CEUR-WS.org/Vol-4163/shortl.pdf

CEUR
E Workshop
Proceedings

published 2026-02-07

Experimental validation of a synthesis method for
resilient AR/VR architectures*

Artem Kachur', Sergii Lysenko®", Tomas Sochor?', Yurii Kravchyk® " and Olha
Atamaniuk?*

I Khmelnytskyi National University, Instytutska str., 11, Khmelnytskyi, 29016, Ukraine
? European Research University, Ostrava, Czech Republic

Abstract

This paper presents the experimental validation of an automated synthesis method for Augmented Reality
(AR) and Virtual Reality (VR) architectures. Unlike traditional analysis methods that evaluate fixed
designs, this approach utilizes a Genetic Algorithm (GA) within a Simulink environment to actively
generate architectural configurations that maximize resilience. An experimental setup, a mapping of 20
distinct mitigation strategies to design variables, and the results of a simulation under severe operational
conditions are described. The experiment demonstrates that the synthesized architecture achieves a
significant improvement in overall resilience, with critical gains in availability and recovery time, proving
the practical utility of automated design optimization for immersive systems.

Keywords

Augmented reality, virtual reality, system resilience, architecture synthesis, system design’

1. Introduction

As Augmented Reality (AR) and Virtual Reality (VR) scale beyond niche applications into critical
infrastructure for healthcare, industrial manufacturing, and education, their reliability becomes
paramount [1-3]. The functionality of these immersive platforms hinges on a precise, real-time
synchronization between computational hardware, software logic, data streams, and human
perception [4-6]. Consequently, these systems exhibit extreme sensitivity to operational
disruptions; even marginal latency or data degradation can shatter user immersion and trigger
immediate physiological rejection, such as cybersickness [7-9].

In this context, resilience as the capacity to maintain acceptable functionality despite external
stress or internal failure, is not merely a feature but a fundamental requirement. However, current
engineering practices largely rely on passive analysis, evaluating how pre-determined, fixed
architectures behave under fault conditions [10-12]. This approach is insufficient for developing
robust systems. The critical engineering challenge lies in shifting from post-hoc analysis to active
synthesis: the algorithmic generation of architectures that are resilient by construction [13-15].

Building upon our previous degradation analysis framework [16-18], this study experimentally
validates a method that inverts the traditional design process. We frame the architectural design as
a numerical optimization problem rather than a qualitative choice [19-21]. By defining a
parameterized design vector and linking mitigation strategies [22-24] to seven distinct resilience
metrics, we enable a computational approach to system hardening. A genetic algorithm is utilized
to navigate the high-dimensional design space, automatically identifying configuration strategies
that maximize system robustness [25-27].
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2. Related works

To construct the 20-dimensional design space for the synthesis engine, let us aggregate diverse
mitigation strategies from recent literature, mapping them to controllable simulation variables
across four architectural layers.

At the hardware layer, the focus was on managing thermal and energy constraints to prevent
physical throttling. The cloud/edge offloading techniques proposed by Sun et al. [3], parameterizing
the decision threshold to balance local thermal stress against bandwidth availability, can be
incorporated. This can be complemented by predictive thermal management algorithms [4], which
was modelled as a variable temperature limit that triggers redundancy paths. To address sensor
saturation, we integrated dynamic sampling rates and distributed on-sensor computing methods
described by Gomez et al. [5], allowing the GA to tune motion sensitivity thresholds. Additionally,
hardware selection variables can be included to switch between display architectures based on
energy models from Xiong et al. [6].

For the software subsystem, mechanisms were selected that enhance recovery speed and
adaptability. The synthesis model utilizes checkpoint-restart frequencies based on the work of
Foerster et al. [8] to maximise availability during high-load states. To mitigate network variance,
adaptive streaming middleware can be integrated [7] as a quality-threshold variable alongside
predictive input batching [5] to smooth bursty user interactions. We also included software-level
compute offloading ratios [3] and fallback precision modes for pose correction [7] to maintain
tracking reliability when environmental lighting degrades.

The data and communication layer can be parameterised to optimise throughput and integrity.
Multipath scheduling strategies from Zhao et al. [9] can be adopted to mask jitter, introducing a
variable for the number of parallel links. To anticipate user movements and prevent data stalls,
predictive pre-fetching algorithms [11] were modelled with adjustable buffer sizes. Further
strategies included edge-based localization fallbacks [10] to reduce latency, joint communication-
computing-caching architectures [3], and adaptive modulation schemes [7] that adjust coding
levels in response to signal-to-noise ratio fluctuations.

Finally, user-centric mitigations can be implemented to directly address safety and physiological
comfort. To combat cybersickness caused by latency, motion prediction and frame interpolation
techniques [10] controlled by an interpolation buffer variable can be employed. Environmental
adaptation can be handled through dynamic UI brightness and audio suppression thresholds based
on Park et al. [12]. Adaptive locomotion modes (e.g., teleportation vs. sliding) [13] and dynamic
Level-of-Detail (LOD) scaling [6] to cap interaction rates and prevent rendering overloads that
could break immersion can be used as well.

3. Experimental setup and toolchain

To validate the method, we constructed a high-fidelity simulation environment using
MATLAB/Simulink. The experimental setup was designed to replicate a "mission time" of 5000 time
units under dynamic stress.

The core of the experiment is a Simulink model (Fig. 1) that simulates the VR system's behavior.
The model accepts five categories of dynamic inputs that represent real-world disruptors: network
conditions (bandwidth fluctuation, jitter), environmental variables (lighting changes, thermal
ambient conditions), user behaviour (erratic motion, lack of attention), system load (computational
spikes), and hardware constraints (battery droop, thermal throttling). These inputs feed into a
Failure Simulation Block, which triggers probabilistic degradation events based on defined hazard
rates.

The "control knobs" for the experiment are represented by a parameterised vector of mitigation
approaches (Myector). This vector consists of 20 discrete values, each corresponding to a specific
technical countermeasure derived from literature [3]-[14]. these include hardware (dynamic



voltage/frequency scaling, thermal throttling limits), software (checkpoint-restart frequency,
adaptive resolution scaling), data (forward error correction (fec) levels, multi-path routing), user
(motion smoothing algorithms, safety boundary (guardian) sensitivity).

The MATLAB Global Optimization Toolbox was utilised to drive the simulation. The synthesis
process is formulated as a single-objective optimization problem where the Genetic Algorithm
seeks to find the vector moy: that maximizes the aggregated resilience score Rgys.

The evaluate_analytical function. It takes a candidate Myector, applies it to the Simulink model,
computes the seven resulting resilience metrics, and returns a weighted global score.

The GA iteratively refines the population of vectors, "breeding" superior designs by combining
mitigation strategies that successfully maintain high resilience scores [28].
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Figure 1: Simulink setup.

4. Experimental Case Study

To validate the proposed synthesis method, we constructed a comprehensive experimental
framework utilising a MATLAB/Simulink environment, selected specifically for its capacity to
model both continuous-time dynamics and discrete-event failures. The experiment was defined by
a specific "mission time" duration of 5000 time units, during which the system was subjected to a
dynamic operational profile that fluctuated between idle, normal, and peak loading states. The
primary objective of this setup was to solve the inverse design problem: identifying the
architectural configuration that maximizes the aggregated resilience score under specific
constraints [17-19].

To rigorously test the efficacy of the synthesis method, we defined a "severe operational
scenario” rather than a standard use case, introducing high-frequency disturbances across five
distinct categories. The simulation introduced network instability characterized by high jitter and
bandwidth throttling to mimic poor edge conditions, alongside environmental stresses such as
rapid changes in ambient lighting and temperature These external factors were compounded by
erratic user behaviour, including intense motion and high interaction rates, as well as internal
system load spikes that threatened computational saturation. Finally, the scenario accounted for
hardware constraints by simulating battery degradation and thermal throttling events. This harsh
baseline was intentional, ensuring that a system without active resilience mechanisms would fail
significantly, thereby highlighting the specific gains provided by the synthesized architecture.



The core of the experiment relied on a closed-loop integration between the Genetic Algorithm
(GA) and the Simulink model. The process begins with the GA generating a candidate 20-
dimensional mitigation vector which represents specific engineering decisions such as redundancy
levels or throttling thresholds. These abstract values are then mapped to concrete Simulink
parameters that govern the system's physical behaviour during execution. As the model runs, 20
degradation functions compute how well the specific configuration withstands the external
stressors. The system subsequently calculates the seven key resilience metrics — reliability,
availability, fault tolerance, integrity, recovery time, performance stability, and user safety — and
aggregates them into a final fitness score. This score is utilised by the GA to iteratively refine the
population, effectively breeding better architectural configurations over successive generations.

Two distinct architectural states were evaluated to provide a clear comparison of the method's
effectiveness. First, a baseline architecture was established with minimal active mitigations to
represent a standard, static AR/VR system design. This was compared against the synthesised,
optimal architecture output by the Genetic Algorithm after convergence, representing a system
"hardened” by the automated synthesis process. This comparative setup allowed for the
quantification of the exact value added by the synthesis method, enabling us to observe how the
algorithm traded off different design variables to survive the severe operational scenario.

5. Results and analysis

The Genetic Algorithm successfully navigated the 20-dimensional design space to identify a
configuration that significantly outperformed the baseline. The convergence of the algorithm is
visualized in the penalty plot (Fig. 2), showing a steady improvement in the fitness function over 30
generations. The most significant finding of this experiment is the magnitude of improvement in
time-critical metrics. Table 1 details the comparative scores.
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Figure 2: GA plot.



Availability (+82.2%): This massive increase indicates that the synthesized architecture
prioritized mechanisms like checkpoint/restart and redundant hardware paths. In a severe scenario
where failures are frequent, the ability to keep the system "up" is the primary differentiator.
Recovery Time (+39.9%): The optimization heavily favored strategies that reduce Mean Time To
Repair (MTTR). By tuning software checkpoints and automated reset triggers, the system returns to
a functional state much faster after a crash. Reliability (+31.1%): The increase in reliability suggests
the effective use of thermal management and load balancing to prevent the occurrence of faults,
rather than just managing them after they happen. The real-time behaviour of the optimized
system (Fig. 3) showed that the analytical score successfully tracked changing environmental
parameters, providing a responsive measure of resilience.

Table 1

Baseline vs Optimised architectures resilience scores

Metric Baseline Score Optimal Score Improvement (%)
Reliability 0.5893 0.7728 +31.1%
Availability 0.0001 0.0002 +82.2%
Fault tolerance 0.5878 0.6931 +17.9%
Integrity 0.5981 0.6514 +8.9%
Recovery time 0.6666 0.9327 +39.9%
Performance stability 0.0001 0.0002 +18.6%
User safety 0.7286 0.7331 +0.6%
Reynth 0.4822 0.5756 +19.4%
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Figure 3: Simulation during 5000 time units.



6. Practical application

The synthesis framework presented in this study offers a significant methodological shift for
systems engineers, moving the design process from manual, heuristic-based configuration to a
calculated, automated optimization workflow. By translating qualitative mitigation strategies —such
as dynamic voltage scaling, checkpoint-restart frequencies, or forward-error correction levels —
into a quantifiable 20-dimensional mitigation vector, the method allows designers to
mathematically evaluate the impact of architectural choices before physical prototyping. This is
particularly valuable in the context of modern AR/VR systems, where the sheer complexity of the
interaction between hardware, software, and user behaviour makes it nearly impossible for human
designers to intuitively predict how a specific change (e.g., throttling GPU performance) will
cascade through the system to affect end-user metrics like motion-to-photon latency or
cybersickness.

Furthermore, the integration of this analytical block into a real-time Simulink environment
demonstrates its utility as a dynamic runtime monitor, rather than just a static design tool. The
experiment confirmed that the instantaneous analytical score successfully tracked changing
environmental parameters in real-time. This capability suggests that the proposed model can be
deployed as a "digital twin" or a runtime supervisor within the final product. In such a deployment,
the system could dynamically adjust its own mitigation vector in response to detected
environmental stress—automatically shifting from high-fidelity rendering to high-reliability modes
when network jitter or thermal throttling is detected—thereby maintaining the aggregated
resilience score above the minimal acceptance gates defined during the verification phase.

7. Conclusions and future work

This paper has presented and experimentally validated a formally grounded method for the
automated synthesis of resilient AR/VR architectures. By establishing a rigorous mathematical link
between low-level architectural design choices and high-level emergent resilience properties, we
transformed the complex, qualitative challenge of system design into a solvable multi-objective
optimization problem. The experimental results provided a clear validation of this approach; the
genetic algorithm successfully navigated a high-dimensional design space to identify a
configuration that achieved a 19.4% improvement in the overall resilience score compared to a
standard baseline. Most notably, the synthesis process prioritized critical operational metrics,
yielding massive relative gains in Availability (+82.2%) and Recovery Time (+39.9%). These results
confirm that automated synthesis can identify non-intuitive combinations of mitigation strategies
that significantly enhance robustness without requiring manual trial-and-error.

Future research will focus on expanding the scope of this framework to address the increasingly
hostile threat landscape facing interconnected immersive systems. While the current model
effectively manages environmental and operational faults, the next iteration will incorporate
defences against advanced security threats. Specifically, we aim to adapt the resilience model to
account for malicious actors, including the impact of botnets and polymorphic malware on system
integrity. This expanded focus will also address the unique privacy and security challenges
inherent to immersive environments, such as protecting user authentication data and preventing
non-immersive attacks that exploit the tight coupling between the user and the virtual
environment. Additionally, we plan to refine the sensitivity models with empirical data gathered
from physical testbeds and explore the application of this synthesis method to other distinct classes
of cyber-physical systems.
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