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Abstract
This paper presents the experimental validation of an automated synthesis method for Augmented Reality 
(AR)  and  Virtual  Reality  (VR)  architectures.  Unlike  traditional  analysis  methods  that  evaluate  fixed 
designs,  this  approach utilizes  a  Genetic  Algorithm (GA)  within  a  Simulink  environment  to  actively 
generate architectural configurations that maximize resilience. An experimental setup, a mapping of 20 
distinct mitigation strategies to design variables, and the results of a simulation under severe operational  
conditions  are  described.  The  experiment  demonstrates  that  the  synthesized  architecture  achieves  a 
significant improvement in overall resilience, with critical gains in availability and recovery time, proving 
the practical utility of automated design optimization for immersive systems.
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1. Introduction

As Augmented Reality (AR) and Virtual Reality (VR) scale beyond niche applications into critical  
infrastructure for  healthcare,  industrial  manufacturing,  and education,  their  reliability  becomes 
paramount  [1-3]. The functionality of these immersive platforms hinges on a precise, real-time 
synchronization  between  computational  hardware,  software  logic,  data  streams,  and  human 
perception [4-6]. Consequently,  these  systems  exhibit  extreme  sensitivity  to  operational 
disruptions;  even marginal latency or data degradation can shatter user immersion and trigger 
immediate physiological rejection, such as cybersickness [7-9].

In this context, resilience as the capacity to maintain acceptable functionality despite external 
stress or internal failure, is not merely a feature but a fundamental requirement. However, current 
engineering  practices  largely  rely  on  passive  analysis,  evaluating  how  pre-determined,  fixed 
architectures behave under fault conditions  [10-12]. This approach is insufficient for developing 
robust systems. The critical engineering challenge lies in shifting from post-hoc analysis to active 
synthesis: the algorithmic generation of architectures that are resilient by construction [13-15].

Building upon our previous degradation analysis framework [16-18], this study experimentally 
validates a method that inverts the traditional design process. We frame the architectural design as 
a  numerical  optimization  problem  rather  than  a  qualitative  choice  [19-21].  By  defining  a 
parameterized design vector and linking mitigation strategies [22-24] to seven distinct resilience 
metrics, we enable a computational approach to system hardening. A genetic algorithm is utilized 
to navigate the high-dimensional design space, automatically identifying configuration strategies 
that maximize system robustness [25-27].
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2. Related works

To construct the 20-dimensional design space for the synthesis engine, let us aggregate diverse 
mitigation strategies  from recent  literature,  mapping them to  controllable  simulation variables 
across four architectural layers.

At the hardware layer, the focus was on managing thermal and energy constraints to prevent 
physical throttling. The cloud/edge offloading techniques proposed by Sun et al. [3], parameterizing 
the  decision  threshold  to  balance  local  thermal  stress  against  bandwidth  availability,  can  be 
incorporated. This can be complemented by predictive thermal management algorithms [4], which 
was modelled as a variable temperature limit that triggers redundancy paths. To address sensor 
saturation, we integrated dynamic sampling rates and distributed on-sensor computing methods 
described by Gomez et al. [5], allowing the GA to tune motion sensitivity thresholds. Additionally,  
hardware selection variables can be included to switch between display architectures based on 
energy models from Xiong et al. [6].

For  the  software  subsystem,  mechanisms  were  selected  that  enhance  recovery  speed  and 
adaptability.  The synthesis  model  utilizes  checkpoint-restart  frequencies  based on the work of 
Foerster et al. [8] to maximise availability during high-load states. To mitigate network variance,  
adaptive streaming middleware  can be integrated  [7]  as  a  quality-threshold  variable  alongside 
predictive input batching [5] to smooth bursty user interactions. We also included software-level 
compute offloading ratios [3] and fallback precision modes for pose correction [7] to maintain 
tracking reliability when environmental lighting degrades.

The data and communication layer can be parameterised to optimise throughput and integrity.  
Multipath scheduling strategies from Zhao et al. [9] can be adopted to mask jitter, introducing a 
variable for the number of parallel links. To anticipate user movements and prevent data stalls, 
predictive  pre-fetching  algorithms  [11]  were  modelled  with  adjustable  buffer  sizes.  Further 
strategies included edge-based localization fallbacks [10] to reduce latency, joint communication-
computing-caching  architectures  [3],  and  adaptive  modulation  schemes  [7]  that  adjust  coding 
levels in response to signal-to-noise ratio fluctuations.

Finally, user-centric mitigations can be implemented to directly address safety and physiological 
comfort. To combat cybersickness caused by latency, motion prediction and frame interpolation 
techniques [10] controlled by an interpolation buffer variable can be employed.  Environmental 
adaptation can be handled through dynamic UI brightness and audio suppression thresholds based 
on Park et al. [12]. Adaptive locomotion modes (e.g., teleportation vs. sliding) [13] and dynamic 
Level-of-Detail  (LOD) scaling [6] to cap interaction rates and prevent rendering overloads that 
could break immersion can be used as well.

3. Experimental setup and toolchain

To  validate  the  method,  we  constructed  a  high-fidelity  simulation  environment  using 
MATLAB/Simulink. The experimental setup was designed to replicate a "mission time" of 5000 time 
units under dynamic stress.

The core of the experiment is a Simulink model (Fig. 1) that simulates the VR system's behavior.  
The model accepts five categories of dynamic inputs that represent real-world disruptors: network 
conditions  (bandwidth  fluctuation,  jitter),  environmental  variables  (lighting  changes,  thermal 
ambient conditions), user behaviour (erratic motion, lack of attention), system load (computational 
spikes),  and hardware constraints  (battery droop,  thermal  throttling).  These inputs  feed into a 
Failure Simulation Block, which triggers probabilistic degradation events based on defined hazard 
rates.

The "control knobs" for the experiment are represented by a parameterised vector of mitigation 
approaches (Mvector).  This vector consists of 20 discrete values, each corresponding to a specific 
technical  countermeasure  derived  from  literature  [3]-[14].  these  include  hardware  (dynamic 



voltage/frequency  scaling,  thermal  throttling  limits),  software  (checkpoint-restart  frequency, 
adaptive resolution scaling), data (forward error correction (fec) levels, multi-path routing), user  
(motion smoothing algorithms, safety boundary (guardian) sensitivity).

The MATLAB Global Optimization Toolbox was utilised to drive the simulation. The synthesis 
process  is  formulated as  a  single-objective optimization problem where the Genetic  Algorithm 
seeks to find the vector mopt that maximizes the aggregated resilience score Rsys.

The evaluate_analytical function. It takes a candidate Mvector, applies it to the Simulink model, 
computes the seven resulting resilience metrics, and returns a weighted global score.

The GA iteratively refines the population of vectors, "breeding" superior designs by combining 
mitigation strategies that successfully maintain high resilience scores [28].

Figure 1: Simulink setup.

4. Experimental Case Study

To  validate  the  proposed  synthesis  method,  we  constructed  a  comprehensive  experimental 
framework  utilising  a  MATLAB/Simulink  environment,  selected  specifically  for  its  capacity  to 
model both continuous-time dynamics and discrete-event failures. The experiment was defined by 
a specific "mission time" duration of 5000 time units, during which the system was subjected to a  
dynamic operational  profile that  fluctuated between idle,  normal,  and peak loading states.  The 
primary  objective  of  this  setup  was  to  solve  the  inverse  design  problem:  identifying  the 
architectural  configuration  that  maximizes  the  aggregated  resilience  score  under  specific 
constraints [17-19].

To  rigorously  test  the  efficacy  of  the  synthesis  method,  we  defined  a  "severe  operational 
scenario"  rather  than a  standard use  case,  introducing high-frequency disturbances  across  five 
distinct categories. The simulation introduced network instability characterized by high jitter and 
bandwidth throttling to mimic  poor  edge conditions,  alongside environmental  stresses  such as 
rapid changes in ambient lighting and temperature These external factors were compounded by 
erratic user behaviour,  including intense motion and high interaction rates,  as well  as internal  
system load spikes that threatened computational saturation. Finally, the scenario accounted for 
hardware constraints by simulating battery degradation and thermal throttling events. This harsh 
baseline was intentional, ensuring that a system without active resilience mechanisms would fail  
significantly, thereby highlighting the specific gains provided by the synthesized architecture.



The core of the experiment relied on a closed-loop integration between the Genetic Algorithm 
(GA)  and  the  Simulink  model.  The  process  begins  with  the  GA  generating  a  candidate  20-
dimensional mitigation vector which represents specific engineering decisions such as redundancy 
levels  or  throttling  thresholds.  These  abstract  values  are  then  mapped  to  concrete  Simulink 
parameters that govern the system's physical behaviour during execution.  As the model runs, 20 
degradation  functions  compute  how  well  the  specific  configuration  withstands  the  external 
stressors.  The  system  subsequently  calculates  the  seven  key  resilience  metrics  –  reliability, 
availability, fault tolerance, integrity, recovery time, performance stability, and user safety – and 
aggregates them into a final fitness score. This score is utilised by the GA to iteratively refine the  
population, effectively breeding better architectural configurations over successive generations.

Two distinct architectural states were evaluated to provide a clear comparison of the method's 
effectiveness.  First,  a  baseline  architecture  was  established  with  minimal  active  mitigations  to 
represent a standard,  static  AR/VR system design.  This was compared against the synthesised,  
optimal architecture output by the Genetic Algorithm after convergence, representing a system 
"hardened"  by  the  automated  synthesis  process.  This  comparative  setup  allowed  for  the 
quantification of the exact value added by the synthesis method, enabling us to observe how the  
algorithm traded off different design variables to survive the severe operational scenario.

5. Results and analysis

The  Genetic  Algorithm  successfully  navigated  the  20-dimensional  design  space  to  identify  a 
configuration that significantly outperformed the baseline. The convergence of the algorithm is 
visualized in the penalty plot (Fig. 2), showing a steady improvement in the fitness function over 30 
generations. The most significant finding of this experiment is the magnitude of improvement in 
time-critical metrics. Table 1 details the comparative scores.

Figure 2: GA plot.



Availability  (+82.2%):  This  massive  increase  indicates  that  the  synthesized  architecture 
prioritized mechanisms like checkpoint/restart and redundant hardware paths. In a severe scenario 
where  failures  are  frequent,  the  ability  to  keep  the  system "up"  is  the  primary  differentiator.  
Recovery Time (+39.9%): The optimization heavily favored strategies that reduce Mean Time To 
Repair (MTTR). By tuning software checkpoints and automated reset triggers, the system returns to 
a functional state much faster after a crash. Reliability (+31.1%): The increase in reliability suggests 
the effective use of thermal management and load balancing to prevent the occurrence of faults,  
rather  than  just  managing  them after  they  happen. The  real-time behaviour  of  the  optimized 
system (Fig.  3)  showed  that  the  analytical  score  successfully  tracked  changing  environmental 
parameters, providing a responsive measure of resilience.

Table 1
Baseline vs Optimised architectures resilience scores

Metric Baseline Score Optimal Score Improvement (%)

Reliability 0.5893 0.7728 +31.1%

Availability 0.0001 0.0002 +82.2%

Fault tolerance 0.5878 0.6931 +17.9%

Integrity 0.5981 0.6514 +8.9%

Recovery time 0.6666 0.9327 +39.9%

Performance stability 0.0001 0.0002 +18.6%

User safety 0.7286 0.7331 +0.6%

Rsynth 0.4822 0.5756 +19.4%

Figure 3: Simulation during 5000 time units.



6. Practical application

The  synthesis  framework  presented  in  this  study  offers  a  significant  methodological  shift  for 
systems engineers,  moving the design process from manual,  heuristic-based configuration to a 
calculated, automated optimization workflow. By translating qualitative mitigation strategies –such 
as dynamic voltage scaling, checkpoint-restart frequencies,  or forward-error correction levels – 
into  a  quantifiable  20-dimensional  mitigation  vector,  the  method  allows  designers  to 
mathematically evaluate the impact of architectural choices before physical prototyping. This is  
particularly valuable in the context of modern AR/VR systems, where the sheer complexity of the 
interaction between hardware, software, and user behaviour makes it nearly impossible for human 
designers  to  intuitively  predict  how a  specific  change  (e.g.,  throttling  GPU performance)  will 
cascade  through  the  system  to  affect  end-user  metrics  like  motion-to-photon  latency  or 
cybersickness.

Furthermore,  the integration of  this  analytical  block into a  real-time Simulink environment 
demonstrates its utility as a dynamic runtime monitor, rather than just a static design tool. The 
experiment  confirmed  that  the  instantaneous  analytical  score  successfully  tracked  changing 
environmental parameters in real-time. This capability suggests that the proposed model can be 
deployed as a "digital twin" or a runtime supervisor within the final product. In such a deployment, 
the  system  could  dynamically  adjust  its  own  mitigation  vector  in  response  to  detected 
environmental stress—automatically shifting from high-fidelity rendering to high-reliability modes 
when  network  jitter  or  thermal  throttling  is  detected—thereby  maintaining  the  aggregated 
resilience score above the minimal acceptance gates defined during the verification phase.

7. Conclusions and future work

This  paper  has  presented  and  experimentally  validated  a  formally  grounded  method  for  the 
automated synthesis of resilient AR/VR architectures. By establishing a rigorous mathematical link 
between low-level architectural design choices and high-level emergent resilience properties, we 
transformed the complex, qualitative challenge of system design into a solvable multi-objective 
optimization problem. The experimental results provided a clear validation of this approach; the 
genetic  algorithm  successfully  navigated  a  high-dimensional  design  space  to  identify  a 
configuration that achieved a 19.4% improvement in the overall  resilience score compared to a  
standard  baseline.  Most  notably,  the  synthesis  process  prioritized  critical  operational  metrics,  
yielding massive relative gains in Availability (+82.2%) and Recovery Time (+39.9%). These results 
confirm that automated synthesis can identify non-intuitive combinations of mitigation strategies 
that significantly enhance robustness without requiring manual trial-and-error.

Future research will focus on expanding the scope of this framework to address the increasingly 
hostile  threat  landscape  facing  interconnected  immersive  systems.  While  the  current  model 
effectively  manages  environmental  and  operational  faults,  the  next  iteration  will  incorporate 
defences against advanced security threats. Specifically, we aim to adapt the resilience model to 
account for malicious actors, including the impact of botnets and polymorphic malware on system 
integrity.  This  expanded  focus  will  also  address  the  unique  privacy  and  security  challenges 
inherent to immersive environments, such as protecting user authentication data and preventing 
non-immersive  attacks  that  exploit  the  tight  coupling  between  the  user  and  the  virtual 
environment. Additionally, we plan to refine the sensitivity models with empirical data gathered 
from physical testbeds and explore the application of this synthesis method to other distinct classes 
of cyber-physical systems.
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