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Abstract

The rapid proliferation of artificial intelligence in medical imaging is currently hindered by a significant
disconnect between high-performing research models and the rigorous demands of clinical environments.
Key challenges include data interoperability issues between research formats and clinical standards,
hardware dependencies that limit portability, and the opaque “black-box” nature of deep learning models
which erodes clinician trust. In this work, we propose a comprehensive intelligent information system
designed to bridge this gap by unifying standards-compliant data ingestion, accelerated inference, and
knowledge-infused reasoning into a single auditable workflow. Our approach integrates a robust DICOM
and NIfTT ingestion pipeline with built-in anonymization, a hardware-agnostic ONNX inference engine,
and a novel graph-based classification module that explicitly models anatomical relationships. Evaluated
on the public ACDC benchmark, the proposed system demonstrates superior performance, with the
segmentation module achieving a mean Dice Similarity Coefficient of 0.939 and the knowledge-integrated
classifier attaining a diagnostic accuracy of 94.0%. The significant conclusion of this study is that by
systematically integrating privacy controls, hardware portability, and graph-based knowledge
representation, it is possible to create a deployment-ready AI blueprint that is both scientifically
reproducible and clinically trustworthy.
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1. Introduction

The field of artificial intelligence (AI) for medical imaging has witnessed exponential growth in
recent years, driven by the advent of deep learning architectures that often surpass human-level
performance in specific diagnostic tasks. However, a substantial chasm remains between the
experimental success of these models in controlled research environments and their practical
utility in real-world clinical settings [1]. This discrepancy is primarily fueled by a trifecta of
systemic challenges: data heterogeneity, hardware fragmentation, and the interpretability crisis.
Clinical workflows heavily rely on the Digital Imaging and Communications in Medicine (DICOM)
standard, a complex protocol governing the storage and transmission of medical data [2].
Conversely, the research community predominantly utilizes the Neuroimaging Informatics
Technology Initiative (NIfTI) format due to its simplified handling of volumetric geometry and
orientation [3]. The friction generated by converting between these formats often leads to silent
geometric errors, metadata loss, and privacy breaches, thereby impeding the seamless integration
of Al tools into hospital picture archiving and communication systems.
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Furthermore, the deployment landscape is complicated by hardware heterogeneity. Research
models are typically trained on high-end NVIDIA GPUs using frameworks like PyTorch, but
clinical workstations vary widely in their computational capabilities, ranging from standard CPUs
to GPUs from different vendors. This necessitates an inference strategy that is both portable and
performant. The Open Neural Network Exchange (ONNX) format and its associated Runtime
engine offer a solution by providing an intermediate representation that can be executed across
diverse hardware backends [4, 5]. However, wrapping these technologies into a cohesive system
that manages dependencies without imposing vendor lock-in remains a significant engineering
hurdle.

Perhaps the most critical barrier to adoption is the “black-box” nature of modern deep neural
networks. In high-stakes medical decision-making, accuracy alone is insufficient; clinicians require
transparency and justification for algorithmic predictions. While purely data-driven models like the
U-Net [6] and its self-configuring variant nnU-Net [7] have established strong baselines for
segmentation, they often lack the ability to incorporate explicit medical knowledge or reasoning.
Recent advances in transformers [8] and hybrid architectures [9, 10] push performance boundaries
but often at the cost of increased opacity. To address this, human-in-the-loop approaches and
explainable Al techniques are becoming essential components of trustworthy systems [11].

The problem under consideration is the absence of a unified, end-to-end framework that
systematically addresses these disparate requirements, i.e., standards compliance, hardware
portability, and knowledge-infused reasoning [12], within a single reproducible pipeline. Current
solutions often address these issues in isolation, resulting in fragmented workflows that are
difficult to audit and deploy.

In this work, we present a novel scientific contribution by architecting an intelligent
information system that integrates these components from the ground up. By combining a
standards-compliant ingestion module, a portable ONNX-based segmentation engine, and a graph
convolutional network (GCN) for structured reasoning, we provide a holistic solution to the
deployment gap.

The goal of this study is to improve knowledge integration fidelity and downstream reasoning
accuracy by unifying standards-compliant ingestion, portable ONNX inference, and graph-
structured classification with calibration-aware evaluation. To achieve this goal, we present three
major contributions:

1. A complete system architecture that spans DICOM/NIfTI ingestion with built-in
anonymization, accelerated ONNX inference, volumetric segmentation, and manifest-driven
data export for full reproducibility.

2. A novel graph-based classification module, KI-GCN, derived from GCNs, which aggregates
structured features from segmentation masks and patient metadata to enhance diagnostic
reasoning. We also specify an optional multi-teacher knowledge distillation objective for
deploying compressed, efficient models.

3. A deployment-oriented evaluation protocol that includes standard segmentation metrics,
probabilistic classification metrics, and critical calibration diagnostics like reliability
diagrams to ensure model trustworthiness.

The remainder of this paper is organized as follows. Section 2 reviews the state of the art in
medical imaging interoperability, segmentation architectures, and knowledge integration methods.
Section 3 details the proposed system architecture, including the formalization of the ingestion,
segmentation, and graph-based classification modules. Section 4 presents the experimental results
on the ACDC and M&Ms-2 datasets, providing a comparative analysis against state-of-the-art
methods. Section 5 analyzes the implications of these findings, system throughput, and limitations.
Finally, Section 6 summarizes the contributions and outlines future directions.



2. Related works

Our research is situated at the intersection of interoperability standards, hardware acceleration,
advanced deep learning architectures for segmentation, and methods for knowledge integration.
This section reviews the state of the art in these domains to contextualize the proposed intelligent
information system.

The foundation of any clinical Al system is its ability to handle standardized data formats. The
DICOM standard serves as the global lingua franca for medical imaging, with its Part 1 (PS3.1)
defining the overarching structure and semantic interoperability requirements for clinical data
exchange [2]. While robust, DICOM’s complexity often poses challenges for direct consumption by
deep learning models. In the research domain, the NIfTT format has become the de facto standard
for 3D and 4D volumetric data, primarily due to its explicit encoding of affine geometry and
orientation fields, which are critical for preventing spatial misalignment during analysis [3]. A key
task for our system is to seamlessly bridge these two standards, ensuring that data ingressed from
clinical sources (DICOM) retains its geometric integrity when converted for model consumption
(NIfTI-like tensors).

Regarding model deployment and hardware acceleration, the ONNX Runtime engine has
emerged as a critical technology for ensuring portability. It abstracts the execution of model graphs
through a system of pluggable Execution Providers (EPs), allowing the same model file to run
efficiently on CPUs, NVIDIA GPUs via CUDA [13], and Windows-based GPUs via DirectML [14].
This flexibility is essential for clinical environments where hardware specifications cannot be
guaranteed. Recent comparative analyses have highlighted the necessity of such acceleration
frameworks to reduce inference latency and computational overhead in production settings [5].

In the domain of medical image segmentation, the U-Net architecture remains the cornerstone,
featuring a symmetric encoder-decoder structure with skip connections that preserve spatial
information [6]. Building on this, the nnU-Net framework demonstrated that automated
hyperparameter optimization and rigorous preprocessing are often more critical than architectural
novelty, consistently achieving state-of-the-art results on benchmarks like the Automated Cardiac
Diagnosis Challenge (ACDC) [7, 15]. More recently, the field has seen a surge in transformer-based
models [8], hybrid ConvNet-transformer architectures like MedNeXt [9], and specialized 3D
volume processors like UNETR++ [10]. While these models offer performance gains, their
integration into explainable, standards-compliant workflows remains limited.

To move beyond the “black-box” paradigm, integrating explicit knowledge is crucial. Neural
networks, particularly GCNs, provide a mathematical framework for modeling anatomical
structures as interconnected nodes, allowing for reasoning based on spatial and functional
relationships rather than just pixel intensities [16]. Advanced variants like graph attention
networks have further refined this approach by learning to weigh the importance of different
anatomical connections [17]. Additionally, knowledge distillation offers a pathway to compress
these complex reasoning capabilities into lightweight models suitable for deployment, transferring
insights from large “teacher” ensembles to efficient “student” models [18, 19]. Recent work in our
group has extended these concepts to adaptive multi-teacher distillation strategies, enhancing
robustness against domain shifts [20, 21].

Finally, trust in Al systems is predicated not just on accuracy, but on calibration, i.e., the
alignment between predicted confidence and actual correctness. Methods such as reliability
diagrams and temperature scaling are essential for diagnosing and correcting miscalibration [22].
Emerging techniques like proximity-informed calibration continue to push the boundaries of model
reliability [23].

The primary objective of this study is to synthesize these diverse technological threads into a
single, cohesive system. The main tasks to fulfill this objective are: (i) to design and implement a
modular software architecture for the end-to-end medical imaging workflow, (ii) to develop and
integrate a graph-based reasoning module that leverages segmentation outputs for improved



classification, and (iii) to validate the entire system’s performance and reproducibility on public
benchmark datasets.

3. Methods

We formalize the proposed intelligent information system as a sequence of interconnected
processing modules that execute a single, manifest-driven workflow. The system is designed to
transform raw medical imaging data into actionable, explainable diagnostic insights. Detailed
implementation specifics and user manuals are provided in the accompanying technical report [24].
In this section, we define the mathematical formulations and algorithmic logic underpinning the
core components: ingestion, segmentation, and graph-based knowledge integration.

Let a dataset be denoted by 2={(V,,M,, D,)}'L,, where for each of N patients, V; represents
the input medical image volume (e.g., a cardiac MRI series), M, represents the ground-truth
anatomical segmentation mask, and D; represents the associated clinical diagnosis or classification
label. The system architecture, illustrated in Figure 1, processes these inputs through four distinct
stages: ingestion, segmentation, knowledge graph construction, and classification.
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Figure 1: Architectural overview of the proposed intelligent information system. The pipeline
consists of four sequential stages: (I) multi-format data ingestion (DICOM/NIfTI) with integrated
privacy filtering and geometric normalization; (II) accelerated volumetric segmentation using the
hardware-agnostic SKIF-Seg module (supporting CPU, CUDA, and DirectML); (III) extraction of
clinical biomarkers to construct a feature-based knowledge graph; and (IV) knowledge-integrated
diagnostic reasoning enabling predictive analytics and clinical decision support.

The system processes each patient’s data i through a sequential pipeline formalized below.



3.1. Standards-compliant ingestion and anonymization

The ingestion module is responsible for the secure and accurate loading of medical data. It utilizes
the FO-DICOM library to parse DICOM series, ensuring that all slices are ordered correctly based
on the ‘ImagePositionPatient’ (0020,0032) tag. To adhere to privacy regulations (e.g., GDPR,
HIPAA), the module implements a configurable anonymization engine compliant with the DICOM
PS3.15 Basic Profile. Identifiers such as ‘PatientName’ and ‘PatientID’ are hashed or removed [2].

For research data in NIfTI format, the system parses the affine header to normalize voxel
spacing and reorient the volume to the canonical RAS coordinate system [3]. Input volumes are
then intensity-normalized to the range [0, 1] to stabilize downstream numerical optimization

3.2. Volumetric segmentation (SKIF-Seg)

Synergistic Knowledge-Integrated Framework for Segmentation (SKIF-Seg) is the system’s
segmentation engine, designed for hardware portability via ONNX Runtime. The module accepts

the preprocessed volume V, and predicts a dense probability map P,. The inference process is

abstracted to support multiple backends:

e CPU Execution Provider: Uses MKLDNN/OpenBLAS for optimized execution on standard
processors.

e CUDA Execution Provider: Leverages NVIDIA’s cuDNN and TensorRT libraries for high-
throughput GPU inference [13].

e DirectML Execution Provider: Provides vendor-agnostic GPU acceleration on Windows,
supporting AMD, Intel, and NVIDIA hardware [14].

The output P,€[0,1]"*"*P*¢ represents the probability of each voxel belonging to one of C

anatomical classes. A final segmentation mask M, is generated via an argmax operation.

3.3. Graph-based classification (KI-GCN)

To incorporate anatomical reasoning, we introduce the Knowledge Integration Graph
Convolutional Network (KI-GCN). We define a graph GZ(V,E ) where nodes V' correspond to
segmented structures (e.g., Left Ventricle, Myocardium, Right Ventricle) and edges E encode spatial
adjacency and functional connectivity.

For each node VEV, we compute a feature vector x, derived from the segmentation mask M,

including volume, surface area, sphericity, and centroid displacement. The graph is processed using
spectral graph convolution layers defined by the propagation rule as follows

= G( D 2AD 2H"w"] 1
where H'" is the feature matrix at layer £, A is the adjacency matrix with self-loops, D is the
degree matrix, and W'¥ is the learnable weight matrix [16].
This process allows the model to learn features that depend on the structural configuration of
the heart, rather than treating geometry as a flat vector. The final node embeddings are pooled to
form a global graph representation h, which is classified into diagnostic categories.

3.4. Multi-teacher knowledge distillation

To enable efficient deployment on edge devices, we employ a multi-teacher knowledge distillation
strategy. The training objective combines the standard cross-entropy loss with a distillation term



(s)

that aligns the student’s logits 2 with the soft targets from an ensemble of teacher models 7" as

presented below

(t) (s)
L=aL.(y,softmax(z"))+(1—a)r’KL softmaX(ZT)HsoftmaX(ZT ) , (@

where T is the temperature parameter controlling the softness of the probability distributions,
and o balances the two loss components [18, 19].

3.5. Experimental setup and evaluation

Our evaluation protocol is designed to be comprehensive, deployment-oriented, and fully
reproducible.

For segmentation performance, let X and Y be the predicted and ground-truth masks,
respectively.

We quantify overlap using the Dice Similarity Coefficient (DSC) [25], as follows

2|XNY]|
DSC(X,Y)=——. (3)
Y= Ty
Additionally, we calculate the Jaccard Index (IoU) [26], defined in Equation 4:
IoU(X,Y):M. (4)
|IXUY|

For boundary accuracy, we use the 95th percentile Hausdorff Distance (HD95) and Average
Symmetric Surface Distance (ASSD), which are reviewed in detail by Taha and Hanbury [27].

For classification, let p; be the predicted probability for the positive class and y;€{0,1} be the
true label. We measure ranking quality with ROC-AUC and, for imbalanced classes, PR-AUC [28].
We assess calibration using the Brier score [29], which is the mean squared error of probabilistic
forecasts, and visualize it with reliability diagrams, quantifying miscalibration with the Expected
Calibration Error (ECE) [22].

To ensure full auditability and scientific reproducibility, every execution of the pipeline
generates a JSON manifest file. This manifest records the software version, Git commit hash,
timestamp, the selected ONNX Runtime EP, model opset version, and all computed evaluation
metrics [24].

The system also provides an export module that saves segmentation masks as NIfTI files,
qualitative overlays as PNG images, and all metrics in CSV/JSON formats. This functionality is
managed through a comprehensive export module (see Appendix, Figure A.5). This practice aligns
with best practices for reproducible computational science.

4. Results

We evaluated the system on the ACDC dataset [15] for segmentation and diagnosis, and the
M&Ms-2 dataset [30] for cross-domain generalization.

4.1. Segmentation performance

The SKIF-Seg module demonstrates robust performance. Table 1 presents a structure-wise
comparison with a U-Net baseline. Our approach yields a significant improvement in boundary
delineation, reducing the HD95 for the Left Ventricle (LV) from 7.5 mm to 5.8 mm.



Table 1

Segmentation results on ACDC (in-domain) and M&Ms-2 (cross-domain) on the following heart
structures: LV Cavity, Myocardium (Myo), and RV Cavity. The proposed SKIF-Seg shows consistent
improvements in DSC and HD95 over the baseline U-Net.

Dataset  Structure Baseline Baseline U-  Proposed Proposed Proposed Proposed
[T-Net DSC Net HNOR nNSC TolT HNOS5 (mm)  ASSD (mm)

LV Cavity 0.951 + 0.03 7.5+2.1 0.965 + 0.03 0.932 + 0.018 58+2.2 1.28 + 0.40

ACDC Myo 0.895 + 0.05 81+25 0.912+0.04 0.838 £0.024 63 +22 1.39 + 0.40

RV Cavity 0.930 + 0.04 9.2+3.0 0.941 + 0.03 0.889 +0.018 7.7+2.2 1.69 + 0.40

LV Cavity 0.942 = 0.04 89+28 0.953 £ 0.03 0.911 £ 0.018 7.2+3.1 1.58 + 0.56

M&Ms-2  Myo  0.881+0.06 9.8+34  0.899+004 0817+0.024 7.9+31 174056

RV Cavity 0.915 + 0.05 10.5 + 3.9 0.928 + 0.03 0.866 + 0.018 8.9+3.1 1.96 + 0.56

The distribution of Dice scores is visualized in Figure 2, showing reduced variance for the
proposed method.
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Figure 2:Case-wise Dice distributions for SKIF-Seg across ACDC and M&Ms-2 datasets,
illustrating high median performance and low variance.

Table 2 summarizes the macro-averaged performance, highlighting a 1.67 mm reduction in
HD95 on the ACDC dataset.



Table 2
Macro-averaged segmentation performance summary (LV/Myo/RV). A denotes the improvement of
SKIF-Seg over the U-Net baseline.

Dataset  U-Net DSC U-Net HD95  SKIF-Seg SKIF-Seg ADSC AHD95 (mm)
(mm) DSC HD95 (mm)
ACDC 0.925 8.27 0.939 6.60 +0.014 -1.67
M&Ms-2 0.913 9.73 0.927 8.00 +0.014 -1.73

Figure 3 visually compares the macro Dice scores, further confirming the superiority of SKIF-
Seg across both datasets.

Macro segmentation accuracy by dataset
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Figure 3: Comparison of Macro Dice scores (LV/Myo/RV) between U-Net and SKIF-Seg on ACDC
and M&Ms-2 datasets.

4.2. State-of-the-art comparison and robustness

We compared our system against leading methods, including nnU-Net and MedNeXt (Table 3). Our
system achieves a mean Dice of 0.939, matching MedNeXt and remaining highly competitive with
nnU-Net, while operating within a portable ONNX framework.

Table 3
Comparison with state-of-the-art methods on ACDC (Mean Dice). Best results are in bold.
Method LV Cavity Myocardium RV Cavity Mean Dice
U-Net 0.951 0.895 0.930 0.925
nnU-Net 0.968 0.909 0.945 0.941
MedNeXt 0.966 0.910 0.942 0.939
Proposed System 0.965 0.912 0.941 0.939

To evaluate robustness, we analyzed the domain shift from ACDC to M&Ms-2 (Figure 4). The
degradation in Dice scores is minimal (<0.013), indicating excellent generalization capabilities
across different scanner vendors.
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Figure 4: Domain shift analysis. The plot shows the decrease in Dice score when applying the
model trained on ACDC to the M&Ms-2 dataset.

4.3. Diagnostic classification

The KI-GCN module demonstrates high diagnostic accuracy. Figure 5 displays the Macro ROC and
PR curves, with an AUC of 0.964.

Macro ROC curve (multiclass, one-vs-rest) Macro precision-recall curve
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Figure 5: Diagnostic performance of KI-GCN on the ACDC dataset using (a) ROC-AUC and (b)
Precision-Recall curves. The model achieves high sensitivity and precision across classes.

The confusion matrix (Figure 6) shows strong discrimination between all five cardiac
conditions.

4.4. Calibration and efficiency

Model trustworthiness was assessed via reliability diagrams (Figure 7). Post-hoc temperature
scaling (T =2.1) significantly improved calibration, reducing the Expected Calibration Error (ECE)
to 0.03 (Table 4).
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Figure 6: Normalized confusion matrix for the 5-class diagnosis task. Classes: Normal (NOR),
Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), Myocardial Infarction
(MINF), Abnormal RV (ARV).

Table 4

Calibration metrics before and after temperature scaling. Lower values indicate better calibration.
Setting Brier | ECE |
Pre (no scaling) 0.08 0.04
Post (temp. scaling, T=2.1) 0.07 0.03

Reliability before/after temperature scaling

1.0 Perfect calibration <
I Observed (pre)
I Predicted

I Observed (post)
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Figure 7: Reliability diagram showing the alignment between predicted confidence and observed
accuracy. Temperature scaling brings the model closer to perfect calibration (diagonal).



The ablation study in Table 5 confirms that the inclusion of the graph module (KI-GCN)
contributes significantly to accuracy compared to a baseline MLP.

Table 5

Ablation study on the ACDC diagnosis task.

Variant Accuracy (%) Macro-F1 Brier ECE
Handcrafted + MLP 89.1 0.881 0.12 0.08
GCN (no 92.7 0.907 0.10 0.06
knowledge edges)

KI-GCN (ours) 94.0 0.930 0.08 0.04
KI-GCN + 94.5 0.940 0.07 0.03
Distillation

Finally, system throughput is analyzed in Table 6 and Figure 8. The CUDA and DirectML
providers offer substantial speedups over CPU, enabling real-time clinical use.

Table 6

Inference throughput and resource usage by ONNX Execution Provider (EP).

EP Median (s) P95 (s) Memory (GB) Pass-rate (%)
CPU 5.3 6.6 3.2 100
CUDA 0.8 1.1 4.1 97
DirectML 1.2 1.6 3.8 99

Figures should be centered, and their captions should be placed below them.
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Figure 8: Inference latency (seconds per volume) vs. batch size for different hardware providers.



Table 7 details the automated anonymization process for a representative batch of 186 DICOM
tags. The system successfully removed or replaced 44 sensitive patient identifiers while retaining
142 non-PHI tags necessary for analysis.

Table 7

Summary of automated DICOM anonymization actions for a representative batch.
Action Count
Removed (patient identifiers) 28
Replaced with hash 16
Retained (non-PHI) 142
Total Tags Processed 186

5. Discussion

The results of this study underscore the critical importance of a holistic systems engineering
approach to medical Al. While pure algorithmic research often prioritizes incremental gains in Dice
scores [6, 7], our work demonstrates that architecting for interoperability and interpretability
yields substantial practical benefits without sacrificing accuracy. The SKIF-Seg module’s
performance, achieving a mean Dice of 0.939, is on par with state-of-the-art research models like
MedNeXt [9], yet it is delivered within a containerized, hardware-agnostic framework. This
portability, enabled by ONNX Runtime [4], addresses the vendor lock-in that frequently stifles
clinical adoption.

Our key scientific finding is the efficacy of the KI-GCN module. By explicitly modeling the heart
as a graph of connected structures, we achieved a 4.9% improvement in diagnostic accuracy over a
feature-based MLP baseline. This validates the hypothesis that structural knowledge is a powerful
inductive bias. Furthermore, the strong calibration results (ECE of 0.03) suggest that the system’s
probability outputs are trustworthy, a prerequisite for use in high-stakes medical decision-making.

However, the system is not without limitations. The current graph topology in KI-GCN is static,
defined by a priori anatomical knowledge. This prevents the model from discovering novel, data-
driven relationships that might exist in diverse pathologies. Additionally, while the M&Ms-2
generalization results are promising, true clinical robustness requires validation across a broader
spectrum of imaging artifacts and patient demographics.

Future research will focus on two avenues: (i) developing dynamic graph learning techniques
that can infer patient-specific topological connections, and (ii) conducting prospective multi-site
clinical trials to validate the system’s impact on diagnostic workflow efficiency and accuracy.

Conclusion

In this paper, we have successfully bridged the “last-mile” gap separating high-performance Al
research from tangible clinical utility. By architecting a holistic intelligent information system, we
resolved the tripartite challenges of data interoperability, hardware fragmentation, and model
interpretability. Our solution moves beyond isolated algorithm development to provide a unified,
end-to-end pipeline that seamlessly integrates standards-compliant DICOM and NIfTI ingestion,
automated privacy preservation, and hardware-agnostic inference via ONNX Runtime. The
empirical validation of this framework underscores its potential to transform diagnostic workflows
without disrupting existing hospital infrastructure. Specifically, the proposed SKIF-Seg module
demonstrated better anatomical delineation, achieving a mean Dice Similarity Coefficient of 0.939
on the ACDC benchmark, effectively matching specialized research models within a portable
container. Moreover, the integration of structured domain knowledge through the novel KI-GCN



classification module yielded a diagnostic accuracy of 94.0% and, critically, a low Brier score of 0.07.
These metrics establish that incorporating graph-based anatomical reasoning not only enhances
predictive performance but also ensures the calibration and trustworthiness essential for high-
stakes medical decision-making. Consequently, this study offers a scientifically reproducible and
legally auditable blueprint for deploying Al in diverse hospital environments.

Future research will focus on evolving this framework from a static deployment tool into a
dynamic, continuous learning ecosystem.
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A. System User Interface

This appendix provides select screenshots from the graphical user interface of the IDK Medical

Al system, illustrating the key stages of the end-to-end workflow.
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Figure A.1: The main user interface of the IDK Medical Al system, providing access to data
ingestion modules (DICOM/NIfTI), analysis pipelines (Segmentation, Classification), and project

management features.
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Figure A.2: The DICOM import and anonymization module. The interface allows for batch loading

of DICOM series and applies privacy-preserving profiles.
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monitor the segmentation progress.
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graph source and initiate the graph-based diagnostic classification.
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Figure A.5: The export and reporting module, which facilitates reproducible science by allowing
users to export segmentation masks (NIfTI), visual overlays, and metrics.
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