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Abstract
The mechanisms of structural transformations in the epoxy matrix in terms of the mobility of the 
paramagnetic  probe  and  the  change  in  the  areas  of  exothermic  solidification  peaks  upon  the 
introduction of aluminium oxide (Al₂O₃), zinc oxide (ZnO) and polytetrafluoroethylene (PTFE) were 
investigated. It has been found that Al₂O₃ and ZnO contribute to a significant decrease in the relative 
mobility of the probe from t0/tf=0.95 to t0/tf=0.2 in the material, respectively. It is proved that these 
processes are associated with the formation of physical nodes. In turn, PTFE provides an increase in  
wear resistance due to the formation of transfer films on friction surfaces.  The introduction of ZnO 
and Al₂O₃ into the epoxy composite provides the most significant reduction in the peak area to  
Sn/S0=0.1 at a concentration of 90 wt% and Sn/S0=0.2 at 80 wt%, respectively, and PTFE - Sn/S0=0.45 at 
100 wt%. The use of neural networks and the Akim method for mathematical processing confirmed a 
high correlation between the predicted and experimental  results (R² > 0.98).  The histograms of  
residual values indicate the minimum deviations of the predicted data from the experimental values. 
The adequacy of the selected modelling methods for processing the experimental results has been 
proved. An improvement in wear resistance was found due to an increase in strength when filling 
with Al₂O₃ and ZnO (40-60 wt% and 30-50 wt% per 100 wt% of ED-20 binder, respectively). The use of 
PTFE (50-70 wt%) improves the antifriction characteristics of epoxy composites due to the formation 
of  transfer  films  on  friction  surfaces.  The  expediency  of  an  integrated  approach,  including 
experimental methods, approximation algorithms and neural network analysis for optimising the 
composition of epoxy composites has been proved.
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1. Introduction

Composite  coatings  play  an  important  role  in  ensuring  the  reliability  and  durability  of 
structures, including by improving their physical and mechanical [1] and tribotechnical [2] 
characteristics, in various industries. Polymer composite materials (CM) are widely used due to 
their high wear resistance, chemical resistance, and a set of properties under specific operating 
conditions as coatings [3]. Such materials are widely used in mechanical engineering, aviation 

⋆AdvAIT-2025:  2nd International Workshop on Advanced Applied Information Technologies: AI & DSS,  December 05, 
2025, Khmelnytskyi, Ukraine, Zilina, Slovakia
1∗ Corresponding author.
† These authors contributed equally.

 stukhlyakPetro@gmail.com (P. Stukhliak); totosko@gmail.com (O. Totosko); itaniumua@gmail.com (D. 
Stukhliak); iaroslav.lytvynenko@gmail.com(I. Lytvynenko); zolotyy@gmail.com (R. Zolotyi)

 0000-0001-9067-5543 (P. Stukhliak); 0000-0001-6002-1477 (O. Totosko); 0000-0002-9404-4359 (D. Stukhliak); 
0000-0001-7311-4103 (I. Lytvynenko); 0000-0002-9435-2642 (R. Zolotyi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

https://orcid.org/0000-0002-9435-2642
https://orcid.org/0000-0001-7311-4103
https://orcid.org/0000-0002-9404-4359
https://orcid.org/0000-0001-6002-1477
https://orcid.org/0000-0001-9067-5543
mailto:zolotyy@gmail.com
mailto:iaroslav.lytvynenko@gmail.com
mailto:itaniumua@gmail.com
mailto:totosko@gmail.com
mailto:stukhlyakPetro@gmail.com


and automotive industries, etc. The use of polymer composites helps reduce maintenance costs 
and extends the service life of equipment. The study of the tribotechnical characteristics of 
polymeric materials is an important area for improving the performance of equipment under 
various operating conditions [4-5].

Modern research in the field of CM development is aimed at identifying the regularities of  
the influence of the polymer matrix structure on its properties that can withstand extreme 
operating conditions [6-7], elevated temperatures [8-9], high mechanical loads [10-11], and 
aggressive  environments  [12].  The  analysis  of  structural  processes  occurring  during  the 
formation of  composites  is  important  in  the  study of  properties  [13].  The study of  these 
phenomena makes it possible to determine the mechanisms for improving the performance of 
the material.

The research of the relative change in the areas of exothermic peaks as structural parameters 
of a CM is an important aspect of assessing the thermal stability of polymer composites. This 
structural parameter correlates with the degree of crosslinking of the polymer matrix. The study 
of thermal effects associated with phase transformations and chemical transformations in the 
material  allows  us  to  identify  regularities  between  the  composition  of  CM  and  their  
characteristics.

The research of the relative mobility of the paramagnetic probe is an important area of 
analysis of the structural properties of the polymer CM. This parameter reflects changes in the 
process of molecular mobility in the material. The use of the electron paramagnetic resonance 
method allows obtaining data on the mobility of macromolecular segments and predicting their 
response to mechanical loads. A decrease in the mobility of the paramagnetic probe in the 
composite with the introduction of fillers indicates an increase in the degree of crosslinking and, 
as a result, an increase in the strength of the material. Changing the deformation characteristics 
of antifriction materials reduces the coefficient of friction and wear rate. The study of these  
parameters makes it possible to optimise the composition of composites taking into account 
their  operational requirements and expands the possibilities for developing materials  with 
increased wear resistance [14-16].

The Akeem method and neural network algorithms are widely used to analyse complex 
physicochemical and tribotechnical processes [17-21]. The Akeem method is used to process 
experimental data and approximate nonlinear dependencies, which reduces the influence of  
noise and allows obtaining accurate functional relationships between the parameters under 
study.  This  method  is  particularly  effective  in  cases  where  traditional  interpolation  or 
regression approaches do not provide the required accuracy [22-23]. Neural network algorithms 
are actively used to predict the physical and chemical properties of materials based on major 
experimental  data sets  [24-25].  They allow detecting hidden patterns that  are difficult  for 
classical analysis methods [26-28]. The use of machine learning in the analysis of tribotechnical 
studies  allows  not  only  to  identify  the  relationships  between  structural  parameters  and 
performance  characteristics,  but  also  to  optimise  the  material  composition  for  scientific 
prediction  of  CM properties.  Recent  advances  in  the  application  of  neural  networks  and 
regression models for predictive analysis in materials science and biosensor technology have 
demonstrated high accuracy and robustness, especially when combined with experimental data 
processing methods and differential equations on lattices.

Unfortunately, modern scientists have not paid enough attention to these areas of research. 
The study of  the  structural  characteristics  of  materials  using  neural  networks  will  reveal 



patterns that affect the characteristics of  materials,  as well  as develop scientifically sound 
approaches to optimising the composition of polymer composites in order to increase their 
operational reliability.

The  aim  of  this  work  is  a  comprehensive  analysis  of  the  influence  of  structural 
characteristics, based on changes in the areas of exothermic solidification peaks and relative 
mobility  of  the paramagnetic  probe,  on the physical  and mechanical  characteristics  using 
electronic paramagnetic resonance and differential thermal analysis of composites with the 
analysis of research results by neural networks.

2. Materials and investigation procedure

The binder for  creating composites  was  chosen based on the  operating conditions  of  the 
components  of  mechanisms  and  machines.  First  of  all,  alternating  loads  were  taken  into 
account, which determines the mechanism of destruction of the surface layer of the material.  
Epoxy composites as a coating have sufficiently high strength of adhesive bonds to the working 
surface. An important characteristic of these materials is low residual stresses during moulding 
in the product. In connection with the above, we chose the epoxy-diane resin ED-20 (GOST 
10587-76) and the polyethylene polyamine hardener (TU 6-05-241-202-78). The amine hardener 
(PEPA) allows the material to be formed at room temperatures on long-dimensional surfaces of 
complex profiles. The following fillers were used for studies: polytetrafluoroethylene - PTFE 
(GOST 10007-78), aluminium oxide Al2O3 (TU 6-09-426-75), zinc oxide ZnO (GOST 10262-62). 
The  composites  were  prepared  by  hydrodynamic  mixing  of  the  components  to  obtain  a 
homogeneous mixture. Depending on the tasks set in the experiment, some of the samples were 
vacuumed before curing and used as control samples.

Structural parameters were studied by differential thermal analysis (DTA). This research 
method was used to determine the interaction of ingredients in the CM. The activation energy 
during the formation of the CM was estimated from the DTA curves:

(1)

(2)

(3)

where ∆t is the temperature change corresponding to the depth of the DTA peak at a given 
temperature; Є is the activation energy; R is the universal gas constant; T is the temperature; 
V_0 is the rate of decrease in the mass of a substance determined by the curves TG, C ̇, A_0, B are 
constants.

The heating rate was 5 K/min in air. 
Structural  parameters  in  the  material  were  determined  using  the  method  of  electron 

paramagnetic resonance (EPR method) on a radiospectrometer of the RE-1306 brand.  The use of 
EPR to study the kinetics of changes in the relative number of radicals during material formation 
is the most reliable method for studying the structural parameters of CM.

The resonance condition in the case of EPR is presented in the form:

pv= gμ _ B  H _ 0 / 2π (4)

where μ_B=9,2741024 Ам is the Bohr magneton; g is a dimensionless factor or spectroscopic 
splitting factor (g-factor). The mobility of macromolecules in the binder at temperatures above 



and below the glass transition temperature of the matrix (Tg) was determined by the mobility of 
the introduced paramagnetic probe. The value between the outer maxima on the resonance 
curve was also taken into account. The relative number of paramagnetic centres (free radicals) 
in the CM was estimated by the amplitude of the resonance curve. 

The Akeem method was used to process the experimental data. This approach will ensure 
accurate detection of nonlinear dependencies with minimal error in the analysis of research 
results. Cubic splines were constructed to describe the change in parameters as a function of the 
concentration of fillers in the material. The basic equation of the spline:

Si=ai+bi (x - x i)+ci (x - x i)+d i (x - x i)
3 (5)

where Si(x) is the value of the function on the interval [xi,xi+1], and ai,bi,ci,di are the coefficients 
determined from the smoothness conditions.

The Akeem method provides a more complete interpolation of the experimental results.
The slope angles between the closest points were calculated using the following formulas:

mi=
y i - y i -1

xi - xi -1

             mi+1 =
y i+1 - y i
xi+1 - xi

(6)

At each point, the derivative was defined as a weighted average:

S’ (xi)=
|xi+1 - xi|·mi -1 +|xi - xi -1|·mi
| xi+1 - xi |+ | xi - xi -1 |

(7)

Next,  interpolation  curves  were  constructed.  Deep  artificial  networks  were  used  to 
determine the tribotechnical characteristics of the CM. The experimental data were normalised 
to the range (0.1) to improve the neural network training process. 

The structure of the neural network:
Here is an example of a bulleted list:

 an input layer with neurons according to the number of input parameters;
 two hidden layers with 32 and 16 neurons respectively;
 an output layer with 2 neurons.

The training is based on the back-propagation of error. The method of the MSE (mean 
squared error) loss function was used. The Adam algorithm was used for optimisation. The 
initial learning rate was 0.001. The data was divided into training (80%) and test (20%) samples. 
The accuracy of the selected model was tested on the test sample using the coefficient of  
determination.

3. Results and discussion

Determination of structural processes in polymer CM is an important area of research into the 
mechanisms of  interaction between material  components.  The study of structural  changes 
makes it possible to predict the properties of CM under real operating conditions. Improving the 
physical and mechanical characteristics of epoxy composites contributes to increased wear 
resistance. This is achieved both by improving the structural parameters and by introducing 



reinforcing fillers such as aluminium and zinc oxides. The use of additives capable of forming 
transfer films is also promising. In this case, the positive effect of mechanical characteristics in 
friction contact is realised. All deformation processes take place in the surface layer, i.e. in the 
material of the transfer films. As a rule, two such approaches are used in the development of  
antifriction characteristics. To determine the mechanism for improving the characteristics of 
epoxy CMs, exothermic effects were studied (DTA method). The exothermic curing peaks make 
it possible to estimate the energy released during the formation of intermolecular bonds in the 
polymer,  which is  a  criterion for  determining its  degree of  crosslinking.  Determining the 
optimal level of structural stability and adaptability of the material helps to ensure its resistance 
to frictional loads, which increases the efficiency of friction units.

The dependence of the relative change in the area of the exothermic peak on the mass  
fraction of aluminium oxide (Al₂O₃) was investigated (Fig. 1.a). A tendency to decrease the peak 
value with increasing filler concentration was observed, indicating a gradual decrease in the 
thermosetting activity of the polymer matrix. When filling up to 20 wt% per 100 wt% of the  
binder,  the change in  the  area  of  the  exothermic  Sn/S0 peak decreases  from Sn/S0=0.95 to 
Sn/S0=0.65. It was found that this is due to the primary formation of bonds between Al₂O₃ 
particles and the polymer, which stabilises the macromolecular structure. In the range of 20-50 
wt.% per 100 wt% of binder (hereinafter the concentration of fillers was set in wt% per 100 wt% 
of binder), the peak area decreases to Sn/S0=0.4, which characterises an increase in the cohesive 
interaction between the surface of the oxide fillers. An increase in the mass fraction of Al₂O₃ to 
80 wt% reduces the peak area to Sn/S0=0.2,  which indicates almost  complete filling of  the 
intermolecular space with filler particles, which reduces the thermal effect of solidification.

When polytetrafluoroethylene (PTFE) was introduced into the CM, a smooth decrease in 
values in the range from Sn/S0=0.95 to Sn/S0=0.45 was observed with an increase in the filler 
concentration from 30 wt% to 100 wt%. In this case,  PTFE is a modifier that changes the 
hardening mechanism. In the range of 30-60 wt.%, a decrease in the exothermic peak area from 
Sn/S0=0.75 to Sn/S0=0.6 was observed, which indicates changes in the thermal characteristics of 
the CM. At concentrations above 80 wt.%,  the exothermic effects  slow down, which may 
indicate a change in the mechanism of thermal interaction in the polymer due to the influence of 
the PTFE surface.

When zinc oxide was introduced into the binder (Fig. 1.c), a sharp decrease in the exothermic 
peak area from Sn/S0=0.9 to Sn/S0=0.55 was observed at a ZnO concentration of up to 10 wt.%. It 
was found that ZnO significantly affects the curing kinetics of the polymer matrix. In the range 
of  20-50  wt.%,  the  value  of  Sn/S0=0.3,  which  indicates  the  achievement  of  stabilisation  of 
exothermic effects. In the range of 60-80 wt% of ZnO, Sn/S0=0.2, which may be caused by the 
interaction at the interface. A change in the thermophysical properties of the composite was 
found. At concentrations above 90 wt%, the value of Sn/S0=0.1, which indicates the maximum 
stiffness of the structure material and complete stabilisation of the solidification processes. A 
material with high mechanical properties is formed.

It has been established that the introduction of Al₂O₃ and ZnO significantly changes the 
thermal effects of polymer composites when they are moulded into products. The use of PTFE 
provides a more gradual decrease in the relative area of exothermic peaks, which indicates a 
gradual change in the curing mechanism caused by the thermal effect of the filler. The obtained 
results of CM research make it possible to determine the optimal concentrations of fillers in the 
composite to achieve a balance between their mechanical and structural characteristics.



a)

b)

c)
Figure 1: Results of studies of the relative change in the areas of exothermic hardening peaks 
with the concentration of fillers: a) Al₂O₃, b) PTFE c) ZnO.



The relative mobility of the paramagnetic probe (Fig. 2) is an indicator of the interaction at  
the interface in the system ‘binder macromolecules - solid filler surface’. The mobility of the 
paramagnetic probe above the glass transition temperature (Tg) when Al2O3 is introduced was 
studied (Fig. 2.a). In this case, there are no physical nodes in the formation of the structural grid. 
A decrease in the value from t0

t/tf
t=1.0 to t0

t/tf
t=0.91 was observed with an increase in the filler 

concentration from 10 wt% to 40 wt%. At 20-30 wt% of Al₂O₃ in the CM, the relative mobility 
decreases to t0

t/tf
t=0.95, which can be explained by the increase in the interaction between filler 

and polymer particles. With a further increase in the mass fraction in the CM to 40 wt%, a 
decrease in mobility to t0

t/tf
t=0.91 was observed, which may indicate an increase in the physical 

interaction of the polymer phase and filler even at temperatures above Tc. This is confirmed by a 
decrease  in  molecular  mobility  in  the  CM,  which  is  determined  by  the  mobility  of  the  
paramagnetic probe.

The initial values of mobility (Fig. 2.b) are at the level of t 0
t/tf

t=1.0, (5-10 wt%), a decrease in 
the mobility of the paramagnetic probe to t0

t/tf
t=0.985 was observed. A temporary decrease in 

intermolecular interaction at the interface between the polymer matrix and the surface of ZnO 
particles was observed. A further increase in the filler concentration leads to a gradual decrease 
in mobility to t0

t/tf
t=0.93 at 40 wt%. This indicates the formation of a material with a rigid 

structure in the polymer matrix, especially at the interface. 

a) b)
Figure 2: Results of studies of the relative mobility of the paramagnetic probe above the glass  
transition temperature relative to the filling: a) Al2O3 b) ZnO.

The macromolecular mobility of Al₂O₃ and ZnO is limited due to the increase in the number 
of bonds between the filler and the polymer due to the formation of additional bonds between 
the binder  macromolecules  and active  centres  on the filler  surface (OH groups,  exchange 
electrons, dislocations, etc.).

The  mobility  of  a  paramagnetic  probe  at  a  temperature  above  the  glass  transition 
temperature (Tg) when all physical nodes are destroyed is investigated. A decrease in mobility is 
observed (Fig. 3.a). With the introduction (up to 5 wt%), the mobility drops sharply from t0/tf=1.0 
to about t0/tf=0.55, indicating the formation of stable bonds between the filler and the polymer, 
which sharply limits the confinement set of macromolecules.  In the range of 5-30 wt% of 
aluminium oxide, the mobility value stabilises at 0.5-0.55, indicating that a balance has been 
achieved between the rigidity of the polymer matrix and the mobility of individual molecular 
segments. At a concentration of more than 30 wt%, a slight increase in mobility to t0/tf=0.57 was 



observed, which may be due to an increase in the flexibility of individual macromolecular 
segments due to the effect of incomplete wetting of the filler.

а) b)
Figure 3: Results of studies of the relative mobility of the paramagnetic probe below the glass 
transition temperature relative to the filling: a) Al2O3 b) ZnO.

When ZnO (5 wt.%) was introduced into the material (Fig. 3.b), a drop in relative mobility 
from 1.0 to 0.5 was observed, indicating the formation of a dense polymer structure where 
macromolecular movement is sharply limited. At 5-25 wt%, the t0/tf value remains stable. In the 
range of 30-40 wt%, a characteristic increase in mobility to t0/tf=0.7 is observed, which is  
probably due to the formation of  secondary interfacial  interactions that can contribute to 
increased molecular flexibility.

Thus, the analysis of the obtained dependences shows that the behaviour of the relative  
mobility  of  the  paramagnetic  probe  is  largely  determined  by  both  the  type  of  filler  and 
temperature conditions. At temperatures above Tg, the material retains partial mobility even at 
high filler concentrations, while at temperatures below the glass transition, the CM structure 
material becomes much stiffer. A sharp drop in molecular mobility was observed at low filler 
concentrations. ZnO shows more complex processes in structural organisation. In this case,  
local peak values of mobility were observed, indicating phase transformations in the polymer 
system, while Al₂O₃ contributes to a gradual and uniform limitation of molecular mobility. This 
makes it possible to determine the optimal concentration of fillers depending on the specified 
performance characteristics of the material.
Further studies were carried out using the Akeem method to process the results of experimental 
studies.  The  exact  dependencies  of  the  main  parameters  were  obtained.  Additionally,  the 
research results  were analysed using neural  network algorithms (Table 1),  which made it 
possible to predict the tribotechnical characteristics of materials and assess their stability in 
operating conditions. Predicted and experimental dependencies are the result of testing the 
adequacy of the neural network.  The efficiency of the used forecasting methodology was 
evaluated.

When studying the mobility of the paramagnetic probe, a linear correlation was observed, 
which confirms the correctness of the used prediction methodology. Minor deviations in some 
concentration ranges may be associated with local inhomogeneities in the structure of the 
polymer matrix material due to the peculiarities of the interaction of ingredients in the CM. We 
observed the prediction of changes in the areas of exothermic peaks of Sn/S0 solidification, 



where  neural  network  algorithms  provided  high  accuracy  in  calculating  the  structural 
parameters of the polymeric material.

Table 1 
Characteristics of neural networks used in the CM study

№ Filler Neural network NN algorithm Hidden 
activation

Output activation

Relative change in the area of exothermic solidification peaks
1. Al2O3 MLP 1-9-2 BFGS 1657 Logistic Identity
2. PTFE MLP 1-8-2 BFGS 10000 Logistic Logistic
3. ZnO MLP 1-9-2 BFGS 9999 Logistic Exponential

Relative mobility of the paramagnetic probe above the glass transition temperature
4. Al2O3 MLP 1-9-2 BFGS 952 Tanh Tanh
5. ZnO MLP 1-8-2 BFGS 831 Logistic Identity

Relative mobility of the paramagnetic probe below the glass transition temperature
6. Al2O3 MLP 1-8-2 BFGS 2015 Logistic Identity
7. ZnO MLP 1-8-2 BFGS 1205 Tanh Exponential

The obtained results confirm the correctness of the chosen prediction model and its ability to 
take into account complex intermolecular interactions in the material. This opens up prospects 
for  the  further  use  of  neural  networks  in  the  process  of  developing  and  optimising  the 
composition of polymer composites for operating conditions.

The results of the residual values (Table 2) establish the distribution of deviations between 
the experimental and predicted data obtained after processing by the Akeem method and neural 
networks. The residuals reflect the difference between the calculated and actual values, and the 
frequency of these deviations (Counts) indicates the number of corresponding values in the 
sample.

Table 2 
Results of residual values in neural network modelling

Relative change in the area of exothermic solidification peaks
Al2O3

Residu
als -0.002 -0.0015 -0.001 -0.0005 0.0 0.0005 0.001 0.0015 0.002

Counts 115 261 1624 2205 1890 1664 112 59 70
PTFE

Resid
uals -0.004 -0.003 -0.002 -0.001 0.0 0.001 0.002 0.003

Coun
ts 26 99 721 3217 3308 500 119 10

ZnO
Resid
uals -0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0.0 0.001 0.002 0.003 0.004

Coun
ts 75 126 95 102 222 386 950 1426 2285 945 465 573 350

Relative mobility of the paramagnetic probe above the glass transition temperature
Al2O3

Resid -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
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Relative mobility of the paramagnetic probe below the glass transition temperature
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The results of experimental studies at temperatures above Tg in CMs indicate a symmetric 
distribution of residual values around zero. The high accuracy of the modelling for the relative 
mobility of the paramagnetic probe above Tg is confirmed. The results at temperatures below Tg 
in CM characterise the residual values for the system, where a shift towards negative residuals 
was observed, which may indicate a systematic underestimation of the predicted values in 
certain concentration ranges. The uniform distribution of residuals indicates a high correlation 
between the predicted and experimental results. Most of the values were observed in the range 
of -0.001 to 0.001, which confirms the minimal error of the predicted model. The analysis of the 
residual values confirms the effectiveness of the data processing methods used and the accuracy 
of the neural network model.

4. Conclusions

Based on the results of the research, the following can be stated:

1. The improvement of the characteristics was achieved by increasing the physical and 
mechanical  properties  due  to  the  influence  of  the  structural  organization  in  the 
composite. It was found that the change in structural parameters when introducing 
fillers  (Al₂O₃,  ZnO,  PTFE)  was  achieved  by  determining  the  mobility  of  the 
macromolecule when a paramagnetic probe was introduced into the polymeric material 
and the number of paramagnetic centres in the composite. Targeted control of structural 
parameters was achieved by taking into account the exothermic effects  during the 
formation of the composite.

2. The introduction of Al₂O₃ into the polymer matrix contributes to a significant decrease 
in the relative mobility of the paramagnetic probe, which varies from Sn/S0=0.95 to 
Sn/S0=0.2 at a concentration of 80 wt.%. The use of ZnO in CMs leads to a decrease in the 
relative mobility of the paramagnetic probe. In the range of 50-70 wt.%, a local increase 



of this parameter at T˂Tc to t0/tf=0.3 is observed, which indicates a change in the 
material structure. At a concentration of 90 wt%, the relative mobility decreases to 
t0/tf=0.1. The introduction of PTFE reduces the relative mobility of the paramagnetic 
probe from t0/tf=0.95 to t0/tf=0.4 at 90 wt% to 100 wt%, which makes it optimal for 
obtaining polymer composites with preserved mechanical characteristics.

3. The structure of formation in the composite was studied by changing the areas of  
exothermic  hardening  peaks.  It  was  found  that  the  greatest  decrease  in  these 
characteristics  was observed in the case of  Al₂O₃  and ZnO,  where the Sn/S0 peak 
decreases from Sn/S0=0.95 to Sn/S0=0.2 at 80 wt% and Sn/S0=0.1 at 90 wt%, respectively. 
The effectiveness in stabilising the polymer matrix has been proved.

4. The obtained histograms of the residual values showed minimal deviations between the 
predicted and experimental results, where the average deviation for Al₂O₃ was ±0.0002, 
and for ZnO - ±0.0003, which indicates the high accuracy of the selected model. The 
overall correlation level between the experimental and predicted values exceeds 0.98, 
which confirms the  effectiveness  of  using neural  network methods to  analyse  the 
tribotechnical characteristics of polymeric materials. The results obtained allow us to 
recommend Al₂O₃ at a concentration of 40-60 wt% as a filler to ensure high material 
stiffness. ZnO is more suitable for the creation of adaptive materials with balanced 
flexibility  and  stiffness  in  the  concentration  range  of  30-50  wt%.  For  polymeric 
compositions,  the  use  of  PTFE  with  a  content  of  50-70  wt%  provides  improved 
tribotechnical characteristics due to the formation of transfer films.

5. Thus, the results of the study confirm the possibility of targeted control of the properties 
of polymer composites by the choice of fillers and their concentration. The use of Al₂O₃ 
allows the creation of rigid materials with increased wear resistance, ZnO provides 
variability  in  mechanical  characteristics,  and  PTFE  improves  tribotechnical 
characteristics due to the formation of transfer films from PTFE.
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