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Abstract
This  study  presents  an  approach  to  develop  an  intelligent  Intrusion  Detection  System  based  on 
Automated  Machine  Learning  (AutoML)  integrated  with  the  Explainable  Artificial  Intelligence  (XAI) 
methods.  The  experiments  were  conducted  using  a  dataset derived  from  UNSW-NB15,  containing 
examples of both normal and malicious network traffic. The AutoML workflow was implemented using 
the PyCaret library, which enabled automated preprocessing, selection of the most effective algorithms, 
and hyperparameter optimization with no manual manipulations. The best performance was achieved by 
the Random Forest Classifier, which, at the optimal decision threshold determined by Youden’s J index (J  
=  0.617),  reached  accuracy  =  0.9972  and  AUC =  0.9999,  indicating  an  almost  perfect  discriminative 
capability.  The  application  of  the  SHAP method  allowed  to  interpret  the  contribution  of  individual 
features  to  the  classification  process  and showed  the  transparency of  the  model’s  decisions.  The 
developed model was integrated into an IDS system deployed in a KVM-based virtualized laboratory 
environment, allowing real-time evaluation under realistic network load conditions. The obtained results  
demonstrate that combination of AutoML and XAI provides an effective approach to building accurate,  
robust, and interpretable next-generation cybersecurity systems.
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1. Introduction

The  intensive  digitization  of  all  spheres  of  human  activity  has  necessitated  a  high  level  of  
cybersecurity, on which the integrity and continuity of computer networks, industrial systems, and 
state information resources depend. At the same time, the growing number of connected devices  
and  the  increasing  volume of  data  exchange  have  led  to  a  rise  in  vulnerabilities  that  can  be 
exploited by attackers for unauthorized access, data theft, or disruption of system operations. Over 
the past decade, there has been a dramatic increase in the number of cyberattacks, while their 
complexity and level of concealment have significantly complicated timely detection and response. 
Malicious actors increasingly employ traffic encryption, code obfuscation, and multi-stage attack 
techniques, rendering traditional detection approaches progressively less effective. This decline in 
effectiveness underscores the need for innovative, intelligent methods to strengthen cybersecurity 
and enhance the detection and prevention of emerging threats.

Most modern Intrusion Detection and Prevention Systems (IDS/IPS) are based on two main 
approaches — signature-based and behavior-based detection [1,2]. Signature-based methods rely on 
the use of previously known indicators of cyberattacks, such as characteristic patterns of network 
⋆AdvAIT-2025: 2nd International Workshop on Advanced Applied Information Technologies,: AI & DSS December 05, 2025,  
Khmelnytskyi, Ukraine, Zilina, Slovakia 
1∗ Corresponding author.
† These authors contributed equally.

 dmytro.tymoshchuk@gmail.com (D. Tymoshchuk); Zagorodna.n@gmail.com (N. Zagorodna); klots@khmnu.edu.ua 
(Y. Klots); jazkiv@ukr.net (V. Yatskiv); npetlyak@khmnu.edu.ua (N. Petliak) 

 0000-0003-0246-2236 (D. Tymoshchuk); 0000-0002-1808-835X (N. Zagorodna); 0000-0002-3914-0989 (Y. Klots); 0000-
0001-9778-6625 (V. Yatskiv); 0000-0001-5971-4428 (N. Petliak)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

https://orcid.org/0000-0001-5971-4428
https://orcid.org/0000-0001-9778-6625
https://orcid.org/0000-0001-9778-6625
https://orcid.org/0000-0002-3914-0989
https://orcid.org/0000-0002-1808-835X
https://orcid.org/0000-0003-0246-2236
mailto:npetlyak@khmnu.edu.ua
mailto:jazkiv@ukr.net
mailto:klots@khmnu.edu.ua%20
mailto:Zagorodna.n@gmail.com
mailto:dmytro.tymoshchuk@gmail.com


packets, sequences of system commands, or malware code signatures. This approach ensures high 
accuracy  in  detecting  known  types  of  threats  through  precise  matching  against  a  signature 
database. However, it proves to be ineffective against new, modified, or previously unseen (zero-
day) attacks that lack corresponding entries in the system’s database. In contrast, behavior-based 
(anomaly-based)  methods  analyze  network  traffic,  user  activities,  or  system  logs  to  identify 
anomalies  from  a  predefined  “normal”  behavior.  Such  systems  are  capable  of  detecting  new, 
previously  unknown types  of  attacks  that  have  no  signature  counterparts.  Nevertheless,  their 
performance largely depends on the quality of the constructed behavioral profiles, and excessive 
sensitivity to environmental dynamics often results in a high rate of false positives, necessitating 
careful calibration of system parameters.

Given the limitations of traditional methods, the use of Machine Learning (ML) technologies in 
cybersecurity has become increasingly widespread [3–5]. ML algorithms are capable to identify 
complex patterns in large volumes of data automatically, adapting to new types of threats, and 
improving the accuracy of attack detection [6]. Their application enables the integration of the 
advantages of both traditional approaches – detecting both known and unknown attacks while 
minimizing  false  alarms.  The  development  of  intelligent  IDS/IPS  systems  based  on  machine 
learning opens new opportunities for proactive network protection and for enhancing the cyber 
resilience of modern information systems.  State-of-the-art  research in cybersecurity focuses on 
developing optimal models to detect threats accurately and efficiently while minimize false alarms 
and maintain a high level of decision explainability. One of the most promising directions in this  
regard is automated machine learning (AutoML), which enables the automatic selection of optimal 
algorithms,  hyperparameters,  and  model  architectures  without  the  need  for  extensive  expert 
involvement.  Through  AutoML,  the  process  of  building  models  for  intrusion  detection  and 
prevention systems becomes more flexible, reproducible, and scalable. Such approaches allow rapid 
adaptation of models to new types of network traffic and emerging threats while preserving high 
accuracy and performance. 

At  the  same  time,  an  important  direction  in  improving  intelligent  security  systems  is  the 
application of Explainable Artificial Intelligence (XAI) methods, which ensure transparency in the 
decision-making processes of ML models. XAI technologies make it possible to interpret which 
features  influenced the classification of events as malicious or legitimate, thereby increasing the 
transparency  and  trustworthiness  of  automated  threat  detection  systems.  The  integration  of 
AutoML with XAI methods gives the foundation for the development of intelligent, self-adaptive, 
and  interpretable  next-generation  cybersecurity  systems  capable  of  continuous  learning  and 
autonomous improvement during operation.

2. Related Work

Machine learning methods have proven to be effective tools  for analyzing network traffic and 
identifying  various  types  of  attacks,  providing  high  classification  accuracy.  In  recent  years, 
considerable research attention has been devoted to automating the development and optimization 
of machine learning models in the field of cybersecurity. Traditionally, building ML-based intrusion 
detection models requires a high level of expert knowledge in algorithm selection, hyperparameter 
tuning, and feature engineering — factors that limit the adaptability and deployment speed of such 
systems against new attack types. With the emergence of AutoML technologies, this process has 
become  significantly  more  efficient  and  scalable.  AutoML  enables  the  automatic  selection  of  
optimal models, parameters, and feature combinations, allowing the creation of highly accurate 
threat detection systems. Recent studies demonstrate the successful application of AutoML in tasks 
such  as  network  traffic  classification,  anomaly  detection,  malware  identification,  and  phishing 
detection. These solutions substantially reduce the time required to develop effective models and 
enhance  their  adaptability  to  the  dynamically  changing  conditions  of  modern  network 
environments.



The  authors  of  [7]  investigated  and  compared  the  performance  of  AutoML  models  with 
contemporary  state-of-the-art  approaches  for  wireless  signal  classification,  as  well  as  their 
robustness  against  white-box  and  black-box  attacks.  They  proposed  several  AutoML-based 
architectures ResNet, CLDNN, CNN, and RNN which demonstrated high classification accuracy 
while significantly reducing the time required for hyperparameter tuning and model training. The 
authors of [8] proposed a network-oriented AutoML architecture for detecting DDoS attacks in 
software-defined sensor networks (SDSNs). The proposed solution automatically selects the most 
suitable machine learning algorithm by taking into account network load, traffic heterogeneity, and 
detection latency, thereby ensuring efficient operation under attack conditions. The architecture 
was implemented using open-source networking tools and multiple ML models.  In [9], the authors 
evaluated the effectiveness of several AutoML frameworks for network intrusion detection and 
compared  them  with  traditional  machine  learning  methods  using  the  NSL-KDD  dataset.  The 
automated algorithms eliminated the need for manual feature selection, reduced false positives, and 
improved detection accuracy. Experimental results showed that H2O AutoML and MLJar achieved 
90% accuracy, outperforming FLAML (79%) and classical models, which confirms the potential of 
AutoML for developing scalable and adaptive cybersecurity systems. The authors of [10] developed 
ICS-Defender, an automated protection mechanism for Industrial Control Systems (ICS) leveraging 
AutoML  technologies.  The  proposed  approach  combines  intelligent  feature  processing  with 
automated model selection, training, and optimization, thereby reducing dependence on domain 
experts.  Experimental  results  demonstrated  that  ICS-Defender  outperformed  existing  AutoML-
based solutions, achieving up to 94% accuracy and enhancing the resilience of ICS environments to 
cyberattacks. The authors of [11] introduced a method for automating feature construction and 
selection from raw datasets, which represents a logical extension of the ExploreKit algorithm. The 
method integrates a tree-structured representation of the AutoFE (Automated Feature Engineering) 
search  space  with  evolutionary  optimization.  Experiments  conducted  on  the  UNSW-NB15, 
CICDDoS2019,  and APA-DDoS datasets  demonstrated that  the evolutionary feature  generation 
algorithm achieved accuracy comparable to or higher than existing methods while maintaining 
high computational efficiency. The authors of [12] described the Network Traffic Analyzer, a key 
component of the CTI2SA architecture developed within the Cyber-pi project, aimed at improving 
cybersecurity efficiency and ensuring compliance with GDPR requirements. The system is built  
upon the Lambda (λ) architecture, which combines batch and stream processing for large-scale 
network data analysis. Its core module incorporates an automatic machine learning model selection 
mechanism  that  dynamically  identifies  the  optimal  model  to  ensure  continuous  and  accurate 
detection of cyber threats.

In parallel with the development of AutoML, research is actively being conducted in the field of 
Explainable  AI,  which  aims  to  enhance  the  transparency  and  trustworthiness  of  automated 
systems. In cybersecurity, XAI is applied to interpret the decisions of machine learning models, 
particularly by identifying the contribution of individual features to the classification of events as 
malicious or normal. The use of XAI techniques such as SHAP [13], LIME [14], and Permutation  
Feature Importance [15] enables security analysts to better understand the internal mechanisms of 
models, detect training errors, and improve the overall quality of analysis. Integrating XAI into 
IDS/IPS systems not only increases their interpretability but also supports the development of new 
response strategies focused on the causal relationships between attack features.

In [16], the authors addressed the issue of trust in deep learning systems and identified the  
sources  of  mistrust  related  to  model  selection  and  interpretability.  They  outlined  two  key 
directions for enhancing AI reliability: AutoML, which automates the design and optimization of 
neural networks, and interpretability methods, which explain the reasoning behind model decisions 
and improve robustness against adversarial attacks. The study bridges theoretical concepts with 
industrial  applications.  In [17],  the growing importance of  XAI in cybersecurity was analyzed,  
emphasizing that trust in machine learning models is a critical requirement. The authors proposed 
a taxonomy of XAI methods that considers security-related properties and threats specific to the 
domain, and they developed a novel black-box attack designed to assess the robustness of gradient-



based explanation methods. Experiments conducted on three datasets confirmed that the proposed 
attack can distort model explanations without altering the model’s outputs, thus paving the way 
for the development of more secure XAI approaches. The work presented in [18] examined the 
risks  associated  with  the  use  of  XAI  methods,  particularly  counterfactual  explanations,  in 
cybersecurity.  The  authors  demonstrated  that,  while  such  explanations  enhance  model 
transparency  and  trust,  they  can  also  introduce  new  attack  vectors,  including  membership 
inference,  model  extraction,  data  poisoning,  and  backdoor  attacks.  A  novel  black-box  attack 
leveraging XAI to compromise model confidentiality was proposed, and experiments confirmed its 
effectiveness  on  cybersecurity  datasets.  In  [19],  the  authors  explored  the  application  of  XAI 
methods for interpreting attack classification results  in IoT/IIoT networks.  Using the TON IoT 
dataset,  they compared the performance of Decision Tree,  Random Forest,  AdaBoost,  XGBoost, 
ANN, and MLP algorithms, all achieving over 96% accuracy in binary classification. To explain the 
decisions  of  complex  models,  the  authors  employed  LIME,  SHAP,  and  ELI5,  which  improved 
transparency, trust, and interpretability in IoT attack detection. The study in [20] proposed a two-
stage pipeline aimed at enhancing the reliability of network intrusion detection systems. In the first 
stage, an XGBoost model was used for supervised attack detection, and its results were interpreted 
using the SHAP method. In the second stage,  the obtained explanations were used to train an 
autoencoder, enabling the detection of previously unseen attacks. Experiments on the NSL-KDD 
dataset confirmed high accuracy and competitiveness of the proposed approach compared with 
existing cybersecurity methods.

The aim of this study is to develop and evaluate AutoML-based models integrated with XAI 
methods for network traffic analysis in order to enhance threat detection accuracy, reduce false 
positive rates, and ensure interpretability of results within cybersecurity systems.

3. Materials and Methods

In this study, we use the experimental UNSW-NB15 dataset [21–23] for training and evaluating 
machine learning models in the task of network intrusion detection. The dataset was designed to 
reproduce real  network operating conditions and ensure representativeness for next-generation 
intrusion detection systems. 

Overall, the our dataset, constructed based on UNSW-NB15 dataset, contains 257,673 records, of 
which 93,000 observations correspond to normal (benign) network traffic,  while  the remaining 
entries represent anomalous samples associated with different categories of  malicious traffic.  It 
contains 38 input features describing various characteristics of network activity. Each record in the 
dataset  corresponds to an individual  network session,  enabling analysis  at  the session level  of 
interactions between network nodes. The dataset includes both legitimate network traffic samples 
and examples of various types of attacks (Figure 1). Within this study, the problem is formulated as 
a binary classification task, where the target variable indicates whether the network traffic belongs 
to one of two classes: 0 – Normal and 1 – Attack. The aggregation of all attack types into a single  
Attack class simplified the model training process and enabled a more accurate assessment of the 
models’ effectiveness in distinguishing between normal and malicious network traffic.

To build and evaluate the performance of machine learning models, the prepared dataset was 
divided  into  training  and  testing  subsets  in  a  70/30  ratio,  while  maintaining  the  proportional  
distribution of the target variable. This approach helped to prevent class imbalance and ensured a 
reliable assessment of the models’ generalization capability. For each category of malicious traffic, 
the corresponding proportion of samples was preserved within both subsets,  guaranteeing data 
representativeness and validity of testing results. To automate the process of model construction 
and optimization, this study employed AutoML PyCaret [24], a framework built on the scikit-learn 
library.  This  tool  provides  a  comprehensive  end-to-end  approach  to  model  development, 
encompassing all  stages – from data  preprocessing to model  evaluation.  The PyCaret  AutoML 
environment  automatically  performs  essential  data  preparation  steps,  including  missing  value 
imputation,  feature  scaling,  categorical  encoding,  class  balancing,  and  selection  of  the  most 



informative  features.  After  preprocessing,  the  system  compares  a  wide  range  of  algorithms 
including Random Forest [25], Extreme Gradient Boosting (XGBoost) [26], Extra Trees [27], Light 
Gradient Boosting Machine (LightGBM) [28], Gradient Boosting [29], Ridge Classifier [30], Logistic 
Regression  [31],  Multilayer  Perceptron  (MLP)  [32],  and  Support  Vector  Machine  (SVM,  linear 
kernel) [33]. Their performance is evaluated using key metrics such as Accuracy, Precision, Recall, 
F1 score, AUC, Matthews Correlation Coefficient (MCC), and Cohen’s Kappa [34].

Figure 1: Class distribution in the dataset. 

Accuracy represents the proportion of correctly classified samples among all observations and 
reflects the overall effectiveness of the model.  However, it  may be insufficiently informative in 
cases of class imbalance. Precision indicates the proportion of instances predicted as “attack” that 
are  truly  attacks,  and its  high value  is  crucial  for  reducing the  number  of  false  alarms in  an 
intrusion  detection  system.  Recall  measures  the  model’s  ability  to  identify  all  actual  attack 
instances and is essential in cybersecurity, where missing even a small fraction of threats can have 
critical consequences. F1 score combines Precision and Recall into a single balanced indicator, and 
a high F1 value demonstrates an optimal trade-off between detecting attacks and minimizing false 
positives. Area Under the ROC Curve (AUC) describes the model’s ability to distinguish between  
classes  across  different  decision  thresholds;  values  close  to  1  indicate  excellent  discriminative 
performance,  whereas  0.5  corresponds  to  random  guessing.  Matthews  Correlation  Coefficient 
(MCC)  assesses  the  correlation  between  predicted  and  actual  classes,  accounting  for  all  
combinations of true and false outcomes, and is considered one of the most reliable measures of 
binary classification performance, especially when class distributions are uneven. Cohen’s Kappa 
evaluates  the  level  of  agreement  between  the  model’s  predictions  and  the  true  labels  while 
considering  random  coincidence,  and  high  Kappa  values  indicate  that  the  model’s  predictive 
accuracy substantially exceeds random chance.

After identifying the most promising models, automated hyperparameter tuning is performed to 
improve  generalization  quality  without  manual  intervention  from  the  researcher.  The  tuning 
results are validated using k-fold cross-validation, which ensures the objectivity of the evaluation. 
The selected models are then calibrated to enhance the accuracy of probabilistic predictions, after 



which  a  final  pipeline  is  constructed  that  integrates  all  stages  of  data  transformation  and 
prediction.

To interpret the results of the machine learning models, this study employed the SHAP method, 
which belongs to the family of XAI approaches. SHAP provides a quantitative assessment of the 
contribution of each input feature to the model’s  prediction,  enabling an understanding of the 
decision-making logic even in complex “black-box” models. The method is based on cooperative 
game theory, where each feature is treated as a player that contributes to the overall outcome, 
which is the model prediction. For each traffic record, SHAP values are calculated to show how 
much a particular feature increases or decreases the predicted value compared with the baseline or 
average prediction.  Positive values indicate a  higher likelihood that  the sample belongs to the 
Attack class,  while negative values indicate a lower likelihood. One of the main advantages of 
SHAP is its consistency and additivity, meaning that the sum of all SHAP values for the features  
equals the difference between the model prediction and its baseline value. This property ensures a 
transparent  and  theoretically  sound interpretation.  For  global  feature  importance  analysis,  the 
mean absolute SHAP values are used to represent the overall impact of each feature on the model  
across  the  dataset.  For  local  interpretation  of  individual  observations,  force  plots  or  waterfall 
diagrams are created to illustrate the specific factors that lead to a particular prediction. In this  
study, the SHAP method was applied to analyze models developed using the AutoML PyCaret  
framework. This approach made it possible not only to achieve high classification accuracy but also 
to obtain interpretable and reliable results,  which is important for increasing trust in intrusion 
detection systems and for developing effective cybersecurity policies.

4. Results and Discussion

Within  this  study,  the  AutoML PyCaret  framework  was  employed  to  automatically  build  and 
optimize the data processing pipeline and to identify the most effective model for network traffic 
classification.  The  Random Forest  Classifier  demonstrated  the  highest  performance  during  the 
AutoML search (Figure 2). 

The average accuracy for this configuration was approximately 0.9475, indicating high precision 
in  recognizing  different  types  of  attacks  and  stable  model  performance  on  the  test  data.  The 
constructed  PyCaret  pipeline  consisted  of  three  main  stages:  filling  missing  values  (when 
necessary), calibrating predicted probabilities, and performing classification using an ensemble of 
decision trees.

At the first stage, the dataset was checked for missing values. The main classifier used was the  
Random  Forest  Classifier,  which  represents  an  ensemble  of  independent  decision  trees  that 
combine  their  voting  results  to  produce  the  final  prediction.  The  model  parameters  included 
n_estimators = 325 (the number of trees in the forest), criterion = 'gini' (the splitting criterion for  
assessing  node  purity),  max_features  =  'sqrt'  (used  to  reduce  correlation  between  trees),  and 
max_depth = None, which allows the trees to grow until full data separation, providing high model 
flexibility.  The  parameter  n_jobs  =  -1  enabled  the  use  of  all  processor  cores  for  parallel 
computation,  while  random_state  =  22  ensured  experiment  reproducibility.  Since  reliable 
probability estimates are crucial in cybersecurity tasks, not only class labels were obtained but also 
calibrated  probabilities.  To  achieve  this,  the  classifier  was  additionally  calibrated  using 
CalibratedClassifierCV  with  parameters  method  =  'sigmoid',  cv  =  5,  and  ensemble  =  True. 
Calibration based on the sigmoid function (Platt’s method) made it possible to correctly estimate  
prediction uncertainty and produce accurate probabilistic assessments of class membership [35].  
Averaging  the  results  of  five  folds  during  cross  validation  provided  model  generalization  and 
reduced random fluctuations in the probability distributions. The use of PyCaret AutoML provides 
built-in  mechanisms  for  mitigating  overfitting,  including  k-fold  cross-validation,  automated 
hyperparameter optimization, and a separate test set, which reduces the risk of excessive model 
fitting to the training data.



Figure 2: Performance heatmap comparing the efficiency of AutoML (PyCaret) models. 

To  evaluate  the  classification  performance,  three  versions  of  the  confusion  matrix  were 
constructed, showing the distribution of correct and incorrect model predictions under different 
decision thresholds (Figure 3). 

 

a) b)
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Figure 3: Confusion matrices of the model at different decision thresholds: (a) standard (0.5), (b) 
F1-based (0.565), and (c) Youden’s J-based (0.617).

The base confusion matrix (Figure 3a) was constructed for the standard decision threshold of 
0.5, while the other two correspond to optimized thresholds determined using the maximum F1  
score (Figure 3b) and Youden’s J index (Figure 3c). The F1 threshold approach provides the best 
compromise  between  Precision  and  Recall,  whereas  the  Youden  J  threshold  method  aims  to 
maximize the overall discriminative capability of the model by simultaneously improving Recall 
and Specificity. The obtained results show that at the default threshold of 0.5, the model achieved  
high  classification  accuracy,  correctly  identifying  27,787  true  negatives  (TN)  and  49,301  true 
positives (TP), with 113 false positives (FP) and 101 false negatives (FN). Optimization according to 
the  F1  criterion  at  a  threshold  of  0.565  reduced  the  number  of  false  positives  to  72,  while  
maintaining a high number of true positives (TP = 49,266). In turn, Youden’s J index defined a  
slightly higher optimal threshold of 0.617, which provided the best balance between Recall and 
Specificity:  the  number  of  false  positives  decreased  to  55,  and  the  number  of  true  positives 
remained at 49,239. Thus, adjusting the decision threshold improved classification reliability by 
reducing the proportion of false alarms without a significant loss in detection completeness. The 
most balanced result was achieved at Youden’s J = 0.617, which can be considered the optimal  
threshold for practical implementation in IDS.

Figure 4 presents a comparison of the Precision, Recall, and the combined F1 score metrics for 
each class at the optimal decision threshold determined using Youden’s J index (Youden J threshold 
= 0.617).

The  Normal  class  is  characterized  by Precision  =  0.9942,  Recall  =  0.9980,  and  F1  =  0.9961, 
indicating a  very small  number of  false  positive predictions.  For  the Attack class,  Precision is  
slightly higher (Precision = 0.9989, F1 = 0.9978), although Recall = 0.9967 suggests a few missed 
attack instances. The overall Accuracy represents the proportion of all correctly classified samples 
(both normal traffic and attacks) relative to the total number of records. This metric summarizes 
the model’s general performance, showing how well the classifier reproduces the structure of all 
classes  without  focusing  on  individual  distributions.  The  total  classification  accuracy  reached 
0.9972, confirming the stable performance of the model across both classes. 

Figure 5 shows the average metric values in two forms: macro average and weighted average.



Figure 4: Classification  performance metrics  per  class  and averaged  values  at  the  Youden’s  J 
threshold. 

Figure 5: Comparison of  macro and weighted average classification metrics at  the Youden’s J  
threshold. 

The Macro Average metric represents the arithmetic mean of the metric values calculated across 
all classes, without considering their frequency in the dataset:

Macro Avg(M )= 1
K
∑
i=1

K

M i (1)

where K is the number of classes and Mi   is the value of the metric (Precision, Recall, or F1) for 
the i-th class.



In contrast, the Weighted Average takes into account the proportion of each class in the dataset, 
which allows a more accurate evaluation of the overall model performance in the presence of class  
imbalance.: 

Weighted Avg(M )=
∑
i=1

K

(ni⋅M i)

∑
i=1

K

ni

(2)

where ni is the number of samples (support) in the i-th class.
Based on the calculations, the results show Macro Avg (Precision) = 0.9965, Macro Avg (Recall)  

= 0.9974, and Macro Avg (F1) = 0.9969, while the Weighted Average displays consistently high 
values of 0.9972 for all three metrics. This indicates the balanced performance of the classifier. The 
model effectively recognizes both legitimate and malicious traffic without favoring one class over 
the other.

Figure 6 illustrates the relationship between the True Positive Rate (TPR), True Negative Rate 
(TNR), and the Youden’s J index (J = TPR − FPR) as a function of the decision threshold. As the  
threshold increases, a predictable rise in TNR (Specificity) and a slight decrease in TPR (Recall) can  
be observed, allowing the determination of the optimal equilibrium point between these indicators. 
The maximum value of Youden’s J index is achieved at the threshold 0.6171, which provides the  
best balance between effective attack detection and the minimization of the False Positive Rate 
(FPR). 

Figure 6: TPR, TNR, and Youden’s J versus decision threshold. 

Figure 7 presents the Receiver Operating Characteristic (ROC) curve of the model,  with the 
point corresponding to the optimal threshold determined by Youden’s J index marked on the graph.

The Area Under the Curve (AUC = 0.9999) indicates an exceptionally high discriminative ability 
of the model, showing that it almost perfectly distinguishes between normal and attack traffic. This 



result  confirms  the  consistency  of  the  classifier  with  the  optimal  decision  criterion  and 
demonstrates its effectiveness for practical implementation in intrusion detection systems.

Figure  8  presents  the  results  of  the  global  SHAP  analysis  for  the  Attack  class  (class  1),  
illustrating the relative contribution of the most important features to the decision-making process 
of the Random Forest model.

Figure 7: ROC curve with the optimal Youden’s J threshold marked. 

Figure 8: Global SHAP feature importance for the Attack class (Random Forest model). 



The horizontal  axis shows the mean absolute SHAP value,  which quantitatively reflects the 
importance of each feature in predicting the probability of an attack. The parameters sttl (≈ 0.11) 
and ct_state_ttl (≈ 0.07) have the strongest influence on the predictions. These features describe the 
temporal  characteristics  of  packets  and the connection states  at  the network level.  Their  high 
importance indicates that variations in Time to Live (TTL) values and the frequency of specific TTL 
states are key indicators distinguishing legitimate from malicious traffic. The next most influential 
features are dttl, sloss, swin, sbytes, and smean (within the range of 0.03–0.04), which represent 
behavioral  and  transport  properties  of  network  flows  such  as  packet  loss  rate,  TCP  window 
parameters, total transmitted bytes, and average packet size. These indicators allow the model to 
effectively detect channel overloads or deviations from normal session profiles, which are typical  
for DoS and scanning attacks. The features ct_dst_sport_ltm and ct_dst_src_ltm (≈ 0.02) show a 
slightly lower yet still  significant contribution, as they represent the recurrence of connections 
between the same IP addresses and ports within the last 100 sessions — a common pattern for brute 
force  or  port  scanning  attacks.  The  combined  contribution  of  the  remaining  29  features  is 
approximately 0.17. 

Figure 9 shows the SHAP summary plot for the Attack class (class 1),  which illustrates the  
distribution of feature impacts (SHAP values) on the Random Forest model’s decision to classify 
network traffic as malicious. 

Figure 9: SHAP summary plot for the Attack class showing feature impact on the Random Forest  
model’s decisions. 

On the horizontal axis, the plot displays the extent and direction of each feature’s contribution  
to the prediction. Higher SHAP values push the model toward the Attack class, whereas lower  
values reduce this likelihood. The color scale reflects the normalized feature values,  where red 



corresponds to high feature values and blue to low ones. The most influential features in predicting 
attacks are sttl, ct_state_ttl, and dttl, which describe the temporal parameters and connection states  
at the network level. High feature values substantially increase the probability of classification as 
Attack, whereas low values reduce it. This behavior highlights the model’s sensitivity to abnormal 
TTL characteristics. 

Figure 10 presents a local SHAP explanation in the form of a waterfall plot for an individual  
traffic sample (Sample 73), which was classified by the Random Forest model as Attack (class 1)  
with a predicted probability of f(x) = 0.85. 

The plot illustrates how individual features contribute to shifting the model output from the 
baseline value E[f(X)] = 0.675 (the average predicted probability across the dataset) toward the final 
result for this particular observation. Positive contributions (shown in red) increase the probability 
of classification as Attack, while negative contributions (shown in blue) decrease it. The strongest 
positive  effects  come  from  the  features  sttl  (+0.06)  and  dttl  (+0.04).  Slightly  smaller  but  still 
noticeable contributions are made by ct_dst_src_ltm (+0.02), sload (+0.02), dur (+0.02), and dinpkt 
(+0.02),  which describe source activity and flow duration, typical indicators of high connection 
intensity that often occur during attacks. The results of the SHAP analysis confirm that the model  
is based on logically consistent relationships aligned with the behavioral characteristics of network 
attacks.  This  provides  not  only  high  classification  accuracy  but  also  interpretability,  which  is 
essential for practical use in intrusion detection systems.

Figure 10: Local SHAP explanation for Sample 73 classified as Attack. 

The developed machine learning model was integrated into the IDS as an analytical module for 
real  time  network  traffic  classification.  The  integration  was  carried  out  within  an  isolated 
laboratory environment deployed on a Kernel based Virtual Machine (KVM) hypervisor,  which 
made it possible to simulate a complex multilayer infrastructure and create controlled conditions 
for  testing.  This  approach  allowed  the  reproduction  of  realistic  interaction  scenarios  between 
legitimate users and potential attackers and enabled the evaluation of model performance under 
conditions similar to real corporate networks. The virtual environment included several operating 



systems with different functional roles. Parrot Security OS and Kali Linux were used to initiate 
attacks and perform penetration tests, generating traffic that contained signs of malicious activity. 
Ubuntu Linux operated as a server providing common network services such as HTTP, DNS, IMAP, 
SMTP, and SSH. Metasploitable VM served as a vulnerable machine for testing exploits,  while 
Windows Server simulated a corporate environment, running Active Directory, DNS, DHCP, File  
Services, and IIS. During testing, network traffic from all virtual machines was redirected through 
the IDS sensor, which performed data collection, preliminary processing, and feature extraction 
[36, 37] for further analysis. The processed data were then sent to the machine learning model,  
which classified the network flows as Normal or Attack. The classification results were stored for  
statistical evaluation, comparison with reference data, and performance metric calculation. This  
setup enabled a comprehensive assessment of the model under realistic network load conditions. 
The laboratory integration confirmed that the IDS equipped with the embedded machine learning 
model was able to detect attacks with high accuracy and a low false positive rate.

5. Conclusion

This  study  demonstrated  that  combining  the  AutoML approach  with  Explainable  AI  methods 
enables  the  development  of  a  highly  accurate  and  interpretable  model  for  intrusion  detection 
systems. A reproducible processing pipeline was designed, covering all stages from preprocessing 
to  probability  calibration.  It  made  possible  to  automate  algorithm  selection,  hyperparameter 
optimization, and improve the stability of the results. The best configuration was achieved using 
the Random Forest model, which at the optimal threshold determined by Youden’s J index reached 
Accuracy = 0.9972 and an almost perfect ability to distinguish between classes (AUC = 0.9999).  
Optimization of the decision threshold according to the Youden’s J criterion reduced the number of 
false positives without a noticeable loss of Recall, while interpretability analysis with the SHAP 
method confirmed the logical and well-founded nature of the model’s decisions. The integration of 
the  developed  model  as  an  analytical  module  into  the  IDS  within  a  KVM-based  laboratory 
environment with a multi component infrastructure confirmed its practical effectiveness for real 
time operation. The combination of AutoML methods and XAI explanations improved accuracy, 
transparency and trust in the results, which are key prerequisites for implementing such solutions 
in modern cybersecurity systems.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to grammar and spell  
check, and improve the text readability. After using the tool, the authors reviewed and edited the  
content as needed to take full responsibility for the publication’s content. 
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