CEUR-WS.org/Vol-4163/paper20.pdf

CEUR
E Workshop
Proceedings

published 2026-02-07

AutoML and explainable Al-based approach to enhance
the efficiency and interpretability of IDS*

Dmytro Tymoshchuk’ ', Nataliya Zagorodna®f, Yurii Klots?*, Vasyl Yatskiv*'and Nataliia
Petliak®"

! Ternopil Ivan Puluj National Technical University, Ruska str. 56, Ternopil, 46001, Ukraine
? Khmelnytskyi National University, 11, Instytuts’ka str., Khmelnytskyi, 29016, Ukraine
’ West Ukrainian National University, 11 Lvivska str., 46009 Ternopil, Ukraine

Abstract

This study presents an approach to develop an intelligent Intrusion Detection System based on
Automated Machine Learning (AutoML) integrated with the Explainable Artificial Intelligence (XAI)
methods. The experiments were conducted using a dataset derived from UNSW-NB15, containing
examples of both normal and malicious network traffic. The AutoML workflow was implemented using
the PyCaret library, which enabled automated preprocessing, selection of the most effective algorithms,
and hyperparameter optimization with no manual manipulations. The best performance was achieved by
the Random Forest Classifier, which, at the optimal decision threshold determined by Youden’s J index (J
= 0.617), reached accuracy = 0.9972 and AUC = 0.9999, indicating an almost perfect discriminative
capability. The application of the SHAP method allowed to interpret the contribution of individual
features to the classification process and showed the transparency of the model’s decisions. The
developed model was integrated into an IDS system deployed in a KVM-based virtualized laboratory
environment, allowing real-time evaluation under realistic network load conditions. The obtained results
demonstrate that combination of AutoML and XAI provides an effective approach to building accurate,
robust, and interpretable next-generation cybersecurity systems.

Keywords

IDS, machine learning, Explainable AI (XAI), SHAP, AutoML, cybersecurity, hypervisor, operating
systems. '

1. Introduction

The intensive digitization of all spheres of human activity has necessitated a high level of
cybersecurity, on which the integrity and continuity of computer networks, industrial systems, and
state information resources depend. At the same time, the growing number of connected devices
and the increasing volume of data exchange have led to a rise in vulnerabilities that can be
exploited by attackers for unauthorized access, data theft, or disruption of system operations. Over
the past decade, there has been a dramatic increase in the number of cyberattacks, while their
complexity and level of concealment have significantly complicated timely detection and response.
Malicious actors increasingly employ traffic encryption, code obfuscation, and multi-stage attack
techniques, rendering traditional detection approaches progressively less effective. This decline in
effectiveness underscores the need for innovative, intelligent methods to strengthen cybersecurity
and enhance the detection and prevention of emerging threats.

Most modern Intrusion Detection and Prevention Systems (IDS/IPS) are based on two main
approaches — signature-based and behavior-based detection [1,2]. Signature-based methods rely on
the use of previously known indicators of cyberattacks, such as characteristic patterns of network

*AdvAIT-2025: 2nd International Workshop on Advanced Applied Information Technologies,: AI & DSS December 05, 2025,
Khmelnytskyi, Ukraine, Zilina, Slovakia
" Corresponding author.
" These authors contributed equally.
dmytro.tymoshchuk@gmail.com (D. Tymoshchuk); Zagorodna.n@gmail.com (N. Zagorodna); klots@khmnu.edu.ua
(Y. Klots); jazkiv@ukr.net (V. Yatskiv); npetlyak@khmnu.edu.ua (N. Petliak)

0000-0003-0246-2236 (D. Tymoshchuk); 0000-0002-1808-835X (N. Zagorodna); 0000-0002-3914-0989 (Y. Klots); 0000-
0001-9778-6625 (V. Yatskiv); 0000-0001-5971-4428 (N. Petliak)

@ @ © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://orcid.org/0000-0001-5971-4428
https://orcid.org/0000-0001-9778-6625
https://orcid.org/0000-0001-9778-6625
https://orcid.org/0000-0002-3914-0989
https://orcid.org/0000-0002-1808-835X
https://orcid.org/0000-0003-0246-2236
mailto:npetlyak@khmnu.edu.ua
mailto:jazkiv@ukr.net
mailto:klots@khmnu.edu.ua%20
mailto:Zagorodna.n@gmail.com
mailto:dmytro.tymoshchuk@gmail.com

packets, sequences of system commands, or malware code signatures. This approach ensures high
accuracy in detecting known types of threats through precise matching against a signature
database. However, it proves to be ineffective against new, modified, or previously unseen (zero-
day) attacks that lack corresponding entries in the system’s database. In contrast, behavior-based
(anomaly-based) methods analyze network traffic, user activities, or system logs to identify
anomalies from a predefined “normal” behavior. Such systems are capable of detecting new,
previously unknown types of attacks that have no signature counterparts. Nevertheless, their
performance largely depends on the quality of the constructed behavioral profiles, and excessive
sensitivity to environmental dynamics often results in a high rate of false positives, necessitating
careful calibration of system parameters.

Given the limitations of traditional methods, the use of Machine Learning (ML) technologies in
cybersecurity has become increasingly widespread [3-5]. ML algorithms are capable to identify
complex patterns in large volumes of data automatically, adapting to new types of threats, and
improving the accuracy of attack detection [6]. Their application enables the integration of the
advantages of both traditional approaches — detecting both known and unknown attacks while
minimizing false alarms. The development of intelligent IDS/IPS systems based on machine
learning opens new opportunities for proactive network protection and for enhancing the cyber
resilience of modern information systems. State-of-the-art research in cybersecurity focuses on
developing optimal models to detect threats accurately and efficiently while minimize false alarms
and maintain a high level of decision explainability. One of the most promising directions in this
regard is automated machine learning (AutoML), which enables the automatic selection of optimal
algorithms, hyperparameters, and model architectures without the need for extensive expert
involvement. Through AutoML, the process of building models for intrusion detection and
prevention systems becomes more flexible, reproducible, and scalable. Such approaches allow rapid
adaptation of models to new types of network traffic and emerging threats while preserving high
accuracy and performance.

At the same time, an important direction in improving intelligent security systems is the
application of Explainable Artificial Intelligence (XAI) methods, which ensure transparency in the
decision-making processes of ML models. XAI technologies make it possible to interpret which
features influenced the classification of events as malicious or legitimate, thereby increasing the
transparency and trustworthiness of automated threat detection systems. The integration of
AutoML with XAI methods gives the foundation for the development of intelligent, self-adaptive,
and interpretable next-generation cybersecurity systems capable of continuous learning and
autonomous improvement during operation.

2. Related Work

Machine learning methods have proven to be effective tools for analyzing network traffic and
identifying various types of attacks, providing high classification accuracy. In recent years,
considerable research attention has been devoted to automating the development and optimization
of machine learning models in the field of cybersecurity. Traditionally, building ML-based intrusion
detection models requires a high level of expert knowledge in algorithm selection, hyperparameter
tuning, and feature engineering — factors that limit the adaptability and deployment speed of such
systems against new attack types. With the emergence of AutoML technologies, this process has
become significantly more efficient and scalable. AutoML enables the automatic selection of
optimal models, parameters, and feature combinations, allowing the creation of highly accurate
threat detection systems. Recent studies demonstrate the successful application of AutoML in tasks
such as network traffic classification, anomaly detection, malware identification, and phishing
detection. These solutions substantially reduce the time required to develop effective models and
enhance their adaptability to the dynamically changing conditions of modern network
environments.

The authors of [7] investigated and compared the performance of AutoML models with
contemporary state-of-the-art approaches for wireless signal classification, as well as their
robustness against white-box and black-box attacks. They proposed several AutoML-based
architectures ResNet, CLDNN, CNN, and RNN which demonstrated high classification accuracy
while significantly reducing the time required for hyperparameter tuning and model training. The
authors of [8] proposed a network-oriented AutoML architecture for detecting DDoS attacks in
software-defined sensor networks (SDSNs). The proposed solution automatically selects the most
suitable machine learning algorithm by taking into account network load, traffic heterogeneity, and
detection latency, thereby ensuring efficient operation under attack conditions. The architecture
was implemented using open-source networking tools and multiple ML models. In [9], the authors
evaluated the effectiveness of several AutoML frameworks for network intrusion detection and
compared them with traditional machine learning methods using the NSL-KDD dataset. The
automated algorithms eliminated the need for manual feature selection, reduced false positives, and
improved detection accuracy. Experimental results showed that H20 AutoML and MLJar achieved
90% accuracy, outperforming FLAML (79%) and classical models, which confirms the potential of
AutoML for developing scalable and adaptive cybersecurity systems. The authors of [10] developed
ICS-Defender, an automated protection mechanism for Industrial Control Systems (ICS) leveraging
AutoML technologies. The proposed approach combines intelligent feature processing with
automated model selection, training, and optimization, thereby reducing dependence on domain
experts. Experimental results demonstrated that ICS-Defender outperformed existing AutoML-
based solutions, achieving up to 94% accuracy and enhancing the resilience of ICS environments to
cyberattacks. The authors of [11] introduced a method for automating feature construction and
selection from raw datasets, which represents a logical extension of the ExploreKit algorithm. The
method integrates a tree-structured representation of the AutoFE (Automated Feature Engineering)
search space with evolutionary optimization. Experiments conducted on the UNSW-NB15,
CICDDo0S2019, and APA-DDoS datasets demonstrated that the evolutionary feature generation
algorithm achieved accuracy comparable to or higher than existing methods while maintaining
high computational efficiency. The authors of [12] described the Network Traffic Analyzer, a key
component of the CTI2SA architecture developed within the Cyber-pi project, aimed at improving
cybersecurity efficiency and ensuring compliance with GDPR requirements. The system is built
upon the Lambda (A) architecture, which combines batch and stream processing for large-scale
network data analysis. Its core module incorporates an automatic machine learning model selection
mechanism that dynamically identifies the optimal model to ensure continuous and accurate
detection of cyber threats.

In parallel with the development of AutoML, research is actively being conducted in the field of
Explainable AL, which aims to enhance the transparency and trustworthiness of automated
systems. In cybersecurity, XAI is applied to interpret the decisions of machine learning models,
particularly by identifying the contribution of individual features to the classification of events as
malicious or normal. The use of XAI techniques such as SHAP [13], LIME [14], and Permutation
Feature Importance [15] enables security analysts to better understand the internal mechanisms of
models, detect training errors, and improve the overall quality of analysis. Integrating XAI into
IDS/IPS systems not only increases their interpretability but also supports the development of new
response strategies focused on the causal relationships between attack features.

In [16], the authors addressed the issue of trust in deep learning systems and identified the
sources of mistrust related to model selection and interpretability. They outlined two key
directions for enhancing AI reliability: AutoML, which automates the design and optimization of
neural networks, and interpretability methods, which explain the reasoning behind model decisions
and improve robustness against adversarial attacks. The study bridges theoretical concepts with
industrial applications. In [17], the growing importance of XAI in cybersecurity was analyzed,
emphasizing that trust in machine learning models is a critical requirement. The authors proposed
a taxonomy of XAI methods that considers security-related properties and threats specific to the
domain, and they developed a novel black-box attack designed to assess the robustness of gradient-

based explanation methods. Experiments conducted on three datasets confirmed that the proposed
attack can distort model explanations without altering the model’s outputs, thus paving the way
for the development of more secure XAl approaches. The work presented in [18] examined the
risks associated with the use of XAI methods, particularly counterfactual explanations, in
cybersecurity. The authors demonstrated that, while such explanations enhance model
transparency and trust, they can also introduce new attack vectors, including membership
inference, model extraction, data poisoning, and backdoor attacks. A novel black-box attack
leveraging XAI to compromise model confidentiality was proposed, and experiments confirmed its
effectiveness on cybersecurity datasets. In [19], the authors explored the application of XAI
methods for interpreting attack classification results in IoT/IIoT networks. Using the TON IoT
dataset, they compared the performance of Decision Tree, Random Forest, AdaBoost, XGBoost,
ANN, and MLP algorithms, all achieving over 96% accuracy in binary classification. To explain the
decisions of complex models, the authors employed LIME, SHAP, and ELI5, which improved
transparency, trust, and interpretability in IoT attack detection. The study in [20] proposed a two-
stage pipeline aimed at enhancing the reliability of network intrusion detection systems. In the first
stage, an XGBoost model was used for supervised attack detection, and its results were interpreted
using the SHAP method. In the second stage, the obtained explanations were used to train an
autoencoder, enabling the detection of previously unseen attacks. Experiments on the NSL-KDD
dataset confirmed high accuracy and competitiveness of the proposed approach compared with
existing cybersecurity methods.

The aim of this study is to develop and evaluate AutoML-based models integrated with XAI
methods for network traffic analysis in order to enhance threat detection accuracy, reduce false
positive rates, and ensure interpretability of results within cybersecurity systems.

3. Materials and Methods

In this study, we use the experimental UNSW-NB15 dataset [21-23] for training and evaluating
machine learning models in the task of network intrusion detection. The dataset was designed to
reproduce real network operating conditions and ensure representativeness for next-generation
intrusion detection systems.

Overall, the our dataset, constructed based on UNSW-NB15 dataset, contains 257,673 records, of
which 93,000 observations correspond to normal (benign) network traffic, while the remaining
entries represent anomalous samples associated with different categories of malicious traffic. It
contains 38 input features describing various characteristics of network activity. Each record in the
dataset corresponds to an individual network session, enabling analysis at the session level of
interactions between network nodes. The dataset includes both legitimate network traffic samples
and examples of various types of attacks (Figure 1). Within this study, the problem is formulated as
a binary classification task, where the target variable indicates whether the network traffic belongs
to one of two classes: 0 — Normal and 1 — Attack. The aggregation of all attack types into a single
Attack class simplified the model training process and enabled a more accurate assessment of the
models’ effectiveness in distinguishing between normal and malicious network traffic.

To build and evaluate the performance of machine learning models, the prepared dataset was
divided into training and testing subsets in a 70/30 ratio, while maintaining the proportional
distribution of the target variable. This approach helped to prevent class imbalance and ensured a
reliable assessment of the models’ generalization capability. For each category of malicious traffic,
the corresponding proportion of samples was preserved within both subsets, guaranteeing data
representativeness and validity of testing results. To automate the process of model construction
and optimization, this study employed AutoML PyCaret [24], a framework built on the scikit-learn
library. This tool provides a comprehensive end-to-end approach to model development,
encompassing all stages — from data preprocessing to model evaluation. The PyCaret AutoML
environment automatically performs essential data preparation steps, including missing value
imputation, feature scaling, categorical encoding, class balancing, and selection of the most

informative features. After preprocessing, the system compares a wide range of algorithms
including Random Forest [25], Extreme Gradient Boosting (XGBoost) [26], Extra Trees [27], Light
Gradient Boosting Machine (LightGBM) [28], Gradient Boosting [29], Ridge Classifier [30], Logistic
Regression [31], Multilayer Perceptron (MLP) [32], and Support Vector Machine (SVM, linear
kernel) [33]. Their performance is evaluated using key metrics such as Accuracy, Precision, Recall,
F1 score, AUC, Matthews Correlation Coefficient (MCC), and Cohen’s Kappa [34].

Class distribution in the dataset

Normal 93,000

Generic 58,871

Exploits 44,525

24,246

Fuzzers

DoS 16,353

=
o
o)
2
©
O

Reconnaissance 13,987

Analysis 2,677
2,329

Backdoors

Shellcode 151

Worms 174

o

20000 40000 60000 80000
Count

Figure 1: Class distribution in the dataset.

Accuracy represents the proportion of correctly classified samples among all observations and
reflects the overall effectiveness of the model. However, it may be insufficiently informative in
cases of class imbalance. Precision indicates the proportion of instances predicted as “attack” that
are truly attacks, and its high value is crucial for reducing the number of false alarms in an
intrusion detection system. Recall measures the model’s ability to identify all actual attack
instances and is essential in cybersecurity, where missing even a small fraction of threats can have
critical consequences. F1 score combines Precision and Recall into a single balanced indicator, and
a high F1 value demonstrates an optimal trade-off between detecting attacks and minimizing false
positives. Area Under the ROC Curve (AUC) describes the model’s ability to distinguish between
classes across different decision thresholds; values close to 1 indicate excellent discriminative
performance, whereas 0.5 corresponds to random guessing. Matthews Correlation Coefficient
(MCC) assesses the correlation between predicted and actual classes, accounting for all
combinations of true and false outcomes, and is considered one of the most reliable measures of
binary classification performance, especially when class distributions are uneven. Cohen’s Kappa
evaluates the level of agreement between the model’s predictions and the true labels while
considering random coincidence, and high Kappa values indicate that the model’s predictive
accuracy substantially exceeds random chance.

After identifying the most promising models, automated hyperparameter tuning is performed to
improve generalization quality without manual intervention from the researcher. The tuning
results are validated using k-fold cross-validation, which ensures the objectivity of the evaluation.
The selected models are then calibrated to enhance the accuracy of probabilistic predictions, after

which a final pipeline is constructed that integrates all stages of data transformation and
prediction.

To interpret the results of the machine learning models, this study employed the SHAP method,
which belongs to the family of XAI approaches. SHAP provides a quantitative assessment of the
contribution of each input feature to the model’s prediction, enabling an understanding of the
decision-making logic even in complex “black-box” models. The method is based on cooperative
game theory, where each feature is treated as a player that contributes to the overall outcome,
which is the model prediction. For each traffic record, SHAP values are calculated to show how
much a particular feature increases or decreases the predicted value compared with the baseline or
average prediction. Positive values indicate a higher likelihood that the sample belongs to the
Attack class, while negative values indicate a lower likelihood. One of the main advantages of
SHAP is its consistency and additivity, meaning that the sum of all SHAP values for the features
equals the difference between the model prediction and its baseline value. This property ensures a
transparent and theoretically sound interpretation. For global feature importance analysis, the
mean absolute SHAP values are used to represent the overall impact of each feature on the model
across the dataset. For local interpretation of individual observations, force plots or waterfall
diagrams are created to illustrate the specific factors that lead to a particular prediction. In this
study, the SHAP method was applied to analyze models developed using the AutoML PyCaret
framework. This approach made it possible not only to achieve high classification accuracy but also
to obtain interpretable and reliable results, which is important for increasing trust in intrusion
detection systems and for developing effective cybersecurity policies.

4. Results and Discussion

Within this study, the AutoML PyCaret framework was employed to automatically build and
optimize the data processing pipeline and to identify the most effective model for network traffic
classification. The Random Forest Classifier demonstrated the highest performance during the
AutoML search (Figure 2).

The average accuracy for this configuration was approximately 0.9475, indicating high precision
in recognizing different types of attacks and stable model performance on the test data. The
constructed PyCaret pipeline consisted of three main stages: filling missing values (when
necessary), calibrating predicted probabilities, and performing classification using an ensemble of
decision trees.

At the first stage, the dataset was checked for missing values. The main classifier used was the
Random Forest Classifier, which represents an ensemble of independent decision trees that
combine their voting results to produce the final prediction. The model parameters included
n_estimators = 325 (the number of trees in the forest), criterion = 'gini' (the splitting criterion for
assessing node purity), max_features = 'sqrt' (used to reduce correlation between trees), and
max_depth = None, which allows the trees to grow until full data separation, providing high model
flexibility. The parameter n_jobs = -1 enabled the use of all processor cores for parallel
computation, while random_state = 22 ensured experiment reproducibility. Since reliable
probability estimates are crucial in cybersecurity tasks, not only class labels were obtained but also
calibrated probabilities. To achieve this, the classifier was additionally calibrated using
CalibratedClassifierCV with parameters method = 'sigmoid’, cv = 5, and ensemble = True.
Calibration based on the sigmoid function (Platt’s method) made it possible to correctly estimate
prediction uncertainty and produce accurate probabilistic assessments of class membership [35].
Averaging the results of five folds during cross validation provided model generalization and
reduced random fluctuations in the probability distributions. The use of PyCaret AutoML provides
built-in mechanisms for mitigating overfitting, including k-fold cross-validation, automated
hyperparameter optimization, and a separate test set, which reduces the risk of excessive model
fitting to the training data.

Performance Heatmap

Random Forest Classifier 4 0.948 0.991 0.957 0.961 0.959 0.886 0.886

0.9
Extreme Gradient Boosting 4 0.946 0.991 0.954 0.962 0.958 0.884 0.884

0.8

Extra Trees Classifier1 0.946 0.989 0.956 0.960 0.958 0.884 0.884

Light Gradient Boosting Machine 1 0.944 0.991 0.952 0.960 0.956 0.878 0.879

Gradient Boosting Classifier 4 0.933 0.986 0.954 0.942 0.948

Ridge Classifier 1

Logistic Regression

SVM - Linear Kernel

MLP Classifier

Figure 2: Performance heatmap comparing the efficiency of AutoML (PyCaret) models.

To evaluate the classification performance, three versions of the confusion matrix were
constructed, showing the distribution of correct and incorrect model predictions under different
decision thresholds (Figure 3).

AutoML (PyCaret): Confusion Matrix AutoML (PyCaret): Confusion Matrix @F1-threshold (0.5654)

40000 40000

Normal
Normal

30000 30000

Actual
Actual

-20000 -20000

Attack
Attack

- 10000 - 10000

i i
Normal Attack Normal Attack
Predicted Predicted

a) b)

AutoML (PyCaret): Confusion Matrix @Youden-J (0.6171)

40000

Normal

30000

Actual

- 20000

Attack

-10000

1
Normal Attack
Predicted

c)

Figure 3: Confusion matrices of the model at different decision thresholds: (a) standard (0.5), (b)
F1-based (0.565), and (c) Youden’s J-based (0.617).

The base confusion matrix (Figure 3a) was constructed for the standard decision threshold of
0.5, while the other two correspond to optimized thresholds determined using the maximum F1
score (Figure 3b) and Youden’s J index (Figure 3c). The F1 threshold approach provides the best
compromise between Precision and Recall, whereas the Youden J threshold method aims to
maximize the overall discriminative capability of the model by simultaneously improving Recall
and Specificity. The obtained results show that at the default threshold of 0.5, the model achieved
high classification accuracy, correctly identifying 27,787 true negatives (TN) and 49,301 true
positives (TP), with 113 false positives (FP) and 101 false negatives (FN). Optimization according to
the F1 criterion at a threshold of 0.565 reduced the number of false positives to 72, while
maintaining a high number of true positives (TP = 49,266). In turn, Youden’s] index defined a
slightly higher optimal threshold of 0.617, which provided the best balance between Recall and
Specificity: the number of false positives decreased to 55, and the number of true positives
remained at 49,239. Thus, adjusting the decision threshold improved classification reliability by
reducing the proportion of false alarms without a significant loss in detection completeness. The
most balanced result was achieved at Youden’s J = 0.617, which can be considered the optimal
threshold for practical implementation in IDS.

Figure 4 presents a comparison of the Precision, Recall, and the combined F1 score metrics for
each class at the optimal decision threshold determined using Youden’s J index (Youden J threshold
= 0.617).

The Normal class is characterized by Precision = 0.9942, Recall = 0.9980, and F1 = 0.9961,
indicating a very small number of false positive predictions. For the Attack class, Precision is
slightly higher (Precision = 0.9989, F1 = 0.9978), although Recall = 0.9967 suggests a few missed
attack instances. The overall Accuracy represents the proportion of all correctly classified samples
(both normal traffic and attacks) relative to the total number of records. This metric summarizes
the model’s general performance, showing how well the classifier reproduces the structure of all
classes without focusing on individual distributions. The total classification accuracy reached
0.9972, confirming the stable performance of the model across both classes.

Figure 5 shows the average metric values in two forms: macro average and weighted average.

Cll%%%ification Metrics per Class (@Youden-J-threshold) Accuracy = 0.9972

0.9989
0.998 -
0.996 -
o
o
193
wn
0.994 -
0.992 -
I Precision
. Recall
B Fl-score
0.990 -

Normal Attack

Figure 4: Classification performance metrics per class and averaged values at the Youden’s J
threshold.

Average Metrics: Macro vs Weighted (@Youden-J-threshold)

0.9972
Weighted Avg 0.9972

0.9972

0.9969

Macro Avg B Precision
0'99- Recall
B Fl-score
0.990 0.992 0.994 0.996 0.998 1.000
Score

Figure 5: Comparison of macro and weighted average classification metrics at the Youden’s]
threshold.

The Macro Average metric represents the arithmetic mean of the metric values calculated across
all classes, without considering their frequency in the dataset:

K
MacroAvg(M):%z M, 1)
i=1

where K is the number of classes and M; is the value of the metric (Precision, Recall, or F1) for
the i-th class.

In contrast, the Weighted Average takes into account the proportion of each class in the dataset,
which allows a more accurate evaluation of the overall model performance in the presence of class
imbalance.:

Z(ni'Mi)
Weighted Avg(M)= ————
n.

1

)

-

1

1

where n; is the number of samples (support) in the i-th class.

Based on the calculations, the results show Macro Avg (Precision) = 0.9965, Macro Avg (Recall)
= 0.9974, and Macro Avg (F1) = 0.9969, while the Weighted Average displays consistently high
values of 0.9972 for all three metrics. This indicates the balanced performance of the classifier. The
model effectively recognizes both legitimate and malicious traffic without favoring one class over
the other.

Figure 6 illustrates the relationship between the True Positive Rate (TPR), True Negative Rate
(TNR), and the Youden’s J index (J = TPR - FPR) as a function of the decision threshold. As the
threshold increases, a predictable rise in TNR (Specificity) and a slight decrease in TPR (Recall) can
be observed, allowing the determination of the optimal equilibrium point between these indicators.
The maximum value of Youden’s J index is achieved at the threshold 0.6171, which provides the
best balance between effective attack detection and the minimization of the False Positive Rate
(FPR).

AutoML (PyCaret): TPR / TNR / Youden's] vs Threshold

T
1.0 ;
1
1
1
1
1
1
1
0.8 + }
1
1
1
1
1
1
1
2 1
0.6 !
1
o 1
S !
[7p] 1
1
0.4)
1
1
1
1
1
1
1
0.2 1
1
i —— TPR (Recall)
1 TNR (Specificity)
: —— Youden's | = TPR - FPR
0.0 1 - —-—- Best) thr=0.6171
1
0.0 0.2 0.4 0.6 0.8 1.0

Threshold

Figure 6: TPR, TNR, and Youden’s J versus decision threshold.

Figure 7 presents the Receiver Operating Characteristic (ROC) curve of the model, with the
point corresponding to the optimal threshold determined by Youden’s J index marked on the graph.
The Area Under the Curve (AUC = 0.9999) indicates an exceptionally high discriminative ability
of the model, showing that it almost perfectly distinguishes between normal and attack traffic. This

result confirms the consistency of the classifier with the optimal decision criterion and
demonstrates its effectiveness for practical implementation in intrusion detection systems.

Figure 8 presents the results of the global SHAP analysis for the Attack class (class 1),
illustrating the relative contribution of the most important features to the decision-making process
of the Random Forest model.

AutoML (PyCaret): ROC Curve (best] marked)

1.0 19— —
//
,/
,/
&
/,/
7’
0.8 A ,,/
,/
//
,/
/,,
N ,
5 061 1
2 ~
e ot
[} '
S 0.4 .
= g
4
,/
//
,/
///
0.2 1 -
//
/,/
/// —— ROC (AUC=0.99990)
// -—-- Random
0017 ® Best]thr=0.6171
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7: ROC curve with the optimal Youden’s J threshold marked.

SHAP Bar Plot - Attack (class 1) - Top 10 Features

sttl +0.11

ct_state_ttl
dttl +0.04

sloss +0.03
swin +0.03
sbytes
smean +0.03
ct_dst_sport_Itm
ct_dst_src_Itm

Sum of 29 other features +0.17

0075 0.100 0.125 0150 0.175

mean(|SHAP value])

0.000 0.025 0.050

Figure 8: Global SHAP feature importance for the Attack class (Random Forest model).

The horizontal axis shows the mean absolute SHAP value, which quantitatively reflects the
importance of each feature in predicting the probability of an attack. The parameters sttl (» 0.11)
and ct_state_ttl (~ 0.07) have the strongest influence on the predictions. These features describe the
temporal characteristics of packets and the connection states at the network level. Their high
importance indicates that variations in Time to Live (TTL) values and the frequency of specific TTL
states are key indicators distinguishing legitimate from malicious traffic. The next most influential
features are dttl, sloss, swin, sbytes, and smean (within the range of 0.03-0.04), which represent
behavioral and transport properties of network flows such as packet loss rate, TCP window
parameters, total transmitted bytes, and average packet size. These indicators allow the model to
effectively detect channel overloads or deviations from normal session profiles, which are typical
for DoS and scanning attacks. The features ct_dst_sport_ltm and ct_dst_src_ltm (» 0.02) show a
slightly lower yet still significant contribution, as they represent the recurrence of connections
between the same IP addresses and ports within the last 100 sessions — a common pattern for brute
force or port scanning attacks. The combined contribution of the remaining 29 features is
approximately 0.17.

Figure 9 shows the SHAP summary plot for the Attack class (class 1), which illustrates the
distribution of feature impacts (SHAP values) on the Random Forest model’s decision to classify
network traffic as malicious.

SHAP Summary Plot - Attack (class 1)

High
sttl supags o coe - Hows o 4.
ct_state_ttl P Y .h..*...
dttl s | conuse
sloss R & |.-+
swin - 4 p..+
sbytes Senite --q-h
smean P —H
ct_dst_sport_Itm --—+-..-
ct_dst_src_Itm .o --m--*—- o e g
dbytes =i _+...... %
sload o nen ..*... %
&

dmean --—0'——
sinpkt -—*-
teprtt —-"—
dload .
dinpkt 4‘-
ct_srv_src ~+- .
dpkts —
synack ...4.
ct_srv_dst ..—+.. o

—0.3 —0.2 —0.1 0.0 01
SHAP value (impact on model output)

Figure 9: SHAP summary plot for the Attack class showing feature impact on the Random Forest
model’s decisions.

On the horizontal axis, the plot displays the extent and direction of each feature’s contribution
to the prediction. Higher SHAP values push the model toward the Attack class, whereas lower
values reduce this likelihood. The color scale reflects the normalized feature values, where red

corresponds to high feature values and blue to low ones. The most influential features in predicting
attacks are sttl, ct_state_ttl, and dttl, which describe the temporal parameters and connection states
at the network level. High feature values substantially increase the probability of classification as
Attack, whereas low values reduce it. This behavior highlights the model’s sensitivity to abnormal
TTL characteristics.

Figure 10 presents a local SHAP explanation in the form of a waterfall plot for an individual
traffic sample (Sample 73), which was classified by the Random Forest model as Attack (class 1)
with a predicted probability of f{x) = 0.85.

The plot illustrates how individual features contribute to shifting the model output from the
baseline value E[f{X)] = 0.675 (the average predicted probability across the dataset) toward the final
result for this particular observation. Positive contributions (shown in red) increase the probability
of classification as Attack, while negative contributions (shown in blue) decrease it. The strongest
positive effects come from the features sttl (+0.06) and dttl (+0.04). Slightly smaller but still
noticeable contributions are made by ct_dst_src_ltm (+0.02), sload (+0.02), dur (+0.02), and dinpkt
(+0.02), which describe source activity and flow duration, typical indicators of high connection
intensity that often occur during attacks. The results of the SHAP analysis confirm that the model
is based on logically consistent relationships aligned with the behavioral characteristics of network
attacks. This provides not only high classification accuracy but also interpretability, which is
essential for practical use in intrusion detection systems.

Waterfall - Attack (class 1), Sample 73
f(x)

swin
sloss
sload

ct_dst_src_Itm

dur . +0.02

dinpkt . +0.02
ct_srv_dst . +0.01
29 other features

0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875
E[fiX)] =0.67

Figure 10: Local SHAP explanation for Sample 73 classified as Attack.

The developed machine learning model was integrated into the IDS as an analytical module for
real time network traffic classification. The integration was carried out within an isolated
laboratory environment deployed on a Kernel based Virtual Machine (KVM) hypervisor, which
made it possible to simulate a complex multilayer infrastructure and create controlled conditions
for testing. This approach allowed the reproduction of realistic interaction scenarios between
legitimate users and potential attackers and enabled the evaluation of model performance under
conditions similar to real corporate networks. The virtual environment included several operating

systems with different functional roles. Parrot Security OS and Kali Linux were used to initiate
attacks and perform penetration tests, generating traffic that contained signs of malicious activity.
Ubuntu Linux operated as a server providing common network services such as HTTP, DNS, IMAP,
SMTP, and SSH. Metasploitable VM served as a vulnerable machine for testing exploits, while
Windows Server simulated a corporate environment, running Active Directory, DNS, DHCP, File
Services, and IIS. During testing, network traffic from all virtual machines was redirected through
the IDS sensor, which performed data collection, preliminary processing, and feature extraction
[36, 37] for further analysis. The processed data were then sent to the machine learning model,
which classified the network flows as Normal or Attack. The classification results were stored for
statistical evaluation, comparison with reference data, and performance metric calculation. This
setup enabled a comprehensive assessment of the model under realistic network load conditions.
The laboratory integration confirmed that the IDS equipped with the embedded machine learning
model was able to detect attacks with high accuracy and a low false positive rate.

5. Conclusion

This study demonstrated that combining the AutoML approach with Explainable AI methods
enables the development of a highly accurate and interpretable model for intrusion detection
systems. A reproducible processing pipeline was designed, covering all stages from preprocessing
to probability calibration. It made possible to automate algorithm selection, hyperparameter
optimization, and improve the stability of the results. The best configuration was achieved using
the Random Forest model, which at the optimal threshold determined by Youden’s J index reached
Accuracy = 0.9972 and an almost perfect ability to distinguish between classes (AUC = 0.9999).
Optimization of the decision threshold according to the Youden’s J criterion reduced the number of
false positives without a noticeable loss of Recall, while interpretability analysis with the SHAP
method confirmed the logical and well-founded nature of the model’s decisions. The integration of
the developed model as an analytical module into the IDS within a KVM-based laboratory
environment with a multi component infrastructure confirmed its practical effectiveness for real
time operation. The combination of AutoML methods and XAI explanations improved accuracy,
transparency and trust in the results, which are key prerequisites for implementing such solutions
in modern cybersecurity systems.

Declaration on Generative Al

During the preparation of this work, the authors used Grammarly in order to grammar and spell
check, and improve the text readability. After using the tool, the authors reviewed and edited the
content as needed to take full responsibility for the publication’s content.

References

[1] What is an intrusion detection system?, Palo Alto Networks (online). URL:
https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-detection-system-ids.

[2] What is an intrusion prevention system?, Palo Alto Networks (online). URL:
https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-prevention-system-ips.

[3] D. Tymoshchuk, O. Yasniy, M. Mytnyk, N. Zagorodna, V. Tymoshchuk, Detection and
classification of DDoS flooding attacks by machine learning method, CEUR Workshop
Proceedings 3842 (2024) 184-195.

[4] N. Petliak, Y. Klots, M. Karpinski, V. Titova, D. Tymoshchuk, Hybrid system for detecting
abnormal traffic in IoT, CEUR Workshop Proceedings 4057 (2025) 21-36.

[5] Y. Klots, V. Titova, N. Petliak, D. Tymoshchuk, N. Zagorodna, Intelligent data monitoring
anomaly detection system based on statistical and machine learning approaches, CEUR
Workshop Proceedings 4042 (2025) 80-89.

https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-prevention-system-ips
https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-detection-system-ids

[6] M. Chornobuk, V. Dubrovin, L. Deineha, Cybersecurity: research on methods for detecting
DDoS attacks, Comput. Syst. Inf. Technol. 4 (2023) 6-9. doi:10.31891/csit-2023-4-1.

[7] K. S. Durbha, S. Amuru, AutoML models for wireless signals classification and their
effectiveness against adversarial attacks, in: Proc. 14th Int. Conf. on Communication Systems
& Networks (COMSNETS), IEEE (2022). doi:10.1109/comsnets53615.2022.9668448.

[8] E. Horsanali, Y. Yigit, G. Secinti, A. Karameseoglu, B. Canberk, Network-aware AutoML
framework for software-defined sensor networks, in: Proc. 17th Int. Conf. on Distributed
Computing in Sensor Systems (DCOSS), IEEE (2021). doi:10.1109/dcoss52077.2021.00076.

[9] N. K. Gyimah, R. Akinie, J. Mwakalonge, B. Izison, A. Mukwaya, D. Ruganuza, M. Sulle, An
AutoML-based approach for network intrusion detection, in: Proc. IEEE SoutheastCon (2025)
1177-1183. doi:10.1109/southeastcon56624.2025.10971461.

[10] D. Vasan, E. J. S. Alqahtani, M. Hammoudeh, A. F. Ahmed, An AutoML-based security
defender for industrial control systems, Int. J. Crit. Infrastruct. Prot. (2024) 100718.
doi:10.1016/j.ijcip.2024.100718.

[11] L. Yang, A. Shami, Towards autonomous cybersecurity: an intelligent AutoML framework for
autonomous intrusion detection, in: Proc. ACM SIGSAC Conf. on Computer and
Communications Security (CCS) (2023) 68-78. doi:10.1145/3689933.3690833.

[12] A. Papanikolaou, A. Alevizopoulos, C. Ilioudis, K. Demertzis, K. Rantos, An AutoML network
traffic analyzer for cyber threat detection, Int. J. Inf. Secur. (2023). do0i:10.1007/s10207-023-
00703-0.

[13] SHAP: A game theoretic approach to explain the output of any machine learning model,
GitHub repository. URL: https://github.com/shap/shap.

[14] Local interpretable model-agnostic explanations (LIME), InterpretML documentation. URL:
https://interpret.ml/docs/lime.html.

[15] Permutation feature importance, scikit-learn documentation. URL:
https://scikit-learn.org/0.24/modules/permutation_importance.html.

[16] M. Amirian, L. Tuggener, R. Chavarriaga, Y. P. Satyawan, F.-P. Schilling, F. Schwenker, T.
Stadelmann, Two to trust: AutoML for safe modelling and interpretable deep learning for
robustness, in: Trustworthy AI - Integrating Learning, Optimization and Reasoning, Springer,
Cham (2021) 268-275. doi:10.1007/978-3-030-73959-1_23.

[17] A. Kuppa, N.-A. Le-Khac, Black box attacks on explainable artificial intelligence (XAI) methods
in cyber security, in: Proc. Int. Joint Conf. on Neural Networks (IJCNN), IEEE (2020).
doi:10.1109/ijcnn48605.2020.9206780.

[18] A. Kuppa, N.-A. Le-Khac, Adversarial XAl methods in cybersecurity, IEEE Trans. Inf. Forensics
Secur. 16 (2021) 4924-4938. doi:10.1109/tifs.2021.3117075.

[19] S. Tabassum, N. Parvin, N. Hossain, A. Tasnim, R. Rahman, M. I. Hossain, [oT network attack
detection using XAI and reliability analysis, in: Proc. 25th Int. Conf. on Computer and
Information Technology (ICCIT), IEEE (2022). doi:10.1109/iccit57492.2022.10055236.

[20] P. Barnard, N. Marchetti, L. A. D. Silva, Robust network intrusion detection through
explainable artificial intelligence (XA, IEEE Netw. Lett. (2022) 1.
doi:10.1109/Inet.2022.3186589.

[21] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set), in: Proc. Military Communications and Information
Systems Conf. (MilCIS), IEEE (2015). doi:10.1109/milcis.2015.7348942.

[22] D. Wells, UNSW-NB15 dataset, Kaggle (2019). URL:
https://www .kaggle.com/datasets/mrwellsdavid/unsw-nb15/data.

[23] N. Moustafa, G. Creech, J. Slay, Big data analytics for intrusion detection system: statistical
decision-making using finite Dirichlet mixture models, in: Data Analytics and Decision
Support for Cybersecurity, Springer, Cham (2017) 127-156. doi:10.1007/978-3-319-59439-2_5.

[24] AutoML PyCaret, GitHub repository. URL: https://github.com/dasarpai/automl-pycaret.

https://github.com/dasarpai/automl-pycaret
https://doi.org/10.1007/978-3-319-59439-2_5.
https://www.kaggle.com/datasets/mrwellsdavid/unsw-nb15/data
https://doi.org/10.1109/milcis.2015.7348942.
https://doi.org/10.1109/lnet.2022.3186589.
https://doi.org/10.1109/iccit57492.2022.10055236.
https://doi.org/10.1109/tifs.2021.3117075.
https://doi.org/10.1109/ijcnn48605.2020.9206780.
https://doi.org/10.1007/978-3-030-73959-1_23.
https://scikit-learn.org/0.24/modules/permutation_importance.html
https://interpret.ml/docs/lime.html
https://github.com/shap/shap
https://doi.org/10.1007/s10207-023-00703-0.
https://doi.org/10.1007/s10207-023-00703-0.
https://doi.org/10.1145/3689933.3690833.
https://doi.org/10.1016/j.ijcip.2024.100718.
https://doi.org/10.1109/southeastcon56624.2025.10971461.
https://doi.org/10.1109/dcoss52077.2021.00076.
https://doi.org/10.1109/comsnets53615.2022.9668448.
https://doi.org/10.31891/csit-2023-4-1.

[25] RandomForestClassifier, scikit-learn documentation. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. RandomForestClassifier.ht
ml

[26] E. Kavlakoglu, E. Russi, What is XGBoost?, IBM (online). URL:
https://www.ibm.com/think/topics/xgboost.

[27] ExtraTreesClassifier, scikit-learn documentation. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble ExtraTreesClassifier.html.

[28] LightGBM documentation. URL: https://lightgbm.readthedocs.io/en/stable/.

[29] B. Clark, F. Lee, What is gradient boosting?, IBM (online). URL:
https://www.ibm.com/think/topics/gradient-boosting.

[30] RidgeClassifier, scikit-learn documentation. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html.

[31] F. Lee, What is logistic regression?, IBM (online). URL:
https://www.ibm.com/think/topics/logistic-regression.

[32] Neural network models (supervised), scikit-learn documentation. URL: https://scikit-
learn.org/stable/modules/neural_networks_supervised.html.

[33] Support vector machines, scikit-learn documentation. URL:
https://scikit-learn.org/stable/modules/svm.html.

[34] Classification = performance metrics and indices, Online resource. =~ URL:
https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html.

[35] CalibratedClassifierCV, scikit-learn documentation. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.ht
ml

[36] B. Lypa, I. Horyn, N. Zagorodna, D. Tymoshchuk, T. Lechachenko, Comparison of feature
extraction tools for network traffic data, CEUR Workshop Proceedings 3896 (2024) 1-11.

[37] O. Savenko, S. Lysenko, A. Kryshchuk, Y. Klots, Botnet detection technique for corporate area
network, in Proceedings of the the IEEE 7th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems (IDAACS) IEEE, 2013, pp. 363-368.

https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://www.ibm.com/think/topics/logistic-regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://www.ibm.com/think/topics/gradient-boosting
https://lightgbm.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://www.ibm.com/think/topics/xgboost
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

	1. Introduction
	2. Related Work
	3. Materials and Methods
	4. Results and Discussion
	5. Conclusion
	Declaration on Generative AI
	References

