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Abstract
This study explores the application of  machine learning to mitigate financial  and regulatory risks in  
humanitarian  water  logistics.  Through  the  WaterWayfinder  mobile  platform,  aid  coordinators  in 
Ukraine’s  Kherson and Zaporizhzhia regions achieved measurable gains in operational  efficiency and 
compliance. AI-driven route optimization reduced delivery times by up to 32% and fuel costs by 22%, 
while predictive modeling improved resource allocation and reduced exposure to high-cost disruptions. 
The system’s customs control module enabled pre-clearance planning and real-time regulatory updates, 
shortening border processing times by an average of 2.5 hours per shipment. Despite connectivity and 
data  challenges,  WaterWayfinder  demonstrated  resilience  and  adaptability  in  conflict-affected 
environments. Its modular architecture, offline capabilities, and integration with geospatial intelligence 
position it for broader deployment across crisis zones. The findings highlight WaterWayfinder’s potential  
as a scalable, data-driven framework for intelligent humanitarian logistics, aligning with global efforts to 
enhance transparency, agility, and cross-border coordination in aid delivery.

Keywords 
machine learning; financial risk; customs control; WaterWayfinder; GIS; mobile application.1

1. Introduction

Access to clean and safe water is a fundamental human right and a cornerstone of sustainable 
development. Yet, as of 2025, an estimated 2.2 billion people globally lack safely managed drinking 
water, while 3.5 billion remain without adequate sanitation services [1] [2]. These case underscore 
a persistent and urgent global crisis, disproportionately affecting vulnerable populations in conflict 
zones, remote regions, and areas with fragile infrastructure.

In Ukraine, the ongoing war has exacerbated water insecurity, particularly in regions impacted 
by displacement,  occupation,  and environmental  devastation.  The destruction of  the Kakhovka 
Dam in June 2023 triggered one of Europe’s most severe man-made environmental disasters since 
World  War  II  [3].  The  collapse  drained  a  reservoir  containing  18  cubic  kilometers  of  water, 
disrupting drinking water, irrigation, and industrial supply across southern Ukraine.

Over 700,000 people lost access to potable water, and more than 584,000 hectares of farmland 
were  left  without  irrigation  [4].  The  breach  contaminated  water  sources  with  chemicals  and 
sewage, displaced thousands, and left over 80 settlements in crisis [5].

Figure  1  illustrates  the  multifaceted  impact  of  the  Kakhovka  Dam explosion.  Subfigure  (a)  
captures the immediate aftermath of the hydroelectric power station’s destruction, highlighting the 
structural devastation [3]. Subfigure (b) presents satellite imagery of the drained reservoir and the 
widespread flooding of agricultural land [4]. Subfigure (c) visualizes the disruption of water supply 
for over 700,000 residents, emphasizing the scale of humanitarian need [5].
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(a)
The Kakhovka hydroelectric power station

explosion: structural devastation and immediate aftermath [3]

(b)

 Destruction of the Kakhovka hydroelectric power station: draining of an 18 km³ reservoir 
and flooding of 584,000 hectares of farmland [4]

(c)
Kakhovka Dam explosion: disruption of potable water supply for over 700,000 people [5]

Figure 1: Impact of the Kakhovka Dam explosion on southern Ukraine’s water infrastructure and 
environment.



Humanitarian water  logistics  in  such contexts  are  fraught  with complexity.  Aid delivery is  
hindered by damaged infrastructure, limited mobility, and volatile security conditions. Moreover, 
customs control and regulatory bottlenecks at borders and checkpoints introduce financial risks 
and  delays,  threatening  the  timeliness  and  effectiveness  of  relief  efforts.  Traditional  logistics 
models often fail to adapt to the dynamic and fragmented nature of crisis environments.

This study explores how machine learning and digital tools can mitigate financial and customs 
risks in humanitarian water logistics. It introduces WaterWayfinder - a mobile application designed 
to assess, visualize, and respond to freshwater needs in underserved regions. By integrating real-
time data collection, geospatial analysis, and AI-powered logistics planning, WaterWayfinder offers 
a scalable solution for optimizing aid delivery in conflict-affected and hard-to-reach areas.  The 
research  evaluates  the  app’s  architecture,  pilot  deployment  in  Ukraine,  and  its  potential  to 
transform humanitarian logistics through intelligent, adaptive systems. 

2. Literature review

Recent advances in machine learning (ML) have significantly reshaped logistics, risk management, 
and humanitarian operations. This literature review synthesizes key contributions across transport 
optimization,  financial  risk  mitigation,  supply  chain  resilience,  and  water  infrastructure 
intelligence, forming the foundation for the WaterWayfinder framework.

Karkouri et al. [6] demonstrated the effectiveness of ML in optimizing road transport routes, 
particularly in transnational corridors such as Dakhla-Paris. Their study highlights how predictive 
modeling and real-time data integration can reduce fuel costs,  improve delivery timelines,  and 
adapt to dynamic geopolitical  conditions -  principles directly applicable to humanitarian water 
logistics in conflict zones.

Huang [7] explored ML applications for financial risk management in non-profit organizations, 
emphasizing  anomaly  detection,  fraud  prevention,  and  budget  forecasting.  These  insights  are 
critical  for  humanitarian actors operating under volatile  funding and regulatory environments. 
Similarly, Hongjin [8] integrated IoT and ML to identify risk factors in financial supply chains,  
offering a framework for early warning systems and adaptive financial controls. 

Van  Twiller  et  al.  [9]  applied  deep  reinforcement  learning  to  master  stowage  planning, 
optimizing  cargo  placement  and  resource  utilization.  Their  approach  informs  the  design  of 
intelligent aid distribution systems,  where space,  weight,  and urgency must be balanced under 
logistical constraints. Pons-Ausina et al. [10] presented an AI-driven water management system in 
Georgia, showcasing how ML can enhance water quality monitoring, infrastructure integrity, and 
service delivery in underserved regions. García et al. [20] extended this by using natural language 
processing  to  review  ML  applications  in  water  infrastructure,  reinforcing  the  relevance  of 
intelligent systems for humanitarian water logistics. Wang, Sua, and Alidaee [11][13] emphasized 
automated ML for supply chain security, identifying vulnerabilities and enhancing resilience. Jin 
[14] and Jahin et al. [12] provided systematic reviews and bibliometric analyses of ML in supply 
chain risk assessment,  underscoring the growing maturity of  these technologies in operational  
contexts. Pasupuleti et al. [15] examined ML techniques for improving supply chain agility and 
sustainability,  including inventory optimization and adaptive routing.  Dumanska et  al.  [16][17] 
contributed region-specific insights into digital logistics infrastructure and volunteer coordination 
under  military  conflict,  directly  informing  the  customs  control  and  visualization  modules  of 
WaterWayfinder. Aljohani [18] and Wang et al. [19] explored predictive analytics for real-time risk 
mitigation, integrating economic and behavioral data to forecast disruptions. Murphy et al. [21]  
investigated  ML’s  role  in  violent  conflict  forecasting,  offering tools  to  anticipate  humanitarian 
needs and adjust logistics accordingly.

This body of work collectively supports the integration of ML into humanitarian water logistics, 
particularly in contexts where financial risk, customs control, and infrastructure fragility intersect.  
The  WaterWayfinder  system  builds  upon  these  foundations  to  deliver  adaptive,  data-driven 
solutions for crisis-affected populations.



3. Methodology

This  section  outlines  the  system architecture  (1),  technological  components  (2),  and analytical 
frameworks  (3)  that  support  the  WaterWayfinder  mobile  application.  Designed  to  address  the 
operational challenges of humanitarian water logistics in conflict-affected and underserved regions, 
the system integrates  machine learning (ML),  geospatial  intelligence,  and adaptive planning to 
enhance decision-making and delivery efficiency.

3.1 System architecture

WaterWayfinder is composed of five interdependent modules, each tailored to a specific function 
within  the  humanitarian  logistics  pipeline.  Together,  they  enable  real-time  assessment, 
prioritization, and distribution of freshwater aid. The system’s modular and scalable architecture 
supports  deployment  across  diverse  geopolitical  contexts  and  operational  environments,  as 
illustrated in Figure 2.

Figure  2: Modular  Architecture  of  the  WaterWayfinder  System  for  Humanitarian  Water 
Logistics.

This  figure  presents  the  five  core  modules  of  the  WaterWayfinder  application  -  Needs 
Assessment, Geospatial Intelligence, Customs Risk Analyzer, Logistics Optimization, and Decision 
Support - highlighting their interconnectivity and collective role in enabling adaptive, data-driven 
freshwater aid delivery in crisis-affected regions.

This  architecture  enables  WaterWayfinder  to  function  as  an  intelligent,  responsive  system 
capable of navigating fragmented infrastructure, regulatory uncertainty, and urgent humanitarian 
needs.



3.2 Technological components

WaterWayfinder is built on a robust, modular technology stack designed to support humanitarian 
water  logistics  in  volatile,  resource-constrained  environments.  The  system  integrates  mobile 
accessibility, intelligent analytics, and geospatial precision to enable real-time decision-making and 
adaptive aid delivery.

The  core  technological  components  include:  mobile  platforms,  geospatial  tools,  machine 
learning, cloud analytics, offline mode. The application is compatible with Android and iOS devices, 
allowing field operatives and coordinators to access and update logistics data in real time.  GPS and 
GIS integration enable  precise mapping,  route planning,  and terrain analysis.  These tools  help 
localize water-scarce zones and navigate damaged or restricted areas. Supervised learning models 
support  prioritization  of  aid  delivery,  route  optimization,  and  demand  forecasting.  Algorithms 
adapt to changing field conditions and learn from historical patterns to improve performance. Real-
time  data  processing  and  secure  cloud  storage  ensure  scalability  and  synchronization  across 
multiple users and locations.  Automated reporting and performance tracking are built  into the 
system. To ensure continuity in disconnected or low-bandwidth environments, WaterWayfinder 
includes offline functionality with local caching and delayed synchronization.
In addition to its core infrastructure, WaterWayfinder incorporates two specialized subsystems: 
financial risk  modeling and customs control integration/

Humanitarian logistics in crisis zones are subject to complex financial risks. WaterWayfinder 
integrates  a  predictive  risk  modeling  framework  that  addresses:  Cost  Structures  (including 
transportation, storage, customs clearance, and volunteer mobilization); Risk Factors (such as route 
disruptions,  resource  misallocation,  and  operational  delays);  Mitigation  Strategies  (through 
predictive demand modeling, dynamic rerouting, and cost-efficiency tracking to reduce financial 
exposure and optimize resource utilization).

Navigating customs  and  regulatory  frameworks  is  critical  for  cross-border  aid  delivery. 
WaterWayfinder  supports:  Pre-Clearance  Planning  (aligning  route  planning  with  customs 
documentation and checkpoint  protocols);  Route  Compliance  (embedding regulatory  constraints 
into logistics algorithms to ensure legal adherence); Regulatory Mapping (visualizing border zones, 
access permissions, and transit corridors to minimize delays and facilitate secure passage).

These  components  collectively  enable  WaterWayfinder  to  function as  a  scalable,  intelligent 
platform for humanitarian water logistics, capable of adapting to diverse geopolitical contexts.

3.3 Analytical frameworks

WaterWayfinder’s analytical backbone integrates statistical modeling, geospatial computation, and 
machine  learning  to  support  real-time,  evidence-based  decision-making in  humanitarian  water 
logistics.  These  analytical  layers  work  in  concert  to  assess  needs,  predict  risks,  and  optimize 
resource deployment in dynamic and high-risk environments.

The system employs the following core analytical methods: (1)  Classification Algorithms;  (2) 
Reinforcement Learning; (3) Geospatial Analysis; (4) Risk Scoring Systems. Composite indices are 
generated to quantify financial and regulatory exposure across different corridors. These scores 
incorporate  customs  complexity,  tariff  volatility,  border  wait  times,  and  historical  disruption 
patterns to guide strategic planning.

Together, these analytical frameworks empower WaterWayfinder to function as a responsive, 
data-driven  platform  capable  of  adapting  to  rapidly  evolving  crisis  conditions,  ensuring  that 
freshwater aid reaches those in need with maximum efficiency and minimal risk.

Table 1 presents the core analytical components that drive WaterWayfinder’s decision-making 
capabilities. Each module processes specific data inputs and contributes to real-time prioritization,  
risk mitigation, and logistics optimization in humanitarian water delivery.



Table 1
Analytical Frameworks of the WaterWayfinder System

Analytical Backbone Input Output
Classification Algorithms Survey  data,  satellite  imagery,  social 

signals
Ranked  water  scarcity  zones  by 
urgency

Regression Models Historical  delivery  logs,  cost  records, 
weather  and terrain data   

Forecasted costs,  delays,  and resource 
needs

Reinforcement Learning Field feedback, delivery outcome Optimized routing and asset allocation
Geospatial Analysis GIS  layers,  terrain  models,  conflict 

maps
Accessibility  scores,  chokepoint 
detection, alternative path simulation

Risk Scoring Systems Customs  data,  financial  indicators, 
border alerts

Corridor-level risk scores for financial 
and regulatory exposure

Note:  input  -  data  sources  used by each  analytical  module;  output  -  actionable  insights  generated for  logistics  planning and risk 
mitigation

The WaterWayfinder mobile application is underpinned by a modular architecture (Section 3.1),  
a scalable technological stack (Section 3.2), and a robust analytical backbone (Section 3.3). Its five 
core  modules  -  Needs  Assessment,  Geospatial  Intelligence,  Customs  Risk  Analyzer,  Logistics  
Optimization, and Decision Support - work in concert to enable adaptive, data-driven freshwater 
aid  delivery in  crisis-affected regions.  Technologically,  the system integrates  mobile  platforms, 
geospatial tools, machine learning, cloud analytics, and offline capabilities to ensure operational 
continuity  in  volatile  environments.  Specialized  subsystems  for  financial  risk  modeling  and 
customs control further enhance strategic planning and regulatory compliance. 

The analytical framework employs classification, regression, reinforcement learning, geospatial 
analysis,  and  risk  scoring  to  support  real-time  prioritization,  cost  forecasting,  and  route 
optimization. Together, these components position WaterWayfinder as an intelligent, responsive 
solution for humanitarian water logistics across diverse geopolitical contexts.

3.4 Data limitations in conflict-affected environments 

A  critical  methodological  consideration  in  this  study  is  the  connectivity  and  data  sparsity 
challenges  inherent  in  conflict-affected  regions,  particularly  in  the  Kherson  oblast.  Disrupted 
infrastructure,  restricted  access,  and  inconsistent  reporting  often  result  in  limited,  sparse,  or  
unreliable data streams. Such conditions pose significant constraints on the training, robustness, 
and generalizability of machine learning models.

These  limitations  are  especially  pronounced  for  advanced  approaches  such  as  predictive 
modeling and reinforcement learning, where the reliability of sequential inputs directly influences 
performance. In environments where data continuity cannot be guaranteed, model outputs risk 
being biased, unstable, or insufficiently representative of real-world dynamics.

To mitigate these risks, the framework incorporates adaptive strategies, including: (1) Use of 
proxy indicators (e.g., regional migration proxies or satellite-derived conflict intensity measures) to 
supplement  missing  data;  (2)  Application  of  transfer  learning  from  comparable  contexts  to 
strengthen model  resilience  under  sparse  conditions;  (3)  Integration  of  multi-source  datasets  - 
combining official  statistics,  humanitarian reports,  and community-reported signals  -  to reduce 
dependency on any single unreliable stream.

By explicitly addressing these data limitations, the methodology ensures greater transparency in 
model design and highlights the importance of resilience-oriented analytical practices in conflict 
economies.  WaterWayfinder’s  analytical  backbone  integrates  statistical  modeling,  geospatial 
computation,  and  machine  learning  to  support  real-time,  evidence-based  decision-making  in 
humanitarian water logistics. 



4. Results and discussion

The pilot  deployment of  WaterWayfinder in the Kherson and Zaporizhzhia regions of  Ukraine 
provided critical  insights into the system’s operational effectiveness,  logistical  adaptability,  and 
potential  for  broader  humanitarian  application.  This  section  presents  findings  across  six 
dimensions:  water  scarcity  mapping,  performance outcomes,  customs navigation,  financial  risk 
mitigation, implementation challenges, and scalability potential.

Using satellite imagery, mobile surveys, and geospatial overlays, WaterWayfinder successfully 
mapped water scarcity zones across both regions. The system identified high-urgency areas based 
on infrastructure damage,  population  density,  and environmental stress indicators.  These maps 
served as the foundation for targeted aid delivery and route planning.

Initial field testing demonstrated measurable improvements in logistical efficiency and resource 
targeting,  with  notable  regional  differences.  As  shown in  Table  2,  Zaporizhzhia  outperformed 
Kherson in several  metrics  due to  stronger infrastructure and coordination.  Importantly,  these 
improvements were benchmarked against traditional logistics baselines (manual route planning 
and paper-based coordination), ensuring that reductions in delivery time, fuel costs, and border 
delays reflect comparative gains rather than absolute values.

Table 2
Operational Metrics Comparison: Kherson vs. Zaporizhzhia

Metric Kherson Region Zaporizhzhia Region
Avg. Delivery Time 
Reduction

24% 
(due to drone threats and 

detours)

32% 
(better road access 

and planning)
Fuel Cost Reduction 15% 22%
Aid Coverage Increase 29% 41%
Border Processing Time 
Saved

2.0 hours per shipment 3.0 hours per shipment

Offline Usage Rate 55% (due to connectivity gaps) 31% (stronger mobile coverage)
Volunteer Coordination 
Uptime

78% 92%

These outcomes validate WaterWayfinder’s  capacity to  enhance operational  performance in 
both  volatile  and  semi-stable  environments,  with  performance  gains  amplified  under  better 
connectivity and coordination.

Navigating  regulatory  and  border  constraints  is  a  critical  aspect  of  humanitarian  logistics. 
WaterWayfinder’s integration of customs intelligence yielded the following benefits: 

(1) Reduced  delays  are  the  pre-clearance  route  planning  and  documentation  alignment 
shortened border processing times by an average of 2.5 hours per shipment; 

(2) Enhanced  compliance  are  the  real-time  updates  on  checkpoint  status  and  regulatory 
changes improved adherence to customs protocols, reducing the risk of detainment or rerouting.

These features were especially effective in Zaporizhzhia, where customs coordination was more 
predictable and institutional support more consistent.

Humanitarian  operations  in  conflict  zones  are  exposed  to  significant  financial  risks  due  to 
unpredictability and resource constraints. WaterWayfinder’s adaptive logistics engine contributed 
to: 

(1) Dynamic rerouting are the real-time adjustments based on weather, security alerts, and 
infrastructure damage minimized exposure to high-cost disruptions; 



(2) Resource optimization is a predictive modeling enabled better allocation of water supplies, 
transport assets, and volunteer time, reducing waste and improving cost-efficiency.

Despite promising results, several deployment challenges were identified (see Table 3), with 
Kherson facing more  severe  constraints  due to  infrastructure damage,  security  risks,  and data 
sparsity.

The  pilot  implementation  of  WaterWayfinder  in  Kherson  and  Zaporizhzhia  confirmed  the 
system’s capacity to improve delivery efficiency, reduce costs, and enhance targeting of freshwater 
aid in crisis-affected regions. Comparative analysis revealed that while both regions benefited from 
the platform, performance gains were more pronounced in areas with stronger infrastructure and 
coordination.  The  system’s  customs  intelligence  and  financial  risk  modeling  modules  proved 
critical  for  navigating  regulatory  complexity  and  minimizing  operational  disruptions.  Despite 
challenges related to connectivity and data sparsity, WaterWayfinder demonstrated resilience and 
adaptability.  Its  scalable  architecture  and  interoperability  with  global  humanitarian  systems 
position  it  as  a  strategic  asset  for  regional  expansion  and  international  deployment  in  future 
humanitarian crises.

Table 3
Regional Observations and Deployment Insights

Dimension Kherson Region Zaporizhzhia Region
Infrastructure 
Status

Severely  damaged  roads  and 
bridges;  drone  threats  disrupted 
logistics

Moderate  damage;  stable  road  access 
enabled smoother operations

Customs 
Navigation

Frequent  checkpoint  changes; 
limited  coordination  with  border 
officials

More  predictable  customs  flow;  better 
pre-clearance planning

Data Reliability Sparse field reporting due to safety 
concerns and mobile outages

Timely  data  updates  from  volunteers 
and local coordinators

Security 
Environment

High-risk zone with active shelling 
and drone surveillance

Lower  threat  level  allowed  more 
consistent aid delivery

Volunteer 
Network

Fragmented  and  decentralized; 
coordination challenges

Well-organized  with  centralized 
oversight  and  digital  communication 
channels

Scalability 
Readiness

Requires  additional  infrastructure 
support and satellite coverage

Ready  for  expansion  with  minimal 
technical adjustments

5. Conclusions

This  study  demonstrates  that  machine  learning  and  digital  logistics  systems  can  substantially 
reduce financial exposure, regulatory delays, and operational inefficiencies in humanitarian water 
delivery.  The  pilot  deployment  of  the  WaterWayfinder App  in  the  Kherson  and  Zaporizhzhia 
regions  of  Ukraine  validated  the  system’s  core  functionalities  and  revealed  its  transformative 
potential for crisis logistics. Through WaterWayfinder, aid coordinators were able to: prioritize 
high-need  regions using  real-time  geospatial  overlays  and  community-reported  data, 
resulting  in  a  35%  increase  in  aid  coverage  across  underserved  settlements;  optimize 
delivery routes with AI-driven planning, reducing average delivery time by 28% and fuel-
related costs by 19%; navigate customs and regulatory constraints more efficiently through 
pre-clearance planning and compliance mapping, saving up to 3 hours per shipment in 
border processing time.

These performance indicators represent the averaged and weighted results of the pilot project 
across both oblasts, ensuring comparability while reflecting regional variations reported in Table 2. 



Taken  together,  the  outcomes  underscore  WaterWayfinder’s  capacity  to  enhance  operational 
efficiency, transparency, and responsiveness in fragmented and high-risk environments.

WaterWayfinder exemplifies a new generation of tech-enabled humanitarian infrastructure. By 
integrating mobile platforms, machine learning, and geospatial intelligence, the system bridges the 
gap between digital insight and field-level impact. Its modular architecture and offline capabilities 
make it adaptable to diverse operational contexts—from conflict zones and occupied territories to 
remote natural disaster sites. The platform’s alignment with global humanitarian innovation trends 
reinforces its relevance: it supports data-driven decision-making, fosters community engagement, 
and enables logistical agility under uncertainty.

Building on the pilot’s success, future development will focus on three strategic pillars: model 
refinement is enhancing the needs assessment algorithm with additional health, demographic, and 
environmental indicators to improve precision and equity in aid targeting; broader deployment is 
scaling the system to other Ukrainian oblasts and international crisis zones through partnerships 
with  NGOs,  government  agencies,  and  donor  coalitions.  The  system’s  offline  resilience  and 
modular design make it suitable for deployment in regions with limited infrastructure or unstable 
governance;  policy integration is  collaborating with customs authorities,  humanitarian logistics 
clusters,  and  international  agencies  to  standardize  digital  logistics  protocols.  This  includes 
embedding WaterWayfinder into cross-border aid frameworks and harmonizing data flows with 
platforms such as OCHA’s Humanitarian Data Exchange (HDX) and UNHCR’s PRIMES.

Future  research  will  focus  on  refining  WaterWayfinder’s  predictive  models  by  integrating 
health,  environmental,  and  demographic  indicators  to  improve  aid  targeting.  Comparative 
deployments in other Ukrainian regions and international crisis zones will help validate scalability 
and adaptability. Collaboration with customs authorities and humanitarian agencies is needed to 
standardize  digital  logistics  protocols  and  ensure  regulatory  alignment.  Equally  important, 
systematic  collection  of  feedback  from  end-users  (volunteers,  coordinators,  and  partner 
organizations)  combined  with  usability  studies  will  guide  the  further  improvement  of  the 
application’s  interface,  enhance  multilingual  accessibility,  and strengthen user-centered design. 
Collectively, these efforts aim to evolve WaterWayfinder into a globally adaptable framework for 
intelligent humanitarian logistics.
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