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Abstract
The article presents an information technology based on machine learning methods for detecting energy 
peaks and automatically balancing the power grid by activating storage installations or renewable energy 
sources.  The  study  is  based  on  hourly  electricity  consumption  data  for  a  month,  described  by  nine 
statistical  descriptors  of  amplitude  variability  and the  LEC indicator  with  two classes  of  balance.  A  
comparative analysis of five machine learning models (SVM, kNN, Random Forest, MLP, XGBoost) with 
the selection of hyperparameters by the Grid Search method and 5-fold cross-validation was conducted,  
where  the  target  metric  was  the  F1-score.  The  best  results  were  obtained  for  the  XGBoost  model 
(Accuracy ≈ 0.961), which indicates its high ability to recognize balanced (class1) and unbalanced (class2) 
power  consumption  modes.  Permutation  Feature  Importance  analysis  confirmed  that  variability 
descriptors (Range, Std_Dev, Max) are crucial for classifying energy anomalies. The approach provides 
timely detection of unstable regimes and reduces false alarms, increasing the stability and reliability of the 
power system.
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1. Introduction

Modern energy systems are becoming increasingly complex, as they combine various sources of 
generation,  control  systems  and  consumers  with  dynamic  operating  modes.  Such  increasing 
structural  complexity  makes  them  more  vulnerable  to  external  influences  and  fluctuations  in 
electricity consumption. The level of load on the electricity grid is determined by a set of factors 
that directly affect the behavior of consumers and may depend on standard daily,  weekly and 
seasonal cycles, changes in weather conditions and other factors. Periods of extreme temperatures 
lead to a significant increase in electricity consumption due to increased use of heating or air  
conditioning systems. In addition, consumption is influenced by socio-economic factors, holiday 
periods, mass events and changes in industrial production, emergencies, etc., which create peak 
loads and affect the stability of the operation of the energy system [1,2].

Ensuring stable operation of  the power grid in conditions of  such fluctuations requires the 
implementation  of  modern  approaches  to  energy  balancing  and  load  forecasting.  The  use  of 
renewable  energy  sources  (solar,  wind  generation)  and  energy  storage  installations  allows 
smoothing peak loads, compensating for short-term power shortages and increasing the flexibility 
of the system. In this context, the implementation of intelligent energy metering systems becomes 
an important step towards effective monitoring of energy consumption and distribution at the level 
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of cities and regions [3-5].  For their effective management, the accuracy of input data and the 
adequacy of models are critically important, which is a fundamental aspect in complex technical 
systems [6].

To solve these complex problems, it is worth using modern technologies, in particular artificial 
intelligence (AI). Machine learning (ML) methods have become widespread in various fields - from 
medicine [7], finance [8] and materials science [9] to transport [10] and cybersecurity [11]. They 
allow  to  automate  data  analysis  processes,  identify  hidden  patterns,  increase  the  accuracy  of 
forecasts  and  make informed decisions  based on  large  amounts  of  information.  In  the  energy 
sector, these technologies play an important role in increasing the efficiency of energy solutions.  
They are used to forecast consumption, detect anomalies, optimize equipment operating modes and 
increase network stability.  The integration of  ML algorithms into peak load analysis processes 
opens up new opportunities for more accurate prediction of system behavior and timely detection 
of instability risks.

Unlike traditional statistical methods, modern machine learning models are able to recognize 
hidden patterns in data, which allows developing more effective strategies for managing energy 
systems, ensuring stable operation of the power grid, and reducing energy supply costs. In the 
authors’ previous studies [12], a computer system for energy distribution under electricity shortage 
conditions was developed using AI.

Modern  approaches  to  load  forecasting,  including  meta-learning  frameworks  for  selecting 
optimal  models  [13],  contribute  to  improving the reliability  of  power systems.  Comprehensive 
reviews of the application of deep learning for intelligent demand management and load balancing 
in smart grids [14] confirm the growing role of ML in improving the reliability of power systems.

To assess the relevance of research on the use of ML methods in increasing the efficiency of  
energy solutions, an analytical query TITLE-ABS-KEY(("energy peak" OR "power system stability" 
OR  "load  forecasting"  OR  "power  grid  balancing"  OR  "energy  management  system")  AND 
("machine  learning"  OR  "Random  Forest"  OR  "XGBoost"  OR  "MLP"  OR  "neural  network"  OR 
"LSTM"  OR "Transformer"  OR  "GNN"))  was  formulated  in  the  Scopus  scientometric  database. 
According to the results of the search query on this topic, 14,372 scientific papers were found in the 
Scopus scientometric database, of which 9,137 were found in the last 10 years from 2015 to 2024 
(Figure 1).

 

Figure 1: Search results in the scientometric database Scopus.

The largest number of literary sources on the topic under study has been observed in the last 3 
years.  In particular,  in 2022 -  1328,  2023 -  1675,  2024 -  2187,  which confirms the relevance of 
researching this problem and the constant growth of interest in it worldwide.



2. Related Work

The  current  state  of  research  in  power  system  stabilization  is  characterized  by  the  rapid 
development  of  AI and  ML methods  for  load  forecasting,  anomaly  detection,  and  control 
optimization. The presented review covers key scientific achievements that demonstrate a variety 
of approaches: from hybrid statistical models [15] to innovative deep learning architectures such as 
graph neural networks and transformers.

A  hybrid  approach  to  long-term  forecasting  with  hourly  resolution  is  proposed,  namely, 
combining classical statistical regression models to describe the underlying data structure (taking 
into account temperature and calendar factors) with a Long Short-Term Memory (LSTM) network 
for modeling and correction of residual error [16]. Developing the idea of time series analysis, a 
hybrid  architecture  combining  convolutional  neural  networks  (CNN)  and LSTM for  predicting 
electricity consumption in residential  buildings is  presented [17].  This approach allows for the 
effective extraction of both local patterns and temporal dependencies in consumption data.  An 
approach based on XGBoost and factorization machine is proposed to assess the transient stability 
of power systems [18]. This method allows efficient processing of high-dimensional system state 
data and provides fast and accurate classification of power grid stability in real time. The use of  
graph neural networks for modeling the topological properties of power grids [19] allows to take 
into  account  spatial  relationships  between different  nodes  of  the system and to  detect  hidden 
patterns in load distribution, which is especially important for the analysis of cascading failures 
and network development planning. An approach to detecting anomalies in distributed power grids 
based on autoencoders and federated learning is proposed, which provides decentralized learning 
without transferring private data [20]. In this way, LSTM recurrent networks that model temporal 
dynamics and CNN for extracting local patterns in the data are combined. In addition, a data fusion 
technique  is  used,  which  provides  the  ability  to  combine  consumption  information  with 
meteorological  and  other  external  factors.  In  this  case,  higher  forecast  accuracy  is  provided 
compared to classical models such as ARIMA or Random Forest. Recent research demonstrates a 
wide range of ML approaches for power system analysis. Deep learning, in particular Transformer-
based  architectures,  combined  with  generative  adversarial  networks,  show  high  efficiency  for 
detecting anomalies in load time series [21]. Comparative analysis of the performance of Random 
Forest  and  XGBoost  under  different  class  imbalance  conditions  shows  that  gradient  boosting 
generally outperforms traditional ensemble methods in power system classification problems [22]. 
A review of  AI methods for assessing the dynamic stability of  power systems,  including deep 
learning-based approaches that allow classifying different types of disturbances and predicting the 
behavior of the system in critical modes, is presented in [23]. To further improve the accuracy of 
anomaly detection, the Transformer-GAN model was developed [24]. The architecture combines 
the  Transformer  module,  which  uses  a  self-attention  mechanism  to  capture  long-term 
dependencies,  and a generative adversarial network (GAN), where the generator learns normal 
data  patterns.  A  systematic  review of  the  application  of  deep  learning  for  intelligent  demand 
response [25] demonstrates the effectiveness of  DL methods for real-time load forecasting and 
demand management, which is critical for smart grid balancing and renewable energy integration. 
The application of ML for real-time load management demonstrates the potential  of intelligent 
systems to improve the efficiency of smart grids [26].

These studies demonstrate the significant potential of using AI to improve the reliability of  
power systems through peak load balancing, in particular with the aim of using alternative sources 
of electricity or energy storage facilities.

The aim of this work is to develop information technology based on  ML methods to detect 
energy peaks and the need to automatically connect additional renewable energy sources or energy 
storage facilities to prevent failure of energy nodes and increase the stability and balance of power 
grids.



3. Methodology

To  ensure  effective  real-time  monitoring  and  automatic  balancing  of  the  power  grid,  a 
comprehensive information technology is proposed that integrates three functional levels into a 
unified architecture (Figure 2). 

  

Figure 2: Structural architecture of the proposed information technology for real-time energy peak 
detection and grid balancing. 

The operation of the system starts at the first level, which performs continuous data acquisition 
on electricity consumption from a distributed network of metering devices. Data sources include 
smart  energy  meters  at  residential  and  industrial  facilities,  voltage  and  current  sensors  at 
substations, telemetry from renewable energy sources (RES), and monitoring systems of energy 
storage facilities (ESF). Data are collected with hourly resolution and transmitted over secure VPN 
channels using industrial communication protocols to the central node of the system, where they 
are stored in specialized databases.  The next stage at the second level is intelligent information 
processing. Based on validation results and the evaluation of accuracy metrics, the system selects a  
machine learning model that is integrated into the decision-making core. This model subsequently 
analyzes energy consumption patterns in real time and classifies the current state as “balanced” 
(absence of critical peaks) or “unbalanced” (presence of anomalies).  This approach ensures that  
power system control is carried out by the most effective algorithm, providing high accuracy in 
threat detection and minimizing false alarms.  The final component of the architecture is the third 
level, the decision-making level, which implements the physical balancing of the grid. The model  
classifies the current state of the power system as “balanced” or “unbalanced” (in the presence of  
critical peaks). Depending on the classification result, an automatic control scenario for distributed 
resources  is  executed.   When  a  balanced  state  is  detected,  the  system  activates  a  mode  of 
accumulating surplus energy in storage units and performs preventive monitoring of potential load 
peaks. In the case of detecting an unbalanced state with critical consumption peaks, the system 
automatically  initiates  compensatory  actions:  increasing  generation  from  renewable  energy 
sources and discharging energy storage units to rapidly cover load peaks. Such an architecture  
ensures energy balance management with a minimal response time to critical changes in the power 
grid.

The study is based on electricity consumption data from a regional energy company, which are  
presented in the form of hourly measurements. Figure 3 shows a portion of the data obtained for  
the period from April 20 to 26, 2025, with the peak amplitude values indicated (red). The dataset  
formed from the maximum (peak) values of electricity consumption is used for the analysis.



  

Figure 3: Power consumption of the regional energy company (April 20–26, 2025) with indicated 
peak values. 

Ten statistical descriptors of the amplitude variability of electricity consumption were used as 
input  parameters  for  the  ML model:  Mean  (arithmetic  mean),  Median  (median),  Min  /  Max 
(minimum  /  maximum),  Range  (span),  Std_Dev  (standard  deviation),  SE  (standard  error),  Sk 
(asymmetry), Kurt (kurtosis), LEC (Level of Electric Consumption). Mean is a measure of central 
tendency,  reflecting  the  average  level  of  load  or  frequency  deviation.  Median  is  a  robust 
characteristic  of  central  tendency,  resistant  to  the  presence  of  outliers.  Min  /  Max  define  the 
boundaries of the operating range during operation. Range is the difference between the maximum 
and minimum values,  a measure of the total  magnitude of fluctuations.  Std_Dev quantifies the 
volatility or dispersion of load/frequency. SE reflects the stability of the mean value within the 
window.  Sk is  a  characteristic  of  the skewness of  the distribution,  which can indicate  sudden 
increases or decreases in indicators. Kurt is a measure of the peakedness of the distribution, which 
identifies the presence of extreme outliers (sharp spikes or dips).

The initial parameter in the study is LEC — an indicator that reflects the level of balance of the  
electrical network. This parameter characterizes the current state of the system, which is divided 
into two classes: balanced (class 1) and unbalanced (class 2). The first class describes the operation 
mode  of  the  electrical  network  with  low variability  of  consumption,  that  is,  when  electricity  
consumption  is  stable  and  low,  which  corresponds  to  the  predicted  indicators,  and  requires 
redirecting  excess  electricity  to  an  energy  storage  facility  to  ensure  stable  operation  of  the 
electrical network. The second class corresponds to a mode with high variability, characterized by 
significant fluctuations between the minimum and maximum consumption values within an hour, 
uneven load or signs of instability,  which may indicate that the permissible parameters of the 
power system are exceeded. When classifying the state as "need for balancing" (class 2), there is a  
need to connect additional renewable energy sources or  energy resources of  ESF to balance the 
load of the power grid as smoothly as possible, ensuring stable operation of the power grid.

The distribution of electricity consumption data by class is shown in Figure 4.

 
  

Figure 4: Classes 1 and 2 obtained from the structured power consumption data.



The generated dataset contained 2400 samples, evenly distributed between two classes: 1200 
samples of class 1 and 1200 samples of class 2. The classes were formed taking into account the 
threshold value of electricity consumption, which for this implementation was 0.0749 MW. The 
data  was  structured  in  such  a  way  that  if  the  value  of  electricity  consumption  exceeded  the  
threshold  calculated  as  the  sum  of  the  average  value  of  the  studied  period,  then  they  were 
considered "peak". To build and evaluate the effectiveness of ML models, the generated dataset was 
divided into training and test samples in a ratio of 70/30 while preserving the proportions of the 
target variable. The distribution was performed according to the principle of stratified splitting 
with a fixed parameter random_state = 32, which guarantees the reproducibility of the results and 
uniform representation of each class in both subsamples.

The work uses five  ML algorithms:  Support Vector Machine (SVM) [27], k-Nearest Neighbors 
(kNN)  [28],  Random  Forest  (RF)  [29],  Multilayer  Perceptron  (MLP)  neural  network  [30],  and 
Extreme  Gradient  Boosting  (XGBoost)  [31].  Random  Forest  provides  high  reliability  when 
analyzing interrelated parameters by using an ensemble of independent decision trees. Each tree is 
trained on a random subset of features and data, which reduces the impact of multicollinearity and 
random  noise.  This  approach  increases  the  stability  and  generalization  ability  of  the  model. 
XGBoost is optimized for fast prediction and is able to work effectively in conditions where the 
system needs to respond quickly to changing modes. The algorithm is based on the sequential  
construction of decision trees, which gradually reduce the error of previous models. Due to its high 
performance, parallel computing, and efficient memory usage, XGBoost is often used for tasks that 
require fast real-time decision-making. Due to its architecture and nonlinear activation functions, 
MLP can reproduce complex dependencies that are not detected by traditional methods. kNN is 
considered a baseline method based on the principle of  similarity between samples.  Each new 
object is  classified depending on the classes of its nearest neighbors in the feature space.  This 
approach makes it possible to assess how clearly the classes are separated in the given feature set  
and how well the constructed descriptors reflect the characteristics of the system’s energy states.  
SVM is a classic method for constructing an optimal separating hyperplane that maximizes the  
distance between classes in the feature space. Comparative analysis of different ML algorithms is 
standard practice for selecting the optimal model, especially important when solving problems for  
critical  infrastructure,  such  as  the  power  system,  where  the  reliability  of  classification  is  of 
paramount importance.

To solve the problem of classifying the balance states of the power grid, a software solution was 
developed in Python, which uses the scikit-learn and XGBoost  ML libraries. StandardScaler was 
also used to normalize the input data before training the kNN, SVM, and MLP models,  which  
ensured  a  single  scale  of  features  and  increased  the  stability  of  the  training  process.  For  the 
ensemble models Random Forest and XGBoost, data normalization was not performed, since these 
algorithms are insensitive to the scales of the input parameters. To understand the decision-making 
mechanisms  of  the  model  and  determine  the  most  informative  statistical  descriptors,  the 
Permutation Feature Importance (PFI) global analysis method was used [32]. This approach allows 
us to quantitatively assess the contribution of each feature to the formation of the forecast by  
measuring the change in the model accuracy after a random violation of the connection between a 
specific descriptor and the target variable. The main idea is that if a certain feature has a significant  
impact on the result, then its random mixing will lead to a noticeable decrease in classification 
efficiency. The PFI method belongs to the global explainability methods and does not depend on 
the  type  of  model.  Its  advantages  are  simplicity  of  implementation,  intuitive  interpretation  of  
results and the ability to compare the influence of different features. The main limitation is the  
increased computational complexity associated with the need for multiple predictions. Despite this,  
PFI remains one of the most effective methods for assessing the informativeness of descriptors in 
explainable ML tasks.

The performance of the models was assessed through the analysis of the confusion matrix, 
which systematizes the results of predictions into four categories. True positive results (TP) record 
cases of correct detection of electricity consumption peaks, while true negative (TN) reflect the 



correct  identification  of  normal  modes.  First-order  errors  (FP)  characterize  false  signals  about 
peaks, and second-order errors (FN) - missed critical states of the power system. From these basic 
indicators, key performance metrics are formed: Accuracy, Recall, Specificity, Precision, F1-Score 
and geometric mean G-Mean [33].

Classification  models  play  a  critical  role  in  the  tasks  of  monitoring  electrical  networks  of  
efficiency metrics, since their balance depends not only on the accuracy of diagnostics, but also on  
the  timeliness  of  the  response  of  the  control  system.  In  the  case  of  recognizing  peak  power 
consumption states (class 2) and stable modes (class 1), these indicators are directly related to the 
reliability of automatic connection of RES or ESF, as well as to the prevention of overloads and 
failure of critical network elements. Accuracy reflects the proportion of correctly classified states  
among all forecasts. In the context of energy systems, a high Accuracy value indicates the model’s 
ability to correctly recognize both normal and peak modes, which ensures the reliability of the 
overall monitoring system. However, this metric by itself may not be informative enough in the 
case of unbalanced data, when the number of normal states significantly exceeds the number of 
peak states. Recall is a key metric for this task, as it characterizes the model’s ability to detect all 
peak load cases. High Recall minimizes the number of missed critical situations (FN). From the  
point of view of operational security of power grids, Recall is of priority importance, since even 
one missed peak can cause cascading failures or blackouts. Specificity reflects the model’s ability to 
correctly identify normal operating modes of the system. High Specificity prevents false activations 
of balancing systems, which reduces the number of unnecessary RES or ESF switching cycles. This 
is especially important for the economic efficiency of the power system, since each unnecessary 
operation entails additional energy costs and accelerates equipment wear. Precision characterizes 
the proportion of real peak states among all those that the model has identified as critical. High 
Precision means that the system reacts only to real  threats,  and not to random fluctuations in 
consumption.  Thus,  it  reduces  the  number  of  false  positive  states  (FP),  optimizes  the  use  of  
balancing  resources,  and  maintains  the  efficiency  of  energy  flow  management.  F1-Score  is  a 
harmonious average between Precision and Recall, which provides a generalized assessment of the 
balance  between  detecting  all  peak  states  and  minimizing  false  alarms.  For  automatic  grid 
balancing systems, a high F1-Score ensures that the algorithm is both sensitive to real threats and 
stable with respect to noise in the data. This metric is especially important at the stage of selecting 
the optimal model, when a compromise between security and efficiency of network operation must 
be found. G-Mean (geometric mean of Recall and Specificity) is used to assess the balance of the 
classification. A high G-Mean value indicates that the model recognizes both peak and normal 
modes equally well, without favoring any class. For power system control tasks, this means stable  
operation of the algorithm under different load conditions, including non-standard situations or 
variable consumption profiles.

In addition to the basic metrics, the integral indicators Area Under the ROC Curve (AUC) and  
Precision–Recall  (PR)  curve  were  used  to  comprehensively  assess  the  effectiveness  of  the 
classification models. AUC reflects the ability of the model to distinguish between balanced and 
unbalanced power consumption modes at different decision thresholds. A high AUC value (close to 
1) indicates a high discriminative ability of the algorithm. In the context of power systems, this  
means that the model is able to timely recognize the approach to critical network operating modes 
and prevent accidents by early load balancing. Precision–Recall curve provides a more detailed 
picture of the model’s behavior in conditions of class imbalance, when the number of peak states is 
relatively small compared to normal ones. Analysis of the area under the PR curve allows us to 
assess the trade-off between Precision and Recall. A high value of Average Precision (AP), which 
numerically corresponds to the area under the PR curve, indicates the model’s ability not only to 
effectively  detect  peaks,  but  also  to  minimize  the  number  of  false  signals.  This  is  particularly 
important in the context of automatic connection of renewable energy sources or energy storage 
installations,  where false triggering can lead to unnecessary energy losses and reduced control 
system efficiency.



4. Results and Discussion

Five  ML models were used to solve the problem of classifying power grid operating modes. The 
models were tuned by hyperparameter optimization before the training stage to achieve maximum 
classification accuracy. The search for optimal combinations of hyperparameters was carried out 
using  the  Grid  Search  method  in  combination  with  5-fold  cross-validation,  which  provided  a 
reliable assessment of the generalization ability of the models on the training data set. F1-Score was 
chosen as the target optimization metric, since it takes into account both false positive (FP) and 
false negative (FN) results, providing a balanced ratio between Precision and Recall. The use of this  
metric is more appropriate compared to Accuracy, since it avoids the bias of the model towards the 
dominant class and better reflects the ability of the algorithm to correctly detect both stable and 
peak consumption modes. The results of tuning the main hyperparameters for each of the five ML 
models are given in Appendix A, which presents the optimal parameter values obtained during the 
grid search process.

All five algorithms demonstrated the ability to classify energy regimes, but the models showed 
different levels of effectiveness.

Figure 5 shows the normalized confusion matrices (%) for the kNN and SVM models, which 
reflect the quality of the classification of power consumption states into two classes.

(a) (b)

Figure 5: Confusion matrices for the test dataset obtained using the kNN (a) and SVM (b) models.

High  agreement  between  actual  and  predicted  labels  is  observed  for  the  kNN  model:  the 
proportion  of  correct  classifications  is  92.78%  for  class  1  and  93.61% for  class  2,  indicating  a 
balanced ability of the algorithm to identify both steady and peak consumption modes. In contrast,  
the SVM model shows lower accuracy for class 1 (73.89%) and a slight decrease in efficiency in 
recognizing peak states for class 2 (92.50%).

Figure 6 shows the normalized confusion matrices (%) for the Random Forest and MLP models.



(a) (b)

Figure 6: Confusion matrices for the test dataset obtained using the Random Forest (a) and MLP 
(b) models.

The  Random  Forest  model  demonstrated  high  performance,  providing  93.89%  correct 
predictions  for  class  1  and 93.33% for  class  2,  indicating  the  stable  ability  of  the  ensemble  of 
decision trees to recognize both normal and peak modes.  The MLP model showed even better  
results: 94.44% correct classifications for class 1 and 95.28% for class 2.

Figure  7  presents  the  normalized  confusion  matrix  (%)  for  the  XGBoost  model,  which 
demonstrates the highest classification accuracy among all the algorithms considered.

Figure 7: Confusion matrices for the test dataset obtained using the Random Forest (a) and MLP 
(b) models.

The  correct  prediction  rate  is  95.00%  for  class  1  and  97.22%  for  class  2,  indicating  an  
exceptionally  high ability of  the model  to  recognize both stable  and peak power consumption 
modes. Compared to previous models (kNN, SVM, Random Forest, MLP), XGBoost provides the 
lowest number of false classifications. The results confirm the superiority of gradient boosting in 
power consumption data analysis tasks, where high classification accuracy is important.

The performance results of the studied models for classifying electricity consumption peaks are  
summarized in Table 1



Table 1
Model performance metrics

Model Class Accuracy Recall Specificity Precision F1-Score G-Mean

XGBoost
1 0.9611 0.9500 0.9722 0.9716 0.9607 0.9610

2 0.9611 0.9722 0.9500 0.9511 0.9615 0.9610

MLP
1 0.9486 0.9444 0.9528 0.9524 0.9483 0.9486

2 0.9486 0.9528 0.9444 0.9449 0.9488 0.9486

RF
1 0.9361 0.9388 0.9333 0.9337 0.9362 0.9361

2 0.9361 0.9333 0.9388 0.9385 0.9359 0.9361

kNN
1 0.9319 0.9278 0.9361 0.9356 0.9317 0.9319

2 0.9319 0.9361 0.9278 0.9284 0.9322 0.9319

SVM
1 0.8319 0.7389 0.9250 0.9079 0.8147 0.8267

2 0.8319 0.9250 0.7389 0.7798 0.8463 0.8267

Analyzing  the  data  in  Table  1,  the  highest  overall  performance  was  demonstrated  by  the 
XGBoost model, achieving Accuracy = 0.9611, Recall = 0.9500–0.9722, and F1-Score ≈ 0.961. This 
indicates  the  high  ability  of  the  model  to  distinguish  between  steady-state  and  peak  power  
consumption modes. The high and balanced Recall and Specificity values (0.9500–0.9722) confirm 
that the model is equally effective in detecting both normal and critical load states. Such accuracy 
is especially valuable for real-time monitoring systems, where missing or false detection of peaks 
can lead to overloading of nodes and power system failures. Ensemble (XGBoost, Random Forest)  
and  neural  approaches  (MLP)  outperform  methods  based  on  metric  distances  or  hyperplane 
separation  (kNN,  SVM),  confirming  their  ability  to  more  effectively  account  for  nonlinear 
multivariate relationships between electricity consumption parameters. This makes such models 
suitable for tasks such as automatic detection of load imbalances, activation of renewable energy 
sources or energy storage systems, and ensuring real-time grid stability.

Figure 8 shows the main performance curves of the XGBoost model, illustrating its ability to  
effectively classify power consumption modes and accurately distinguish between steady and peak 
system states.
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Figure 8: Performance curves of the XGBoost model.

The ROC curve for the XGBoost model with a 95% confidence interval (Figure 7a) characterizes 
the  model’s  ability  to  distinguish  between  balanced  (class  1)  and  unbalanced  (class  2)  power 
consumption modes. The area under the ROC curve (AUC = 0.9617) indicates a high discriminative 
ability of the model.  An AUC value close to 1 indicates that XGBoost effectively distinguishes 
between stable and critical power system operation modes. The narrow 95% confidence interval 
confirms the robustness of the model to changes in the data and the low variability of the results  
during repeated estimations. Thus, the ROC curve confirms that XGBoost not only achieves high 
classification accuracy, but also provides reliable and balanced detection of power grid states in  
both classes. The Precision–Recall (PR) curve  (Figure 7b)   reflects the interdependence between 
Precision and Recall when classifying peak power consumption modes. The area under the curve 
(Average Precision, AP = 0.942) indicates excellent classification quality — the model maintains 
high values of both metrics over a wide range of thresholds. A narrow 95% confidence interval  
indicates stability of results and low variability of predictions. Thus, the PR curve confirms that 
XGBoost is able to effectively detect peak power consumption modes, ensuring a minimum number 
of  false  positives  and  maintaining  high  reliability  of  the  decisions  made.  The  curve  of  the 
dependence of the F1-score metric on the classification threshold for the XGBoost model  (Figure 
7c)  demonstrates how the balance between Precision and Recall changes depending on the selected 



decision threshold. The maximum value of F1-score = 0.9615 is achieved at the optimal threshold of 
0.42, which provides the best ratio between correct detection of peak states and minimization of  
false  alarms.  In  the  low  range  of  thresholds,  high  Recall  prevails  at  the  expense  of  reduced 
Precision, while too high thresholds cause the model to lose sensitivity to critical states. Therefore, 
the  chosen  threshold  of  0.42  is  an  optimal  compromise  between  the  two  key  performance 
indicators,  ensuring  the  most  effective  performance  of  XGBoost  in  detecting  peak  power 
consumption modes.

To assess the contribution of each feature to forecasting and better understand the decision-
making  mechanisms  of  the  XGBoost  model,  an  analysis  of  the  importance  of  features  was 
conducted using the Permutation Importance method (Figure 9).

Figure 9: Permutation feature importance for the XGBoost model on the test dataset.

The analysis of the importance of the features showed that the key role in the classification is 
played by descriptors that describe the variability and range of electricity consumption. The most  
significant  predictor  for  the  classification  of  network  balance  was  Range,  which  is  logically 
justified, since energy peaks are characterized by large fluctuations from minimum to maximum 
load values. Of secondary importance are the standard deviation (Std_Dev) and the maximum value 
(Max), which also reflect the variability of energy parameters. Kurt, Min and SE have a moderate  
impact. The central characteristics (Med, Mean, Sk), which describe the position and symmetry of 
the distribution of energy consumption, turned out to be less informative for the classification,  
since  they  reflect  only  the  average  load  level,  while  peak  states  are  determined  mainly  by 
amplitude  and  variation  indicators  that  record  rapid  and  significant  changes  in  electricity 
consumption. The results obtained are consistent with the physical nature of electrical peaks and 
support the hypothesis that dynamic characteristics of power consumption (how quickly and how 
much the load changes) are more informative for detecting anomalies than static characteristics 
(for example, the absolute level of power consumption).  These results can be used not only to 
optimize classification algorithms, but also to configure monitoring sensors and data acquisition 
systems, power consumption where it is possible to increase the frequency of measurements and 
accuracy specifically for parameters that characterize load variability.



5. Conclusion

The  paper  proposes  an  information  technology  for  detecting  energy  peaks  and  supporting 
automatic balancing of the power grid by connecting renewable energy sources or energy storage 
facilities.  The  hourly  electricity  consumption  indicators  of  a  regional  energy  company,  which 
reflect daily load fluctuations, were used as the input data. Five ML models with hyperparameter 
optimization (Grid Search, 5-fold CV) were compared using the F1-Score metric. The best results  
were demonstrated by the XGBoost model (Accuracy = 0.9611, high F1-Score and G-Mean), which 
confirms  its  ability  to  consistently  recognize  both  peak  and  normal  modes  of  electricity 
consumption. The Permutation Feature Importance analysis showed that the key contribution to 
the classification is made by amplitude-variation features (Range, Std_Dev, Max), which reflect the 
intensity and dynamics of changes in electricity consumption. The proposed approach provides 
reliable differentiation between stable and peak states, reduces the number of false positives, and 
increases the timeliness of the control system response. The developed technology is suitable for  
integration into automated energy management systems (EMS) as an intelligent module, which 
increases the stability of the power system and reduces the risk of unplanned outages.
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A. Hyperparameter Settings

Table 1
Main hyperparameters of the XGBoost model

Parameter Value Description/Purpose

objective binary:logistic Loss  function  used  for  binary  classification  with 
logistic regressionn_estimators 600 Number of decision trees sequentially added to the 
ensemble during training

max_depth 6 Maximum  depth  of  each  tree;  controls  model 
complexity and prevents overfitting

learning_rate 0.05 Learning rate  that  scales  the  contribution of  each 
new tree

subsample 0.9 Fraction of training samples used to build each tree 
(controls stochasticity)

tree_method hist Histogram-based  tree  construction  method  that 
accelerates training and saves memory

reg_lambda 1.0 L2  regularization  parameter  used  to  reduce 
overfitting and stabilize learning

Table 2
Main hyperparameters of the kNN model

Parameter Value Description/Purpose

n_neighbors 5 Number  of  nearest  neighbors  considered  when 
classifying a new instance
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weights distance Weighting scheme: each neighbor’s contribution is 
inversely proportional to its distance from the query 
point

metric minkowski Distance metric used to measure similarity between 
samples

p 2 Power parameter for the Minkowski metric; p = 2 
corresponds to Euclidean distance.

Table 3
Main hyperparameters of the Random Forest model

Parameter Value Description/Purpose

n_estimators 500 Number of decision trees in the ensemblecriterion gini Split  criterion  measuring  node  impurity  based  on 
the Gini index

max_depth None Maximum  tree  depth  is  unrestricted;  each  tree 
grows until all leaves are pure

max_features sqrt Feature  selection  method  for  splitting: 
sqrt(n_features)

class_weight balanced_subsa
mple

Automatically adjusts class weights based on their 
frequency  in  each  bootstrap  subsample  to  handle 
imbalance

bootstrap True Enables bootstrap sampling (random sampling with 
replacement) for tree construction

min_samples_split 2 Minimum number  of  samples  required  to  split  an 
internal node

min_samples_leaf 1 Minimum number of samples required to be at a leaf 
node

Table 4
Main hyperparameters of the MLP model

Parameter Value Description/Purpose

hidden_layer_sizes (16, 8, 16) Network architecture: three hidden layers with 16, 8, 
and 16 neurons, respectivelyactivation relu Nonlinear activation function

solver adam Adaptive  optimization  algorithm  (Adam)  used  for 
updating network weights



learning_rate adaptive Dynamically  adjusts  the  learning  rate  based  on 
validation error trends

learning_rate_init 0.001 Initial learning rate for the optimizer

alpha 0.0001 L2 regularization parameter preventing overfitting

early_stopping True Stops  training  when  validation  performance  no 
longer improves

validation_fraction 0.1 Fraction  of  data  reserved  for  validation  during 
training

max_iter 1300 Maximum number of training iterations.

n_iter_no_change 50 Number  of  epochs  with  no  improvement  before 
early stopping is triggered

Table 5
Main hyperparameters of the SVM model

Parameter Value Description/Purpose

kernel rbf Kernel type — Radial Basis Function (RBF)C 1.0 Regularization  parameter  controlling  the  trade-off 
between  maximizing  the  margin  and  minimizing 
classification errors

gamma scale Kernel  coefficient  defining  the  influence  radius  of 
individual training samples; automatically scaled as 
1 / (n_features × Var(X))

class_weight balanced Automatically  adjusts  class  weights  inversely 
proportional to class frequencies in the training data
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