CEUR-WS.org/Vol-4163/paperl9.pdf

CEUR
E Workshop
Proceedings

published 2026-02-07

Graph-based data preparation for detecting buffer
overflow vulnerabilities in code within CI/CD pipelines”*

Oleg Savenko®", Silvia Lips®', Piotr Gaj*' and Yevhenii Sierhieiev*

! Khmelnytskyi National University, Instytuts'ka St, 11, Khmelnytskyi, 29000, Ukraine
? Tallinna Tehhnikaiilikool, Ehitajate tee 5, Tallinn, 12616, Estonia
? Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland

Abstract

Buffer overflows remain among the most dangerous vulnerability classes in system and embedded software
because they corrupt memory invariants, enable arbitrary control-flow transfers, and undermine critical
components. We present a fully reproducible “data-to-vision” pipeline for automated detection of stack and
heap overflows and off-by-one errors that combines formal risk conditions with graph-based program
representations (AST/CFG/DFG) and multi-channel renders used to train a three-class detector with class-
aware refinement. The core of the method is twofold. First, we introduce the notion of effective buffer
capacity that deducts protocol-specific overheads and safety reserves from nominal allocation, aligning the
decision boundary with what is actually safe to copy. Second, we define nodal (local) and path-level risk
indicators that couple transfer estimates with guard signals (boundary checks, canaries) and off-by-one
cues, thereby reducing false positives while preserving auditability at the level of minimal root-cause
subgraphs. The pipeline operates as follows: from a fixed code snapshot and a stabilized preprocessor profile
we construct a unified program graph that fuses control- and data-dependencies; we annotate buffers,
sources/sinks, format-string and loop invariants; we compute edge-level transfer estimates and local/chain
risks; candidate subgraphs are rasterized into multi-channel frames and labeled into {Stack, Heap, Off-by-
one}, with curated hard negatives to improve specificity. All artifacts (schemas, toolchain, seeds, profiles) are
version-locked and shipped in an OCI container, yielding byte-for-byte reproducibility in CI/CD and
enabling SARIF outputs and blocking thresholds. On real-world corpora built from CVE/NVD cases and
industrial examples with project-wise 70/15/15 splits, the approach consistently outperforms rule-only
SAST baselines (e.g., Cppcheck, Flawfinder) and non-graph vision baselines in both detection quality and
localization fidelity, while maintaining interpretable reports (class, score, code-span, matched template,
explanation). The contributions are: (i) a deterministic data-preparation stack that turns program graphs
into vision-ready inputs; (ii) formal, class-aware risk metrics that couple transfer size with effective capacity
and guard signals; and (iii) a labeling and hard-negative strategy compatible with CI/CD evaluation without
project leakage. Future extensions include other memory-safety classes (integer overflow, use-after-free,
races), stronger XAI components (contrastive, counterfactual explanations), and code-span-level
remediation suggestions tightly integrated into development workflows.

Keywords

cybersecurity, buffer overflow, machine learning, graphs, yolo, system software

1. Introduction

Software-driven digital transformation has expanded the attack surface of safety-critical domains
(aviation, rail, energy, telecom), where a single memory-safety defect can cascade into service
disruption or remote code execution. Despite the progress of SAST tools, buffer overflows (stack,
heap, off-by-one) remain among the most impactful classes because they emerge from subtle
interactions of control- and data-flow, preprocessor configurations, and build profiles. In high-

*AdvAIT-2025: 2nd International Workshop on Advanced Applied Information Technologies: AI & DSS, December 05, 2025,
Khmelnytskyi, Ukraine, Zilina, Slovakia
" Corresponding author.
" These authors contributed equally.
savenko_oleg_st@ukr.net (O. Savenko); silvia.lips@taltech.ee (S. Lips); piotr.gaj@polsl.pl (P. Gaj);
ysierhieiev@gmail.com (Ye. Sierhieiev)
0000-0002-4104-745X (O. Savenko); 0000-0001-7352-5965 (S. Lips); 0000-0002-2291-7341 (P. Gaj); 0009-0008-9877-9863

(Ye. Sierhieiev)

@ @ © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://orcid.org/0009-0008-9877-9863
https://orcid.org/0000-0002-2291-7341
https://orcid.org/0000-0001-7352-5965
https://orcid.org/0000-0002-4104-745X
mailto:ysierhieiev@gmail.com
mailto:piotr.gaj@polsl.pl
mailto:silvia.lips@taltech.ee
mailto:savenko_oleg_st@ukr.net

velocity CI/CD environments, organizations need reproducible, automatable pipelines that surface
such risks early and consistently across projects and target profiles.

We motivate a data-to-vision approach to static analysis: instead of relying on handcrafted rules
alone, we (i) parse a fixed code snapshot, (ii) build a unified program graph (CFG+DFG with
buffer/guard annotations and edge weights), (iii) compute local and chain risk indicators, and (iv)
rasterize informative subgraphs into multi-channel images with class labels (Stack, Heap, Off-by-
one). This transformation makes complex program structure amenable to mature, data-efficient
vision pipelines while preserving the determinism and auditability required in regulated settings.

2. Related works

Buffer overflows remain an ongoing issue even in well-established development pipelines. Despite
notable improvements in defence techniques and coding best practices, real-world attacks still
exploit subtle differences between what developers assume and the actual behaviour of code paths
and runtime environments. The reviews highlight that classic overflows still happen in modern
system components, libraries, and application software, and their circumvention is often achieved by
changing the context, assembly configuration, or using code fragments where bounds checks are
inconsistent with the real semantics of data copying and formatting [1].

The rise of deep learning for code analysis has redefined the representations crucial for both
vulnerability detection and root-cause localisation. One of the pioneering works demonstrating the
power of graph representations was Devign: it learned to identify vulnerable functions by combining
program semantics in a graph with a GNN architecture. This research showed that “flat” features are
less effective than graph dependencies that maintain the structure of control and data [2]. Further
approaches involving pre-training models on code were proposed, such as VulBERTa, which focuses
on simplified and practical preprocessing. This reduces the barriers to integrating such models into
real pipelines without compromising quality on reference sets [3]. Already in these early works, the
shift from “detection by indicators” to generalised features of graphs and tokens was outlined,
making them better transferable between projects.

Meanwhile, the community has been actively investigating subject-specific graph and task
configurations. In web and PHP environments, ideas for vulnerability detection have developed into
models that integrate graphs with lexical signals and runtime context; it has been demonstrated that
accurately encoding sources, sinks, and sanitisers in a graph can significantly reduce false positive
noise [4]. At the binary analysis level, graph matching variants have emerged for identifying
homologous vulnerabilities, where enhanced focus enables comparing fragments from different
assemblies or optimisation profiles, while maintaining invariant templates of vulnerable structures
[5]. At a more detailed level, property graphs have been proposed to describe programme entities and
relationships in a unified way for precise localisation tasks, when it is necessary not only to “detect”
the vulnerability class but also to produce a compact subgraph relevant to the cause of the error [6].
With the advent of LLMs, the natural progression was to incorporate the context of large language
models into the CPG representation of code: such synthesis enhances portability and improves triage
quality because LLMS effectively “fill in” gaps in local features and help reduce the number of false
positives in poorly commented or non-canonically structured code [7].

The explainability issue, a key challenge for the practical deployment of SAST/ML detectors, is
gradually being addressed through counterfactual justifications and local causality indicators.
Counterfactual explanation methods for graph models enable us to identify which nodes or edges in a
subgraph contributed to the model's decision; this facilitates targeted code correction by developers
and allows tracking of regressions in subsequent commits [8]. At the same time, the quality of such
explanations relies heavily on the accuracy of the data: active learning at the linear annotation level
has demonstrated that systematic label noise in open sets can be mitigated by interactively
reassessing “suspicious” examples and prioritising for review those that most influence the decision
boundary [9]. The rise of micro-benchmarks for static analyzers and LLMs enables tools to be
compared on stable, controlled tasks to identify subtle biases and environmental dependencies [10].

Meanwhile, studies on generalisability across projects and languages reveal train/validation/test
leakage issues in some popular datasets and emphasise the need for rigorous, project-specific splits
and consistency checks of results [11]. On the training side, example selection schemes are being
actively studied: for instance, discarding “hard-to-learn” data at early stages helps stabilise the
decision boundary and speeds up convergence without sacrificing quality on real-world problems
[12]. Finally, cross-language datasets that include patch commits help link a vulnerability class to a
specific remediation and also reduce the risks of overtraining to the stylistic patterns of individual
repositories [13].

Classical static methods have not vanished but have been integrated into hybrid graph schemes.
Heterogeneous graph models that simultaneously encode different types of nodes/edges (tokesemes,
ASTs, CFGs, DFGs, library calls, contracts) demonstrate that a coherent representation of content and
control dependencies enhances detection and localisation, especially for buffer operations [14]. In the
web domain, there is a growing interest in LLM-based techniques that learn from mixed signals
(code, templates, parameter tracking) and can identify invariants of checks and sanitisation in
dynamically generated constructs [15]. A broader assessment of LLM approaches highlights both the
prospects, such as generating correction hints and providing code assistance, and the threats,
including hallucinations, sensitivity to hints, and instability with noisy data. It is especially important
to keep the “human in the loop” and to maintain traceability of signal sources for auditing [16].
Parallel work involving counterfactual augmentation shows that artificial yet semantically consistent
variants of vulnerable or safe fragments improve the distinction in borderline cases, particularly off-
by-one and fencepost situations, where formal boundary checks conflict with the actual amount of
copying [17].

The overall trend towards broadening languages and platforms has led to active investigation of
“non-standard” environments. For example, a GNN detector has been proposed for Go, which
considers the peculiarities of typing and patterns of the standard library, demonstrating competitive
metrics within the domain. [18]. Systematic reviews compare different approaches and conclude that,
without carefully designed datasets and reproducible pipelines, method comparisons are invalid. The
environment, preprocessor settings, and feature building artefacts must be clearly documented to
distinguish the “model input” from the “data input” [19]. At the code preprocessing stage, slicing
methods are crucial: emphasising relevant slices around buffer operations significantly reduces noise
and enhances root cause localisation, especially in large monolithic functions and interprocedural
scenarios [20].

A separate layer concerns data quality and the example selection policy. Active learning and semi-
automatic “relabeling” of complex cases help reduce systematic bias and leakage but require robust
data traceability and audit trails at the project, patch, and build profile levels to prevent class blurring
and leakage between training and test cases [9, 11, 12]. Micro-benchmarks complement these
practices by enabling detailed comparison of tools and exposing implementation-detail dependencies
that are hard to capture on large datasets [10], while cross-language corpora with commit pairs
support realistic “before-and-after” remediation scenarios [13].

For the sake of completeness, it is worth mentioning related areas that focus not on code itself but
on network and architectural aspects of cybersecurity. These areas illustrate important
organisational and technical patterns relevant to CI/CD practice and risk modelling. In network
security, a combination of passive DNS monitoring and active DNS probing has been proposed to
detect botnets employing anti-evasion techniques. Two studies show that combining multiple
surveillance channels (passive and active) enhances resistance to evasion and enables more accurate
identification of malicious domain patterns [21, 22]. At the architecture level of multi-computer
systems, a method and criteria for selecting the next centralisation option with traps and baits have
been developed: this line of work demonstrates how formalised decision-making rules and
comparison of alternatives influence overall cyber resilience and should be aligned with the goals of
system protection and observability [23, 24]. Finally, corporate network cybersecurity assessment
systems focus on integrated health indicators that combine metrics from different layers and enable
the identification of “bottlenecks” in the infrastructure, which directly influences patch prioritisation

and deployment policies [25]. Although these studies use artifacts other than source code, their
methodological logic—integrating different types of signals, formal decision criteria, and
reproducibility auditing—is consistent with the “data-to-vision” approaches to SAST that we
promote.

In summary, the current state of research on code vulnerability detection is shifting from “point”
indicators to structurally consistent graph representations and data “cleansing” procedures, where
solution explainability and pipeline reproducibility become just as important as absolute accuracy
metrics. It is this approach—unification of program graphs, stabilisation of preprocessor profiles, data
control, and project-level splits—that ensures SAST detection aligns with CI/CD practices and
enables results to be transferred across projects, languages, and build configurations.

3 Methodology: reproducible data-preparation pipeline

We begin with a fixed snapshot of the repository S in a specific state (commit SHA or merge-ref) and
a stabilised preprocessor profile. This removes nondeterminism caused by compilation conditions,
macros, and assembly variants, ensuring that any subsequent feature development can be reproduced
bitwise[15, 16]. After normalisation, the parser produces an inventory of programme entities that will
be utilised at all stages of graph and risk indicator development:

1(S)=|F,v,B,0]| (1)

where S is a code snapshot, F is a set of functions, V is a set of variables, B is a set of buffers, and O
is a set of memory operations. This inventory serves as the “single source of truth” for node and edge
identifiers and enables tracing the origin of each feature back to a line of code [17, 18].

To combine structural and data dependencies, we represent the program as a unified graph [19,
20]. We explicitly preserve interprocedural calls/returns and read/write flows, since their interaction
most often leads to overflows in real-world configurations:

G=(V,E),E=E“°“UE"™® (2)

where V represents the vertices of operations, buffers, and call/return points, CFG are the control
edges (including call/ret), DFG are the read/write data edges with attributes. Combining CFG and
DFG provides a minimal but sufficient structure for risk assessment both locally and across execution
paths.

Next, we define the effective capacity for buffer nodes. It differs from the “raw” size in that it
accounts for overhead (e.g., null-termination of rows) and safety margins [20, 21]. This reduces the
number of false positives when the formally allocated size does not equal the useful data capacity:

S,(v)=cap(v)—overhead(v)—reserve(v) 3)

where cap(v) is the allocated size, overhead(v) is the overhead (such as alignment, line
termination, etc.), and reserve(v) is the reserved volume for security invariants. In practice, this
means that even for obvious cases like char buff [16], the safe copy capacity is 15 bytes [22, 23, 24].

The local overflow criterion compares the estimated transfer size with the effective capacity of the
receiving buffer.[25] We apply it only where sufficient cues are available to calculate the length
(constants, format strings, loop invariants, or conservative upper bounds):

w(e)>S,(dst(e)) 4)

where w(e) is the estimated size in bytes for the write/copy edge, dst(e) is the receive buffer. When
this criterion is satisfied, we mark the corresponding fragment as locally unsafe and include it in the
candidate subgraphs for further analysis.

To obtain a continuous, differentiated threat assessment, we introduce a local risk metric. It
correlates with the relative load but decreases with correct boundary checks and stack canaries, while
increasing with off-by-one features and contextual factors:

Rulx)=0| a0 0,Clx) 4,0, (), ()4 8. (x) ¥

where o () is sigmoid, a(x) is the vector of context attributes for the node or edge, C(x) is the
presence of a correct boundary check, O1(x) is the off-by-one indicator, K(x) is the sign of an active

stack canary, ai, f are weighting factors, is the relative load. Thanks to this form, we can

b
compare candidates by "threat strength" rather than just binary triggers.
Since overflows often result from a series of actions, we gather local contributions along the
execution path. This provides a risk score for a particular data transfer journey from source to write
point:

ChainRisk ()=1-] [(1-R,,.(x)) (6)

XEn

where 7 is the path in G, Ri.(x) is the local risk of element x. The interpretation is simple: the
product is the “safety probability” of the path; the complementary term [1(1-Ry.) is the risk that at
least one element along 7 will cause a problem.

After ranking the subgraphs by risk, we apply overflow-type labelling. The decision is guided by a
class-specific utility that combines memory context features, allocation/copy and bounds checking
signatures, and the off-by-one signal if it dominates:

label (x)= max ® @
abel (x) argkeStaCk,Heap,Off-by-one(Yk k(x))

where ®(x) is the vector of contextual features for class k, yx is the priority weights. This labelling
is convenient for further training and evaluation, as it immediately reflects the practical categories of
fixes in CI/CD.

At the sampling stage, it is important not to artificially “make things easier.” Therefore, we
emphasise “hard” negatives: these are subgraphs without a positive label, but with a high buffer load
and clear protective signals. They reduce the model’s tendency to confuse the absence of guards with
the very presence of vulnerability:

(8)

w(e)

N(x)=I] >1,,C(x)VK(x),0,(x)=0]

b

where 1, is the relative loading threshold, C(x) v K(x) indicates the presence of at least one
protective signal, and O,(x) = 0 signifies the absence of an explicit oftf-by-one. During training, such
examples enhance the detector's specificity, compelling it to depend on causal rather than superficial
correlations, thereby offering a mathematical foundation without overwhelming the section.

Our prototype models graph-to-image change directly, without using a black box method. For
each possible buffer action, we pull out a subgraph. This subgraph includes the buffer node, its
copy/format action, and nearby control/data links. Then, we put this subgraph onto a set two-
dimensional area using a set layout. Control-flow followers go on one side, data links on the other,
and cross-program jumps are kept to a few layers. Nodes in the same grid spot are grouped by simple
pooling. The resulting frame has many channels. Each channel shows node type (buffer, index, guard,
copy call, math), edge type (control, data, call), and simple risk numbers from the graph (like index

and copy size limits, local w(e) guesses, and if guards exist). There are also simple channels for the
target class tag (Stack, Heap, Off-by-one) for teaching and a mask of active areas.

These frames go into a normal one-stage detector like YOLO. Each frame is seen as an image with
one or more weak objects, and the detector guesses bounding boxes and class tags over the grid. The
teaching process is like standard object detection: it uses a mix of class loss and IoU-based regression
loss. We adjust the confidence and IoU levels, so the detector can fit into CI/CD without giving too
many bad alarms. It is key that all settings that change the image creation are in the same setup as the
static analysis tools.

4 Implementation and reproducibility

The implementation is based on the principle of complete determinism: a single fixed code snapshot,
a single fixed toolchain, and a single versioned data schema. The source code is always retrieved from
a specific commit SHA or merge - ref. The working tree is checked for "dirt" before starting, and the
preprocessor profile is stabilised and recorded in the manifest alongside the target ABI, a set of
macros (DEBUG/RELEASE, RTOS flags), the language standard, and a comprehensive list of include
paths. The parsing is carried out on top of Clang/LLVM with full preprocessing; the AST is stored in a
standard form, on which a unified programme graph is created: control arcs (including
interprocedural call/return) and data dependencies (read/write, def-use) with attributes for further
evaluation of w(e). For heterogeneous assemblies, a compilation database is utilised; if it is not
provided, it is reconstructed by intercepting the compilation process, after which “thin” shim headers
eliminate random variations in system includes between distributions.

All intermediate representations have their own schema versions and immutable field semantics.
The inventory {F, V, B, O} is serialised into inventory. Json with global identifiers and coordinates
within the files. The graph and its attributes are serialized into a compact binary container based on
protobuf. Risk indicators, including Rloc and Chain Risk are present in the risk.jsonl record stream
with references to source nodes, edges, and preprocessor context. Training frame generation and
markup occur after the graph stage; each artifact is accompanied by a sha256 hash and a provenance
record that details the container version, commit, and execution time.

Reproducibility is secured through containerisation as an OCI image with fixed digest identifiers
for the dependency chain. The tool operates under identical conditions on GitHub Actions, GitLab CI,
and Jenkins without altering the build infrastructure: the input is always an unchanged snapshot, and
the output remains the same set of artefacts and quality logs. Pseudo-random components (such as
selection of "hard" negatives and tie-breakers during candidate subgraph conflicts) are governed by a
single seed, which is activated in Python and C++ and stored in the startup file. Multithreaded stages
are either unlocked or executed with a fixed number of workers and a stable task distribution,
preventing race conditions when traversing large directory trees.

Quality control enforces invariants on the integrity of the AST/CFG, DFG balance, correctness of
buffer attributes and the stability of wi(e) estimates in response to changes in the order of file
traversal. Any incompatible change in tool versions or preprocessor profile deliberately causes the
run to enter an error state until the schema_version in the manifest is synchronously increased. This
policy prevents hidden drift and guarantees that the results shown in the article are reproducible
byte-for-byte across different environments and runtimes without needing illustrations or extra
schemas.

The resulting dataset is moderately imbalanced, with much more safe code than code with off-by-
one errors, which are not common. To fix this, we used a mix of basic methods. We reduced the
number of easy safe code examples and increased the number of tricky error examples. We also used
the risk scores in the graphs to add examples of safe code that looked risky but were okay. We did this
because in CI/CD, it’s as vital to avoid false alarms as it is to catch actual errors. The system needs to
tell apart truly bad code from code that just looks bad.

5 Case study

Consider a minimal example where overflow occurs only at a "thin" boundary, that is, when the
length of the input string equals the buffer's capacity. The code demonstrates a classic fencepost
problem, where formally available bounds checking does not ensure copy safety:

int copy_user(char *dst, size_t n, const char “src) {
size_t len = strlen(src);

if (len <=n) { // error: should be len < n
memcpy(dst, src, len + 1);
return 0;

/

return -1;

/

At the inventory stage by (3.1) we have F = {copy_user}, V={dst,n,src,len}, B = {dst}, O = {memcpy}.
The consistent graph of the program by (3.2) is contained in the CFG, the arcs from the function input
to the if branches and to memcpy, and in the DFG, the edges src—memcpy. arg2, dst—memcpy.
argl, len— (+1) —memcpy. arg3, as well as the dependency on the predicate len <= n. This creates a
subgraph in which the decision to copy is conditionally closed to the value len and the capacity
parameter n.

The effective capacity for the receiver is modelled by Sy(dst). For interface functions with
parameter n, it is natural to interpret cap(dst)~n, and there is no explicit overhead at the level of
memory allocation, and the reserve for invariants is zero. Therefore, Sy(dst) = n. The transfer volume
w(e) for the edge corresponding to the memcpy call is defined as len + 1, since the null terminator is
also copied. The local criterion works exactly for the case len=n, where w(e)=n+1>n=S(dst), which
signals a guaranteed overflow.

The bounds check semantics in the predicate «len <= n» generate an off-by-one signal. The O;flag
activates because the comparison permits equality, while the branch copies 'len + 1'. The safety flag C
for this fragment is invalid (formally the check exists, but its logic does not align with the extent of
copying), so it does not decrease the risk in the model; the K flag is zero because the stack canary does
not influence the safety of the memcpy operation. In this setup, the local risk rises due to the ratio
w(e)/Sb and active O1, which is not offset by C or K. Since the execution path from the predicate to
the call is brief and lacks additional risk "dampers", the path estimate ChainRisk nearly matches the
local one, and for len = n, it approaches unity.

The subgraph classification selects the Off-by-one category. The key feature here is the
combination of a fencepost predicate with copying, which explicitly increments the length by one.
For len<n, the risk decreases and the subgraph is more likely to receive a neutral label; for len>n, the
situation is no longer “on the edge” and indicates a typical overflow. However, this branch is not
executed because of the if statement.

Regarding the “frame” X, this example is interpreted through touch rather than sight: in the load
channel, a zone around the memcpy node is highlighted; in the off-by-one channel, an active signal
appears in the predicate-argument-copy cluster; in the protection channel, there is no contribution
from the useful boundary-check; and in the local risk channel, a “hot” maximum is formed. The
annotation Y in this case corresponds to a rectangle covering the subgraph { predicate len <=n,
computation len + 1, memcpy node } and the Off-by-one class.

This short example shows how a boundary parameter is managed in many interfaces, where it's
viewed as a capacity and a null terminator gets added automatically. Such patterns show up in our
data in both library helpers and in wrappers made around safer APIs. This makes them a key source
of examples. The subgraph's compactness means it can be used as a visual unit test for the graph-to-
image change. Any encoding change that hides the off-by-one signal quickly makes the detector
perform worse on this case.

Table 1
Overall detection on a project-wise split

Method Precision Recall Fl-measure Time
(s/file)
Cppcheck (rules) 0.34 0.62 0.44 1.8
Flawfinder (rules) 0.28 0.57 0.38 1.5
YOLO (tokens 0.79 0.82 0.80 3.9

only; no graphs)

Ours (graphs + 0.95 0.95 0.946 8.7
risk)

During training, this fragment presents a challenge because external checks can mislead simple
rule templates into classifying it as safe. Despite this, we include it as a positive example. After
adjusting the copy length or predicate, we also use it to generate paired hard negatives. This ensures
that the detector prioritizes the causal combination of w(e), guard conditions, and off-by-one cues,
instead of just detecting the presence of a check or copy call.

Our results are intentionally limited to baselines that integrate into a similar CI/CD setup and are
assessed using the same project split. Graph-based neural models, like Devign and pre-trained
language models like VulBERTa, show good F1 scores on their own benchmarks, usually between 0.6
and 0.9 based on the dataset and task setup. Still, they are usually assessed on specific vulnerability
datasets (Devign, Draper, REVEAL) that use different labeling and splitting methods. So, we don't put
their published numbers in Table 1. We think of them as separate methods. Our work centers on a
repeatable graph-to-image data method, which can be a data source for these models in the future.
The current tests only compare tools that we can run with the same resource and setup limits.

6 Discussion and limitations

The proposed pipeline addresses the practical issue of reproducibility in SAST: all stages — from
capturing a code snapshot to generating graphs and markup — are deterministically controlled by a
single preprocessor profile, tool versions, and data schemas, which makes the results stable for CI/CD
environments and suitable for auditing. However, there are methodological limitations as well. First,
the estimate of w(e) inevitably depends on conservative upper bounds and partial symbolic analysis;
in the presence of complex macros, inline assembler, "thin" library functions, or platform-dependent
behaviour, we either override conservative estimates or mark edges as undefined to avoid "inventing"
the accuracy. Second, the overflow landscape depends on the build configurations: different
preprocessor profiles can activate incompatible code branches, leading to multiple alternative graphs
for the same repository; we address this by executing separate runs for each profile, though this
increases computational cost. Third, risk indicators — although formally defined — rely on the quality
of the input features (types, sizes, loop invariants) and are therefore vulnerable to incompleteness or
noise. Class marking is based on context rules and can be easily applied to “canonical” overflow
patterns, but in different environments (such as specific RTOS, non-standard allocators, or generated
code), it is necessary to adapt guard detectors and recalculate effective capacity. Finally, the method
intentionally does not address dynamic runtime effects, as it relies solely on static information; for
such cases, hybrid SAST-DAST methods or targeted fuzzing on “hot” subgraphs are needed.
Beyond these methodological points, there are threats to validity and scalability that matter in
production. The precision-recall trade-off in the pipeline depends on thresholding of risk indicators
and class-specific heads; mis-calibration across repositories may inflate false alarms in large

monorepos or underreport rare off-by-one cases. Dataset shifts and annotation bias can subtly steer
models toward spurious correlations; ablation and differential-testing against profile variants helps
detect such drift but adds compute cost. Containerization mitigates environment drift, but evolving
third-party headers or transitive build tools can break reproducibility unless SBOM pinning and
digest-locked mirrors are enforced. Finally, in CI/CD integration, latency and coverage must be
balanced: even with caching and incremental parsing, full graph extraction and rendering can tax
shared runners; a practical mitigation is staged evaluation (fast pre-filter, then deep analysis on "hot"
subgraphs), combined with human-in-the-loop triage for borderline findings and periodic re-
calibration of blocking thresholds.

7 Conclusion and future work

We present a reproducible data preparation pipeline for detecting buffer overflows in C/C++: a code
snapshot with fixed profiles, a unified programme graph with transfer weights, formal indicators of
local and path risks, and consistent class labels. This “data-to-vision” transformation makes the
programme dependency structure suitable for further detection without sacrificing audit
transparency. All figures are derived from reproducible artefacts and can be verified afterwards.

Further work involves enhancing the accuracy of w(e) estimation—adding deeper symbolism for
cycles and format strings, verifying length constraints—expanding guard detection with support for
library and platform-specific contracts, and implementing automatic triage of candidate subgraphs
with human oversight to minimise false positives during initial integrations. A separate approach
involves multi-profile analysis (using multiple preprocessor configurations for the same commit)
with intelligent merging of risk signals, as well as creating reference datasets with strict control to
prevent leaks between train, validation, and test sets at both project and patch levels. Practically, we
intend to publish a replication package containing a container, manifests, and control runs in open
repositories to promote independent verification and further comparison.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] M. A. Butt, Z. Ajmal, Z. I. Khan, M. Idrees, Y. Javed, An in-depth survey of bypassing buffer
overflow mitigation techniques, Applied Sciences 12(13) (2022) 6702. doi:10.3390/app12136702.

[2] Z. Zhao, M. Xu, Y. Zhang, L. Chen, X. Luo, Y. Deng, et al, GMN+: A binary homologous
vulnerability detection method based on graph matching neural network with enhanced
attention, Applied Sciences 14(22) (2024) 10762. doi:10.3390/app142210762.

[3] H. Hanif, S. Maffeis, VulBERTa: Simplified source code pre-training for vulnerability detection,
Proc. Int. Joint Conf. on Neural Networks (IJCNN 2022), IEEE (2022).
doi:10.1109/]JCNN55064.2022.9892280.

[4] C.Lin, Y. Xu, Y. Fang, Z. Liu, VulEye: A novel graph neural network vulnerability detection
approach for PHP application, Applied Sciences 13(2) (2023) 825. doi:10.3390/app13020825.

[5] Y. Tian, S. Chen, F. Yin, W. Zhou, CrossVul: A cross-language vulnerability dataset with commit
data, Proc. ACM Joint Eur. Softw. Eng. Conf. Symp. on the Foundations of Software Engineering
(ESEC/FSE 2021), ACM (2021). doi:10.1145/3468264.3473122.

[6] M. Shao, Y. Ding, J. Cao, Y. Li, GraphFVD: Property graph-based fine-grained vulnerability
detection, Comput. Secur. 151 (2025) 104350. doi:10.1016/j.cose.2025.104350.

[7] A. Lekssays, H. Mouhcine, K. Tran, T. Yu, I. Khalil, LLMxCPG: Context-aware vulnerability
detection through code property graph-guided large language models, arXiv preprint
arXiv:2507.16585 (2025).

https://doi.org/10.1016/j.cose.2025.104350.
https://doi.org/10.1145/3468264.3473122.
https://doi.org/10.3390/app13020825.
https://doi.org/10.1109/IJCNN55064.2022.9892280.
https://doi.org/10.3390/app142210762.
https://doi.org/10.3390/app12136702.

[8] Z. Chu, Y. Wan, Q. Li, Y. Wu, H. Zhang, Y. Sui, G. Xu, H. Jin, Graph neural networks for
vulnerability detection: A counterfactual explanation, Proc. ACM SIGSOFT Int. Symp. on
Software Testing and Analysis (ISSTA 2024) (2024) 1-13. d0i:10.1145/3650212.3652136.

[9] A. Kallingal Joshy, M. S. Alam, S. Sharmin, Q. Li, W. Le, ActiveClean: Generating line-level
vulnerability data via active learning, arXiv preprint arXiv:2312.01588 (2023).

[10] R. A. Dubniczky, K. Z. Horvat, T. Bisztray, M. A. Ferrag, L. C. Cordeiro, N. Tihanyi, CASTLE:
Benchmarking dataset for static code analyzers and LLMs towards CWE detection, arXiv
preprint arXiv:2503.09433 (2025).

[11] R. Rahimi, M. Shimmi, H. Okhravi, Data and context matter: Towards generalizing Al-based
software vulnerability detection, arXiv preprint arXiv:2508.16625 (2025).

[12] X. Lan, T. Menzies, B. Xu, Smart Cuts: Enhance active learning for vulnerability detection by
pruning hard-to-learn data, arXiv preprint arXiv:2506.20444 (2025).

[13] G. P. Bhandari, A. Naseer, L. Moonen, CVEfixes: Automated collection of vulnerabilities and
their fixes from open-source software, Proc. Int. Conf. on Predictive Models and Data Analytics
in Software Engineering (PROMISE 2021), ACM (2021). doi:10.1145/3475960.3475985.

[14] Z. Song, J. Wang, S. Liu, Z. Fang, K. Yang, HGVul: A code vulnerability detection method based
on heterogeneous source-level intermediate representation, Security and Communication
Networks (2022) 1919907. d0i:10.1155/2022/1919907.

[15] D. Cao, Y. Liao, X. Shang, RealVul: Can we detect vulnerabilities in web applications with large
language models?, arXiv preprint arXiv:2410.07573 (2024).

[16] Y. Ding, Y. Fu, O. Ibrahim, C. Sitawarin, X. Chen, B. Alomair, D. Wagner, B. Ray, Y. Chen,
Vulnerability detection with code language models: How far are we?, arXiv preprint
arXiv:2403.18624 (2024).

[17] D. Egea, B. Halder, S. Dutta, VISION: Robust and interpretable code vulnerability detection
leveraging counterfactual augmentation, Proc. AAAI/ACM Conf. on Al Ethics, and Society 8(1)
(2025) 812-823. d0i:10.1609/aies.v8i1.36592.

[18] L. Yuan, Y. Fang, Q. Zhang, Z. Liu, Y. Xu, Go source code vulnerability detection method based
on graph neural network, Applied Sciences 15(12) (2025) 6524. doi:10.3390/app15126524.

[19] M. Shimmi, H. Okhravi, R. Rahimi, Al-based software vulnerability detection: A systematic
literature review (2018-2023), arXiv preprint arXiv:2506.10280 (2025).

[20] S. Salimi, M. Kharrazi, VulSlicer: Vulnerability detection through code slicing, J. Syst. Softw. 193
(2022) 111450. d0i:10.1016/j.jss.2022.111450.

[21] O. Savenko, S. Lysenko, A. Kryschuk, Multi-agent based approach of botnet detection in
computer systems, CCIS, 291 (2012) 171-180. https://doi.org/10.1007/978-3-642-31217-5_19 .

[22] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, Multi-Agent Based Approach for Botnet
Detection in a Corporate Area Network Using Fuzzy Logic, Communications in Computer and
Information Science, 370 (2013) 243-254, ISSN: 1865-0929. https://doi.org/10.1007/978-3-642-
38865-1_16.

[23] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova, A technique for the
botnet detection based on DNS-traffic analysis, in Proc. 22nd Int. Conf. Computer Networks,
Brunéw, Poland (2015) 127-138.

[24] S. Lysenko, O. Pomorova, O. Savenko, A. Kryshchuk and K. Bobrovnikova, DNS-based Anti-
evasion Technique for Botnets Detection, in Proceedings of the 8-th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, Warsaw (Poland), September 24-26, 2015. Warsaw. Pp. 453-458.

[25] . Ramskyi, A. Drozd, O. Lyhun, O. Ponochnova, System for cybersecurity evaluation of
corporate networks, Computer Systems and Information Technologies 2 (2025) 123-131.
do0i:10.31891/csit-2025-2-14.

https://doi.org/10.1007/978-3-642-38865-1_16
https://doi.org/10.1007/978-3-642-38865-1_16
https://doi.org/10.1007/978-3-642-31217-5_19
https://doi.org/10.1007/978-3-319-39207-3_7.
https://doi.org/10.1016/j.jss.2022.111450.
https://doi.org/10.3390/app15126524.
https://doi.org/10.1609/aies.v8i1.36592.
https://doi.org/10.1155/2022/1919907.
https://doi.org/10.1145/3475960.3475985.
https://doi.org/10.1145/3650212.3652136.

	1. Introduction
	2. Related works
	3 Methodology: reproducible data-preparation pipeline
	4 Implementation and reproducibility
	5 Case study
	6 Discussion and limitations
	7 Conclusion and future work
	Declaration on Generative AI
	References

