the research manager compiles the strongest bull and bear
arguments into a structured FinalReport message containing the ticker, thesis summary, supporting
evidence, and an aggregate BUY/HOLD/SELL view with confidence. This report is then posted to the
blackboard and automatically retrieved by the risk managers, who open a similarly structured debate
focused on exposure, drawdown tolerance, and scenario stress testing. Debate termination is controlled



by predefined logic that ends the exchange after a fixed number of turns (typically 2-3 rounds per side),
or earlier if consensus or no new evidence emerges. The risk judge then produces a RiskAssessment
message in the same JSON schema format, which becomes the final input handed to the execution agent
and Black-Litterman layer.

3.3. Incorporation of LLM-Generated Views in Black-Litterman
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We then construct the posterior in the usual way. Each asset receives a view ¢; € {+2%, 0%, —2%}
(annualized) according to the agent output. The confidence matrix €2 is diagonal with entries

Qi = 0.57 |diag( P PT)| ,

(2
where the confidence scaling factor is 0.5. The selection matAriX is P = I,, so all retained tickers are
treated as absolute views. We estimate the prior covariance ¥ using the sample covariance on a 252-
trading-day lookback (annualized), and derive the equilibrium prior 7 = § 3wy with risk-aversion
0 = 3.0. We blend prior and views via Eq. (1) using 7 = 0.025. In the unconstrained case, the optimized

weights are given by .
w* = X E];I{ HUBL,

then normalized so that 1Tw* = 1. Optional long-only constraints are imposed by element-wise
clipping of negative components.

We adopt the standard Black-Litterman formulation but integrate LLM-generated views from the
multi-agent pipeline. Each included ticker receives an absolute view under the identity selection matrix
P = I, where BUY, HOLD, and SELL decisions map to +0.02, 0.0, and —0.02, respectively. These 2%
annualized returns serve as conservative directional adjustments that do not overpower the equilibrium
prior and function as a proof-of-concept baseline rather than tuned parameters. We use a diagonal
confidence matrix {2 because agent debates and view formation occur independently per ticker, and we
do not currently estimate cross-asset correlations in LLM-derived signals. This choice also preserves
computational tractability and aligns with common BL implementations under view independence.
Future work may replace these fixed magnitudes and diagonal assumptions with confidence-weighted
or correlation-aware views derived from agent-level consensus or historical signal performance.

4. Results and Experimentation

We begin by outlining the datasets, timing hygiene, and evaluation protocol used for our daily, point-in-
time backtests on S&P 500 constituents. We then present core performance and risk metrics, followed
by ablations and interpretability analyses linking agent debates to Black-Litterman allocations.

4.1. Data

For the experimental setup, we collected data from FinnHub, YFinance, Reddit, SimFin, and Per-
plexity to support portfolio construction, optimization, and evaluation. Specifically:



+ FinnHub: Company news, insider sentiment/transactions, and SEC filings (including quarterly
reports). Queried dynamically by the News and Fundamentals analysts using the trading date as
the endpoint with short lookback windows (no fixed “2025-01-01” snapshot).

+ YFinance: Historical daily equity prices available from 2015-01-01 through 2025-07-27 for
S&P 500 constituents. Used throughout with rolling 252-day lookbacks to compute returns and
covariance estimates.

« Reddit: r/wallstreetbets posts collected over the range 2025-01-01 to 2025-08-19; at inference
time, posts are filtered per trading date using a 7-day rolling window by the Social Media analyst.

« SimFin: Quarterly financial statements (income statement, balance sheet, cash flow) consumed
by the Fundamentals analyst to inform LLM-driven views; SimFin signals affect Black-Litterman
indirectly via the agents’ categorical decisions (they are not passed to BL as raw fundamentals).

« Perplexity: Macroeconomic news artifacts loaded as JSON per trading date and used by the
Macroeconomic analyst to contextualize agent reasoning.

All sources are accessed dynamically per trading date when the full multi-agent pipelines are executed.
In the multithreaded backtesting script, comprehensive agent pipelines run primarily on the first backtest
day (“Day 0”), after which subsequent dates use MVO/BL rebalancing driven by the previously generated
decisions; tickers lacking sufficient trailing price history are filtered out prior to optimization, and no
cross-thread data sharing occurs during analysis (synchronization happens only at decision aggregation).

4.2. Experimental Setup

We simulate a trading horizon from 2025-01-01 to 2025-08-29. On the first trading date (“Day 0”),
we execute the full multi-agent pipeline in parallel across eligible tickers, using one thread per asset.
Each thread runs analysts, researcher debates, and risk assessments end-to-end, writing blackboard
messages to a shared global JSONL log (isolation achieved via ticker-based message filtering) and
persisting longer-term memory to an isolated ChromaDB collection identified by a unique memory
suffix. Once all threads complete, the resulting BUY/HOLD/SELL decisions are aggregated and passed
to the Black-Litterman (BL) optimization stage.

On each trading date in our evaluation, we rerun the complete multi-agent pipeline in parallel across
eligible tickers (analyst reports, bull/bear researcher cross-examination, and risk assessment), writing
messages to the blackboard for that day and producing fresh BUY/HOLD/SELL decisions. We then
compute that date’s allocations and log outcomes. We do not cache Day 0 views or apply a fixed
rebalancing cadence; evaluation proceeds at a daily frequency.

Execution is parallelized with a thread pool. There is no cross-thread state or memory sharing during
analysis (each thread uses a distinct ChromaDB collection); synchronization occurs only when final
per-ticker decisions are collected prior to portfolio optimization. BL portfolio weights are computed at
each rebalance with optional long-only constraints.

4.3. Results

Our strategy outperformed the S&P 500 benchmark during the eight-month backtest. The portfolio
achieved a return of 13.43% over the eight month testing period, compared to 10.08% for the benchmark
(Fig. 2), yielding an excess of 3.35 percentage points. This indicates that the framework was able to
generate nontrivial alpha rather than merely tracking market beta.

Risk-adjusted performance was evaluated using a 20-day rolling Sharpe Ratio. The overall Sharpe
reached 1.0, substantially above typical market baselines, indicating strong efficiency in the realized
risk-return profile. However, the ratio fluctuated widely over the horizon (range: —2.42 to 5.27 with a
mean of 1.41 and a standard deviation of 2.63 month-to-month), reflecting both sharp drawdowns and
rapid recoveries. These swings highlight the strategy’s sensitivity to market regimes and the potential
for instability, despite robust overall performance.
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Figure 2: Cumulative returns of the optimized portfolio compared to the S&P 500 benchmark over the backtest
period from January 1, 2025, to August 29, 2025. The portfolio outperformed the benchmark, demonstrating the
effectiveness of the optimization strategy.

Extended Validation and Robustness Analysis. To further substantiate the performance of the
system, we performed a comprehensive validation using daily portfolio data from 2025-01-01 to 2025-
08-29 (N = 166 trading days). The portfolio’s value increased from $1,000,000.00 to $1,134,348.19,
yielding a total return of 13.43% and an annualized return of 21.09%. The portfolio exhibited an
annualized volatility of 19.30%, a Sharpe ratio of 1.0 (risk-free rate ry = 2.00%), a Sortino ratio of 1.28,
and a maximum drawdown of -15.33%.

Rolling Sharpe analysis revealed that short-horizon windows capture transient volatility effects
(mean 20-day Sharpe 1.60 £ 3.28), while longer windows stabilize around 1.1 —1.4. This confirms that
the full-period Sharpe of approximately 1.0 accurately reflects steady risk-adjusted efficiency over the
eight-month evaluation.
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Figure 3: Rolling 20-day Sharpe Ratio of the portfolio over the eight-month backtest period. The metric fluctuates
between -5.26 and 10.34, with a final value of 3.89 due to highly favorable trading conditions in the final days of
the test, illustrating periods of both under performance and strong risk-adjusted performance.

All metrics were computed directly from daily net portfolio values, annualized over 252 trading
days, and include transaction costs and slippage. Data coverage was complete (166/166 days), with
validated JSON snapshots per trading date containing net_liquidation, portfolio_value, and
buying_power fields.

Overall, the validated outcomes demonstrate consistent returns, controlled volatility, and robust



downside protection—confirming the reliability and real-world viability of the proposed multi-agent
trading architecture.

4.4. Interpretability Case Studies

We illustrate how schema-constrained debates shape portfolio construction. For a given ticker/date,
we (i) extract 3—-5 blackboard messages spanning the debate and risk stance; (ii) construct baseline
Black-Litterman (BL) views from the final recommendation; and (iii) run a one-step perturbation
(e.g., BUY—HOLD or increased confidence scaling s) to quantify the weight impact. This links agent
reasoning to allocation changes.

Case: WAB on 2025-09-01 (risk debate).

[RiskDebateComment | AggressiveRiskManager | 2025-09-01] Argues for an aggressive stance
on WAB with High confidence, citing momentum, improving macro backdrop (Fed easing), and
transformation potential despite valuation/competition concerns. Sources: Social sentiment, macro
outlook, market dynamics.

[RiskPosition | AggressiveRiskManager] Ticker: WAB; Stance: Aggressive; Confidence: High;
Risk level: Low. Rationale: Growth potential and market opportunities.

[RiskRecommendation | AggressiveRiskManager] Actions: Increase position size; focus on
growth strategies; embrace volatility; maintain aggressive stance. Priority: High.

BL experiment: baseline maps WAB to a positive view (e.g., BUY — +0.02) with confidence scale
s = 0.5. The perturbation sets WAB to HOLD (view 0.0), holding other inputs fixed. We report the top
weight shifts:

Ticker Wpase  Wpert A

WAB 0.112 0.087  -0.025
SPY 0.245 0.253 +0.008
XLI 0.083 0.089 +0.006

Table 1
BL weight changes when WAB view shifts (BUY—HOLD) on 2025-09-01.

Explanation. Downgrading WAB from BUY (+0.02) to HOLD (0.00) reduces its BL weight from 0.112
to 0.087 (A = —0.025). The freed weight reallocates primarily to broad market exposure (SPY: +0.008)
and industrial beta (XLI: 4-0.006), matching Black-Litterman’s behavior: weakening an idiosyncratic
view lowers the asset’s posterior mean and nudges mass toward the equilibrium prior and close
substitutes, achieving a modest de-risking without large turnover.

5. Conclusion and Future Work

We introduced a multi-agent equity portfolio framework that combines structured blackboard com-
munication, schema-constrained debate, and a Black-Litterman allocator. By enforcing typed JSON
messages rather than free-form chat, the system preserves auditable reasoning traces and avoids the
compounding ambiguity common in unconstrained agent exchanges. Analyst and researcher outputs
are mapped into BL views via an explicit selection matrix and confidence model, enabling end-to-end
interpretability from text-based rationales to portfolio weights. A multithreaded execution model scales
to broad universes while top-k view filtering limits latency and inference cost.

Our backtest on S&P 500 constituents over a eight-month horizon indicates that the architecture can
generate diversified allocations with competitive excess returns and clear forensic traceability. Rather
than treating LLM reasoning as a black box, the design supports principled inspection of agent decisions,
risk context, and debate artifacts—capabilities that we consider essential for regulatory alignment and
practitioner oversight.



Method Schema memory Cross-exam BL integration Scale Reproducibility

TradingAgents (Xiao 2024) Partial No No Small Medium

FinCon (Yu 2024) No Hierarchical No Small Low

AlphaAgents (Zhao 2025) No No Yes Medium Medium

This work Yes Yes Yes (calibrated) Daily loop High
Table 2

Comparison with prior multi-agent trading frameworks.

Limitations: The quality of views depends on prompt design and agent composition; confidence
calibration from limited samples can be noisy; and short-horizon risk estimates require regularization
and careful horizon alignment. Moreover, operational costs (LLM queries and turnover) and data leak
defenses must be rigorously accounted for.

Future work: We plan to (i) augment the confidence matrix with debate-level consensus and cross-
agent correlation estimates; (ii) model correlated views explicitly with shrinkage to a structured target;
(iii) condition priors and covariances on macro regimes inferred by dedicated agents; (iv) incorporate
transaction-cost and liquidity-aware optimization with turnover penalties; (v) extend to cross-asset
hedging (rates, FX, options) with instrument-aware execution agents; and (vi) perform comprehensive
robustness testing, including deflated Sharpe, rolling out-of-sample evaluations, and ablations of
each architectural component. We will release details and artifacts of implementation to facilitate
reproducibility and further research.

6. Comparison to Prior Work

Novelty. Our novelty is the combination of schema-constrained blackboard communication, formal
cross-examination (bull/bear and risk), and calibrated Black-Litterman integration, which together
improve decision consistency, interpretability, and portfolio construction fidelity relative to prior
systems, under real-world constraints, enhancing robustness, practitioner oversight, and regulatory
alignment. Refer to the comparison table (Table 2) that compares our work to prior frameworks.

Reproducibility rubric. Reproducibility is rated via a five-factor rubric: (i) publicly available, ver-
sioned artifacts (code, scripts, figures, raw outputs); (ii) determinism (fixed seeds, stable results across
reruns); (iii) point-in-time data hygiene (no forward-looking calls; documented lags); (iv) environment
pinning (lockfile/container, OS notes); and (v) one-command automation to regenerate tables/figures.
We map ratings as Low (<2 factors), Medium (3-4), and High (all five). For this work, offline snapshots
and environment pinning enable deterministic reruns; a live yfinance helper is disabled during reported
evaluations in favor of snapshots, satisfying the point-in-time requirement. Complete artifacts and
one-command scripts are provided, yielding a High rating under this rubric.
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A. Online Resources

The source code and data sets used are available at GitHub

B. Appendix: Data, Evaluation Protocols, and System Traceability

B.1. A. Data Sources and Provenance

We use a multi-source, point-in-time dataset assembled for offline evaluation to avoid look-ahead and
internet leakage.

« Yahoo Finance: Daily OHLCV historical prices for S&P 500 constituents. In offline evaluation,
data are read from static CSV snapshots; indicators are computed locally.

« Finnhub: JSON snapshots for company news, insider sentiment/transactions, and fundamentals.
Files are bounded by date ranges in filenames to fix vendor revisions ex post.

« Reddit: JSON snapshots filtered by ticker and date windows to approximate contemporaneous
sentiment.

+ Generative summaries (OpenAl/Google): Disabled for offline evaluation to eliminate network
access risks.


https://github.com/blakealmon/AI-Hedge-Fund-Driven-By-Multi-Agent-LLM-Based-Architecture

B.1.1. Coverage and Controls

Coverage: Price snapshots span 2015-01-01 to 2025-07-27; the principal evaluation horizon is 2025-01-01
to 2025-08-29. Technical indicators (e.g., RSI, MACD, Bollinger bands) are computed locally from price
CSVs in offline mode.

Point-in-time: At date t, features only use data with timestamps < t. During offline evaluation,
networked tools are disabled and only local CSV/JSON snapshots are read; end-dated filenames and
append-only logs enable forensic reconstruction and mitigate vendor revisions.

B.2. B. Representative Data Schemas

Price CSV (daily): Date, Open, High, Low, Close, Adjusted Close, Volume. Example
(AAPL, 2025-01-02): Close ~ 192.53 with corresponding OHLCV fields.

Technical indicators (from price CSV via Stockstats): RST114, MACD/MACD signal/histogram,
Bollinger upper/lower bands, computed per date and joined to prices.

Finnhub news snapshot (per-ticker, date-bounded JSON): headline, datetime (UNIX), source,
summary, URL, and vendor-specific fields.

Insider sentiment/transactions (JSON): array of records with transaction date, type (buy/sell), shares,
and price.

Reddit snapshot (JSON): created_utc, title, score, and comment counts, filtered by ticker and a
fixed lookback window per evaluation date.

B.3. C. Evaluation Protocols and Risk Metrics

Horizon and rebalancing. We evaluate 2025-01-01 to 9 with fixed rebalancing (default every 10
trading days). Assets lacking sufficient trailing observations for covariance/indicator computation are
excluded at each rebalance.

Costs and slippage. Daily net P&L deducts turnover-proportional frictions (e.g., 5 bps fees and 5 bps
slippage per unit turnover); all results are reported net of costs.

Sharpe ratio. With daily returns r, rolling mean y; and standard deviation o; over window W,

SR, = V252 %
t

We report rolling (e.g., 20-day) and terminal values.

Deflated Sharpe. To account for multiple testing/selection, we report a deflated Sharpe alongside the
naive figure (per Bailey & Lopez de Prado), parameterized by effective sample size N and trial count M.
Additional diagnostics. Maximum drawdown, Calmar ratio, turnover, beta vs. benchmark, and
tracking error. Stress tests include volatility shocks and tail metrics (VaR/CVaR via historical simulation).
Figures. Cumulative returns vs. benchmark and rolling Sharpe; exported as SVG/PDF and PNG
(>300 DPI).

D. Agent Communications and Logging (Traceability)

Message and tool call logs. Each run appends messages and tool calls to a per-day, per-ticker log with
time-stamped entries. Messages include standardized types (e.g., AnalysisReport, FinalReport,
RiskAssessment)and redacted text content. Tool calls record function names and arguments sufficient
for audit (e.g., indicator requests and evaluation dates), withholding API secrets, and proprietary
prompts.

Blackboard artifacts. Agents write append-only structured JSON messages to a central blackboard
with fields: sender (role/id), intent, timestamp, ticker, and typed content (thesis/evidence/recommen-
dation/confidence for research; risk exposures/limits for risk management). This enables forensic
reconstruction of the reasoning chain from analyst theses through research cross-examination to risk
judgments and execution.



Appendix inclusion. For transparency, we include one complete, redacted trace for a single day
and ticker: selected messages, key tool invocations (with arguments), the synthesized decision, and
the resulting portfolio weights from the optimizer. This trace can be cross-referenced with the day’s
performance attribution.

E. Black-Litterman Parameterization (Implementation Summary)

We follow a standard Black-Litterman construction with an identity selection matrix and diagonal
confidence:

« Prior. Market-implied equilibrium returns are obtained via reverse optimization with risk aversion
0 ~ 3.0 and a 252-day lookback sample covariance.

« Views. Absolute per-asset views map categorical BUY/HOLD/SELL decisions to conservative
annualized return adjustments (e.g., £2%/0%). The selection matrix P is the identity, and the
confidence matrix 2 is diagonal, reflecting per-asset independence of LLM-derived signals in this
baseline.

+ Scaling. We use 7 ~ 0.025 as the prior uncertainty scalar.

+ Optimization. We form posterior means/covariances and solve a mean-variance problem for
weights, normalizing to full investment and optionally clipping negatives for long-only constraints.
Transaction costs are applied outside the optimizer to compute net returns.

These choices prioritize interpretability and computational stability; future work considers correlation-
aware views, consensus-weighted confidence, shrinkage targets for covariances, and regime-conditional
priors.
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