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Abstract
The rapid proliferation of artificial intelligence in medical imaging is currently hindered by a significant 
disconnect between high-performing research models and the rigorous demands of clinical environments.  
Key  challenges  include  data  interoperability  issues  between  research  formats  and  clinical  standards, 
hardware dependencies that limit portability, and the opaque “black-box” nature of deep learning models 
which erodes clinician trust. In this work, we propose a comprehensive intelligent information system 
designed to bridge this gap by unifying standards-compliant data ingestion, accelerated inference, and 
knowledge-infused reasoning into a single auditable workflow. Our approach integrates a robust DICOM 
and NIfTI ingestion pipeline with built-in anonymization, a hardware-agnostic ONNX inference engine, 
and a novel graph-based classification module that explicitly models anatomical relationships. Evaluated 
on  the  public  ACDC benchmark,  the  proposed  system demonstrates  superior  performance,  with  the 
segmentation module achieving a mean Dice Similarity Coefficient of 0.939 and the knowledge-integrated 
classifier attaining a diagnostic accuracy of 94.0%. The significant conclusion of this study is  that by 
systematically  integrating  privacy  controls,  hardware  portability,  and  graph-based  knowledge 
representation,  it  is  possible  to  create  a  deployment-ready  AI  blueprint  that  is  both  scientifically 
reproducible and clinically trustworthy.
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1. Introduction

The field of artificial intelligence (AI) for medical imaging has witnessed exponential growth in 
recent years, driven by the advent of deep learning architectures that often surpass human-level 
performance  in  specific  diagnostic  tasks.  However,  a  substantial  chasm  remains  between  the 
experimental  success  of  these  models  in  controlled  research  environments  and  their  practical 
utility  in  real-world  clinical  settings  [1].  This  discrepancy  is  primarily  fueled  by  a  trifecta  of  
systemic challenges: data heterogeneity, hardware fragmentation, and the interpretability crisis. 
Clinical workflows heavily rely on the Digital Imaging and Communications in Medicine (DICOM) 
standard,  a  complex  protocol  governing  the  storage  and  transmission  of  medical  data  [2]. 
Conversely,  the  research  community  predominantly  utilizes  the  Neuroimaging  Informatics 
Technology Initiative (NIfTI) format due to its simplified handling of volumetric geometry and 
orientation [3]. The friction generated by converting between these formats often leads to silent 
geometric errors, metadata loss, and privacy breaches, thereby impeding the seamless integration 
of AI tools into hospital picture archiving and communication systems.
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Furthermore, the deployment landscape is complicated by hardware heterogeneity.  Research 
models  are  typically  trained  on  high-end  NVIDIA  GPUs  using  frameworks  like  PyTorch,  but 
clinical workstations vary widely in their computational capabilities, ranging from standard CPUs 
to GPUs from different vendors. This necessitates an inference strategy that is both portable and 
performant.  The  Open  Neural  Network  Exchange  (ONNX)  format  and  its  associated  Runtime 
engine offer a solution by providing an intermediate representation that can be executed across 
diverse hardware backends [4, 5]. However, wrapping these technologies into a cohesive system 
that manages dependencies without imposing vendor lock-in remains a significant engineering 
hurdle.

Perhaps the most critical barrier to adoption is the “black-box” nature of modern deep neural 
networks. In high-stakes medical decision-making, accuracy alone is insufficient; clinicians require 
transparency and justification for algorithmic predictions. While purely data-driven models like the 
U-Net  [6]  and  its  self-configuring  variant  nnU-Net  [7]  have  established  strong  baselines  for 
segmentation, they often lack the ability to incorporate explicit medical knowledge or reasoning. 
Recent advances in transformers [8] and hybrid architectures [9, 10] push performance boundaries 
but  often at  the cost  of  increased opacity.  To address  this,  human-in-the-loop approaches and 
explainable AI techniques are becoming essential components of trustworthy systems [11].

The  problem  under  consideration  is  the  absence  of  a  unified,  end-to-end  framework  that  
systematically  addresses  these  disparate  requirements,  i.e.,  standards  compliance,  hardware 
portability, and knowledge-infused reasoning [12], within a single reproducible pipeline. Current 
solutions  often  address  these  issues  in  isolation,  resulting  in  fragmented  workflows  that  are 
difficult to audit and deploy.

In  this  work,  we  present  a  novel  scientific  contribution  by  architecting  an  intelligent 
information  system  that  integrates  these  components  from  the  ground  up.  By  combining  a 
standards-compliant ingestion module, a portable ONNX-based segmentation engine, and a graph 
convolutional  network  (GCN)  for  structured  reasoning,  we  provide  a  holistic  solution  to  the 
deployment gap.

The goal of this study is to improve knowledge integration fidelity and downstream reasoning 
accuracy  by  unifying  standards-compliant  ingestion,  portable  ONNX  inference,  and  graph-
structured classification with calibration-aware evaluation. To achieve this goal, we present three 
major contributions:

1. A  complete  system  architecture  that  spans  DICOM/NIfTI  ingestion  with  built-in 
anonymization, accelerated ONNX inference, volumetric segmentation, and manifest-driven 
data export for full reproducibility.

2. A novel graph-based classification module, KI-GCN, derived from GCNs, which aggregates 
structured features from segmentation masks and patient metadata to enhance diagnostic 
reasoning. We also specify an optional multi-teacher knowledge distillation objective for 
deploying compressed, efficient models.

3. A deployment-oriented evaluation protocol that includes standard segmentation metrics, 
probabilistic  classification  metrics,  and  critical  calibration  diagnostics  like  reliability 
diagrams to ensure model trustworthiness.

The remainder of this paper is organized as follows. Section 2 reviews the state of the art in 
medical imaging interoperability, segmentation architectures, and knowledge integration methods. 
Section 3 details the proposed system architecture, including the formalization of the ingestion, 
segmentation, and graph-based classification modules. Section 4 presents the experimental results 
on  the  ACDC and M&Ms-2  datasets,  providing a  comparative  analysis  against  state-of-the-art 
methods. Section 5 analyzes the implications of these findings, system throughput, and limitations. 
Finally, Section 6 summarizes the contributions and outlines future directions.



2. Related works

Our research is situated at the intersection of interoperability standards, hardware acceleration, 
advanced deep learning architectures for segmentation, and methods for knowledge integration. 
This section reviews the state of the art in these domains to contextualize the proposed intelligent 
information system.

The foundation of any clinical AI system is its ability to handle standardized data formats. The 
DICOM standard serves as the global lingua franca for medical imaging, with its Part 1 (PS3.1) 
defining the  overarching structure  and semantic  interoperability  requirements  for  clinical  data 
exchange [2]. While robust, DICOM’s complexity often poses challenges for direct consumption by 
deep learning models. In the research domain, the NIfTI format has become the de facto standard  
for  3D and 4D volumetric  data,  primarily  due  to  its  explicit  encoding of  affine geometry  and 
orientation fields, which are critical for preventing spatial misalignment during analysis [3]. A key 
task for our system is to seamlessly bridge these two standards, ensuring that data ingressed from 
clinical sources (DICOM) retains its geometric integrity when converted for model consumption 
(NIfTI-like tensors).

Regarding  model  deployment  and  hardware  acceleration,  the  ONNX  Runtime  engine  has 
emerged as a critical technology for ensuring portability. It abstracts the execution of model graphs 
through a system of pluggable Execution Providers (EPs),  allowing the same model file to run 
efficiently on CPUs, NVIDIA GPUs via CUDA [13], and Windows-based GPUs via DirectML [14]. 
This  flexibility  is  essential  for  clinical  environments  where  hardware  specifications  cannot  be 
guaranteed.  Recent  comparative  analyses  have  highlighted  the  necessity  of  such  acceleration 
frameworks to reduce inference latency and computational overhead in production settings [5].

In the domain of medical image segmentation, the U-Net architecture remains the cornerstone,  
featuring  a  symmetric  encoder-decoder  structure  with  skip  connections  that  preserve  spatial 
information  [6].  Building  on  this,  the  nnU-Net  framework  demonstrated  that  automated 
hyperparameter optimization and rigorous preprocessing are often more critical than architectural 
novelty, consistently achieving state-of-the-art results on benchmarks like the Automated Cardiac 
Diagnosis Challenge (ACDC) [7, 15]. More recently, the field has seen a surge in transformer-based 
models  [8],  hybrid  ConvNet-transformer  architectures  like  MedNeXt  [9],  and  specialized  3D 
volume  processors  like  UNETR++  [10].  While  these  models  offer  performance  gains,  their 
integration into explainable, standards-compliant workflows remains limited.

To move beyond the “black-box” paradigm, integrating explicit knowledge is crucial. Neural 
networks,  particularly  GCNs,  provide  a  mathematical  framework  for  modeling  anatomical 
structures  as  interconnected  nodes,  allowing  for  reasoning  based  on  spatial  and  functional 
relationships  rather  than  just  pixel  intensities  [16].  Advanced  variants  like  graph  attention 
networks  have further  refined this  approach by learning to weigh the importance of  different 
anatomical connections [17].  Additionally,  knowledge distillation offers a pathway to compress 
these complex reasoning capabilities into lightweight models suitable for deployment, transferring 
insights from large “teacher” ensembles to efficient “student” models [18, 19]. Recent work in our 
group  has  extended  these  concepts  to  adaptive  multi-teacher  distillation  strategies,  enhancing 
robustness against domain shifts [20, 21].

Finally,  trust  in  AI  systems is  predicated  not  just  on accuracy,  but  on  calibration,  i.e.,  the 
alignment  between  predicted  confidence  and  actual  correctness.  Methods  such  as  reliability 
diagrams and temperature scaling are essential for diagnosing and correcting miscalibration [22]. 
Emerging techniques like proximity-informed calibration continue to push the boundaries of model 
reliability [23].

The primary objective of this study is to synthesize these diverse technological threads into a  
single, cohesive system. The main tasks to fulfill this objective are: (i) to design and implement a 
modular software architecture for the end-to-end medical imaging workflow, (ii) to develop and 
integrate  a  graph-based  reasoning  module  that  leverages  segmentation  outputs  for  improved 



classification, and (iii) to validate the entire system’s performance and reproducibility on public 
benchmark datasets.

3. Methods

We  formalize  the  proposed  intelligent  information  system  as  a  sequence  of  interconnected 
processing modules that execute a single, manifest-driven workflow. The system is designed to 
transform  raw  medical  imaging  data  into  actionable,  explainable  diagnostic  insights.  Detailed 
implementation specifics and user manuals are provided in the accompanying technical report [24]. 
In this section, we define the mathematical formulations and algorithmic logic underpinning the 
core components: ingestion, segmentation, and graph-based knowledge integration.

Let a dataset be denoted by 𝒟={(V i , M i , Di)}i=1
N , where for each of N  patients, V i represents 

the  input  medical  image  volume  (e.g.,  a  cardiac  MRI  series),  M i represents  the  ground-truth 

anatomical segmentation mask, and Di represents the associated clinical diagnosis or classification 
label. The system architecture, illustrated in Figure 1, processes these inputs through four distinct  
stages: ingestion, segmentation, knowledge graph construction, and classification.

Figure  1: Architectural  overview of  the  proposed intelligent  information system.  The pipeline 
consists of four sequential stages: (I) multi-format data ingestion (DICOM/NIfTI) with integrated 
privacy filtering and geometric normalization; (II) accelerated volumetric segmentation using the 
hardware-agnostic SKIF-Seg module (supporting CPU, CUDA, and DirectML); (III)  extraction of 
clinical biomarkers to construct a feature-based knowledge graph; and (IV) knowledge-integrated 
diagnostic reasoning enabling predictive analytics and clinical decision support.

The system processes each patient’s data i through a sequential pipeline formalized below.



3.1. Standards-compliant ingestion and anonymization

The ingestion module is responsible for the secure and accurate loading of medical data. It utilizes 
the FO-DICOM library to parse DICOM series, ensuring that all slices are ordered correctly based 
on  the  ‘ImagePositionPatient’  (0020,0032)  tag.  To  adhere  to  privacy  regulations  (e.g.,  GDPR, 
HIPAA), the module implements a configurable anonymization engine compliant with the DICOM 
PS3.15 Basic Profile. Identifiers such as ‘PatientName’ and ‘PatientID’ are hashed or removed [2].

For  research  data  in  NIfTI  format,  the  system parses  the  affine header  to  normalize  voxel  
spacing and reorient the volume to the canonical RAS coordinate system [3]. Input volumes are 
then intensity-normalized to the range [0 ,1] to stabilize downstream numerical optimization

3.2. Volumetric segmentation (SKIF-Seg)

Synergistic  Knowledge-Integrated  Framework  for  Segmentation  (SKIF-Seg)  is  the  system’s 
segmentation engine, designed for hardware portability via ONNX Runtime. The module accepts 
the preprocessed volume  V i

′ and predicts a dense probability map  Pi.  The inference process is 
abstracted to support multiple backends:

 CPU Execution Provider: Uses MKLDNN/OpenBLAS for optimized execution on standard 
processors.

 CUDA Execution Provider: Leverages NVIDIA’s cuDNN and TensorRT libraries for high-
throughput GPU inference [13].

 DirectML Execution Provider: Provides  vendor-agnostic  GPU acceleration on Windows, 
supporting AMD, Intel, and NVIDIA hardware [14].

The output Pi∈[0 ,1]H×W×D×C represents the probability of each voxel belonging to one of C  

anatomical classes. A final segmentation mask M̂ i is generated via an argmax operation.

3.3. Graph-based classification (KI-GCN)

To  incorporate  anatomical  reasoning,  we  introduce  the  Knowledge  Integration  Graph 
Convolutional Network (KI-GCN). We define a graph  G=(V , E) where nodes  V  correspond to 
segmented structures (e.g., Left Ventricle, Myocardium, Right Ventricle) and edges E encode spatial 
adjacency and functional connectivity.

For each node v∈V , we compute a feature vector 𝐱v derived from the segmentation mask M̂ i, 
including volume, surface area, sphericity, and centroid displacement. The graph is processed using 
spectral graph convolution layers defined by the propagation rule as follows

H (l+1)=σ(
~
D

−1
2~A

~
D

−1
2 H (l)W (l)), (1)

where H (ℓ) is the feature matrix at layer ℓ, ~A  is the adjacency matrix with self-loops, ~D is the 

degree matrix, and W (ℓ) is the learnable weight matrix [16].
This process allows the model to learn features that depend on the structural configuration of 

the heart, rather than treating geometry as a flat vector. The final node embeddings are pooled to  
form a global graph representation 𝐡G, which is classified into diagnostic categories.

3.4. Multi-teacher knowledge distillation

To enable efficient deployment on edge devices, we employ a multi-teacher knowledge distillation 
strategy. The training objective combines the standard cross-entropy loss with a distillation term 



that aligns the student’s logits z(s) with the soft targets from an ensemble of teacher models z̄(t ) as 
presented below

L=α LCE( y ,softmax (z
(s)))+(1−α )τ 2KL(softmax( z̄(t )τ )|| softmax( z(s)τ )), (2)

where τ  is the temperature parameter controlling the softness of the probability distributions, 
and α  balances the two loss components [18, 19].

3.5. Experimental setup and evaluation

Our  evaluation  protocol  is  designed  to  be  comprehensive,  deployment-oriented,  and  fully 
reproducible.

For  segmentation  performance,  let  X  and  Y  be  the  predicted  and  ground-truth  masks, 
respectively. 

We quantify overlap using the Dice Similarity Coefficient (DSC) [25], as follows

DSC(X ,Y )=2
|X∩Y|

|X|+|Y|
. (3)

Additionally, we calculate the Jaccard Index (IoU) [26], defined in Equation 4:

IoU(X ,Y )=
|X∩Y|
|X∪Y|

. (4)

For boundary accuracy, we use the 95th percentile Hausdorff Distance (HD95) and Average 
Symmetric Surface Distance (ASSD), which are reviewed in detail by Taha and Hanbury [27].

For classification, let pi be the predicted probability for the positive class and y i∈{0 ,1} be the 
true label. We measure ranking quality with ROC-AUC and, for imbalanced classes, PR-AUC [28].  
We assess calibration using the Brier score [29], which is the mean squared error of probabilistic 
forecasts, and visualize it with reliability diagrams, quantifying miscalibration with the Expected 
Calibration Error (ECE) [22].

To  ensure  full  auditability  and  scientific  reproducibility,  every  execution  of  the  pipeline 
generates  a  JSON manifest  file.  This  manifest  records  the  software  version,  Git  commit  hash, 
timestamp,  the selected ONNX Runtime EP,  model  opset  version,  and all  computed evaluation 
metrics [24]. 

The  system also  provides  an  export  module  that  saves  segmentation  masks  as  NIfTI  files,  
qualitative overlays as PNG images, and all metrics in CSV/JSON formats. This functionality is 
managed through a comprehensive export module (see Appendix, Figure A.5). This practice aligns 
with best practices for reproducible computational science.

4. Results

We evaluated  the  system on the  ACDC dataset  [15]  for  segmentation and diagnosis,  and  the 
M&Ms-2 dataset [30] for cross-domain generalization.

4.1. Segmentation performance

The  SKIF-Seg  module  demonstrates  robust  performance.  Table  1  presents  a  structure-wise 
comparison with a U-Net baseline. Our approach yields a significant improvement in boundary 
delineation, reducing the HD95 for the Left Ventricle (LV) from 7.5 mm to 5.8 mm.



Table 1
Segmentation results on ACDC (in-domain) and M&Ms-2 (cross-domain) on the following heart 
structures: LV Cavity, Myocardium (Myo), and RV Cavity. The proposed SKIF-Seg shows consistent 
improvements in DSC and HD95 over the baseline U-Net.

Dataset Structure Baseline
U-Net DSC

Baseline U-
Net HD95 

Proposed
DSC

Proposed
IoU

Proposed 
HD95 (mm)

Proposed 
ASSD (mm)

ACDC

LV Cavity 0.951 ± 0.03 7.5 ± 2.1 0.965 ± 0.03 0.932 ± 0.018 5.8 ± 2.2 1.28 ± 0.40

Myo 0.895 ± 0.05 8.1 ± 2.5 0.912 ± 0.04 0.838 ± 0.024 6.3 ± 2.2 1.39 ± 0.40

RV Cavity 0.930 ± 0.04 9.2 ± 3.0 0.941 ± 0.03 0.889 ± 0.018 7.7 ± 2.2 1.69 ± 0.40

M&Ms-2

LV Cavity 0.942 ± 0.04 8.9 ± 2.8 0.953 ± 0.03 0.911 ± 0.018 7.2 ± 3.1 1.58 ± 0.56

Myo 0.881 ± 0.06 9.8 ± 3.4 0.899 ± 0.04 0.817 ± 0.024 7.9 ± 3.1 1.74 ± 0.56

RV Cavity 0.915 ± 0.05 10.5 ± 3.9 0.928 ± 0.03 0.866 ± 0.018 8.9 ± 3.1 1.96 ± 0.56

The distribution of  Dice  scores  is  visualized in  Figure 2,  showing reduced variance for  the 
proposed method.
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Figure  2: Case-wise  Dice  distributions  for  SKIF-Seg  across  ACDC  and  M&Ms-2  datasets, 
illustrating high median performance and low variance.

Table  2  summarizes  the  macro-averaged performance,  highlighting a  1.67  mm reduction in 
HD95 on the ACDC dataset.



Table 2
Macro-averaged segmentation performance summary (LV/Myo/RV). ∆ denotes the improvement of 
SKIF-Seg over the U-Net baseline.

Dataset U-Net DSC U-Net HD95 
(mm)

SKIF-Seg 
DSC

SKIF-Seg 
HD95 (mm)

∆DSC ∆HD95 (mm)

ACDC 0.925 8.27 0.939 6.60 +0.014 -1.67

M&Ms-2 0.913 9.73 0.927 8.00 +0.014 -1.73

Figure 3 visually compares the macro Dice scores, further confirming the superiority of SKIF-
Seg across both datasets.
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Figure 3: Comparison of Macro Dice scores (LV/Myo/RV) between U-Net and SKIF-Seg on ACDC 
and M&Ms-2 datasets.

4.2. State-of-the-art comparison and robustness

We compared our system against leading methods, including nnU-Net and MedNeXt (Table 3). Our 
system achieves a mean Dice of 0.939, matching MedNeXt and remaining highly competitive with 
nnU-Net, while operating within a portable ONNX framework.

Table 3
Comparison with state-of-the-art methods on ACDC (Mean Dice). Best results are in bold.

Method LV Cavity Myocardium RV Cavity Mean Dice

U-Net 0.951 0.895 0.930 0.925

nnU-Net 0.968 0.909 0.945 0.941

MedNeXt 0.966 0.910 0.942 0.939

Proposed System 0.965 0.912 0.941 0.939

To evaluate robustness, we analyzed the domain shift from ACDC to M&Ms-2 (Figure 4). The 
degradation in Dice scores is  minimal (<0.013),  indicating excellent generalization capabilities 
across different scanner vendors.
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Figure 4: Domain shift analysis. The plot shows the decrease in Dice score when applying the 
model trained on ACDC to the M&Ms-2 dataset.

4.3. Diagnostic classification

The KI-GCN module demonstrates high diagnostic accuracy. Figure 5 displays the Macro ROC and 
PR curves, with an AUC of 0.964.
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Figure  5: Diagnostic performance of KI-GCN on the ACDC dataset using (a) ROC-AUC and (b) 
Precision-Recall curves. The model achieves high sensitivity and precision across classes.

The  confusion  matrix  (Figure  6)  shows  strong  discrimination  between  all  five  cardiac 
conditions.

4.4. Calibration and efficiency

Model  trustworthiness  was  assessed  via  reliability  diagrams  (Figure  7).  Post-hoc  temperature 
scaling (τ=2.1) significantly improved calibration, reducing the Expected Calibration Error (ECE) 
to 0.03 (Table 4).



Figure  6: Normalized  confusion  matrix  for  the  5-class  diagnosis  task.  Classes:  Normal  (NOR), 
Hypertrophic  Cardiomyopathy  (HCM),  Dilated  Cardiomyopathy  (DCM),  Myocardial  Infarction 
(MINF), Abnormal RV (ARV).

Table 4
Calibration metrics before and after temperature scaling. Lower values indicate better calibration.

Setting Brier ↓ ECE ↓

Pre (no scaling) 0.08 0.04

Post (temp. scaling, τ=2.1) 0.07 0.03

Figure 7: Reliability diagram showing the alignment between predicted confidence and observed 
accuracy. Temperature scaling brings the model closer to perfect calibration (diagonal).



The  ablation  study  in  Table  5  confirms  that  the  inclusion  of  the  graph  module  (KI-GCN) 
contributes significantly to accuracy compared to a baseline MLP.

Table 5
Ablation study on the ACDC diagnosis task.

Variant Accuracy (%) Macro-F1 Brier ECE

Handcrafted + MLP 89.1 0.881 0.12 0.08

GCN (no 
knowledge edges)

92.7 0.907 0.10 0.06

KI-GCN (ours) 94.0 0.930 0.08 0.04

KI-GCN + 
Distillation

94.5 0.940 0.07 0.03

Finally,  system throughput  is  analyzed in  Table  6  and Figure  8.  The CUDA and DirectML 
providers offer substantial speedups over CPU, enabling real-time clinical use.

Table 6
Inference throughput and resource usage by ONNX Execution Provider (EP).

EP Median (s) P95 (s) Memory (GB) Pass-rate (%)

CPU 5.3 6.6 3.2 100

CUDA 0.8 1.1 4.1 97

DirectML 1.2 1.6 3.8 99
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Figure 8: Inference latency (seconds per volume) vs. batch size for different hardware providers.



Table 7 details the automated anonymization process for a representative batch of 186 DICOM 
tags. The system successfully removed or replaced 44 sensitive patient identifiers while retaining 
142 non-PHI tags necessary for analysis.

Table 7
Summary of automated DICOM anonymization actions for a representative batch.

Action Count

Removed (patient identifiers) 28

Replaced with hash 16

Retained (non-PHI) 142

Total Tags Processed 186

5. Discussion

The results  of  this  study underscore  the  critical  importance  of  a  holistic  systems engineering 
approach to medical AI. While pure algorithmic research often prioritizes incremental gains in Dice 
scores  [6,  7],  our  work  demonstrates  that  architecting  for  interoperability  and  interpretability 
yields  substantial  practical  benefits  without  sacrificing  accuracy.  The  SKIF-Seg  module’s 
performance, achieving a mean Dice of 0.939, is on par with state-of-the-art research models like 
MedNeXt  [9],  yet  it  is  delivered  within  a  containerized,  hardware-agnostic  framework.  This 
portability,  enabled by ONNX Runtime [4],  addresses the vendor lock-in that frequently stifles 
clinical adoption.

Our key scientific finding is the efficacy of the KI-GCN module. By explicitly modeling the heart 
as a graph of connected structures, we achieved a 4.9% improvement in diagnostic accuracy over a  
feature-based MLP baseline. This validates the hypothesis that structural knowledge is a powerful  
inductive bias. Furthermore, the strong calibration results (ECE of 0.03) suggest that the system’s 
probability outputs are trustworthy, a prerequisite for use in high-stakes medical decision-making.

However, the system is not without limitations. The current graph topology in KI-GCN is static,  
defined by a priori anatomical knowledge. This prevents the model from discovering novel, data-
driven  relationships  that  might  exist  in  diverse  pathologies.  Additionally,  while  the  M&Ms-2 
generalization results are promising, true clinical robustness requires validation across a broader 
spectrum of imaging artifacts and patient demographics.

Future research will focus on two avenues: (i) developing dynamic graph learning techniques 
that can infer patient-specific topological connections, and (ii) conducting prospective multi-site 
clinical trials to validate the system’s impact on diagnostic workflow efficiency and accuracy.

Conclusion

In this paper, we have successfully bridged the “last-mile” gap separating high-performance AI 
research from tangible clinical utility. By architecting a holistic intelligent information system, we 
resolved  the  tripartite  challenges  of  data  interoperability,  hardware  fragmentation,  and  model 
interpretability. Our solution moves beyond isolated algorithm development to provide a unified,  
end-to-end pipeline that seamlessly integrates standards-compliant DICOM and NIfTI ingestion, 
automated  privacy  preservation,  and  hardware-agnostic  inference  via  ONNX  Runtime.  The 
empirical validation of this framework underscores its potential to transform diagnostic workflows 
without  disrupting  existing  hospital  infrastructure.  Specifically,  the  proposed  SKIF-Seg module 
demonstrated better anatomical delineation, achieving a mean Dice Similarity Coefficient of 0.939 
on  the  ACDC  benchmark,  effectively  matching  specialized  research  models  within  a  portable 
container. Moreover, the integration of structured domain knowledge through the novel KI-GCN 



classification module yielded a diagnostic accuracy of 94.0% and, critically, a low Brier score of 0.07. 
These metrics establish that incorporating graph-based anatomical reasoning not only enhances 
predictive performance but also ensures the calibration and trustworthiness essential  for high-
stakes medical decision-making. Consequently, this study offers a scientifically reproducible and 
legally auditable blueprint for deploying AI in diverse hospital environments.

Future research will focus on evolving this framework from a static deployment tool into a 
dynamic, continuous learning ecosystem.
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A. System User Interface

This appendix provides select screenshots from the graphical user interface of the IDK Medical 
AI system, illustrating the key stages of the end-to-end workflow.
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Figure A.1: The  main  user  interface  of  the  IDK  Medical  AI  system,  providing  access  to  data 
ingestion modules (DICOM/NIfTI),  analysis pipelines (Segmentation,  Classification),  and project 
management features.
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Figure A.2: The DICOM import and anonymization module. The interface allows for batch loading 
of DICOM series and applies privacy-preserving profiles.
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Figure A.3: Interface for the SKIF-Seg segmentation module. Users can select an ONNX model and 
monitor the segmentation progress.
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Figure A.4: The KI-GCN classification module interface. This view enables the user to specify the 
graph source and initiate the graph-based diagnostic classification.



Figure A.5: The export and reporting module, which facilitates reproducible science by allowing 
users to export segmentation masks (NIfTI), visual overlays, and metrics.
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