CEUR-WS.org/Vol-4163/short2.pdf

CEUR
E Workshop
Proceedings

published 2026-02-07

Analysis of methods and models for implementing
databases and web interfaces: a case study of student
management information systems”

Leonid Romaniuk™?, Sergey Subbotin®’, Thor Chykhira’’, Olesya Shtanyuk®’ and Halyna
Tulaidan®'

! Ternopil Ivan Puluj National Technical University, 56, Ruska Street, Ternopil 46001, Ukraine
? National University Zaporizhzhia Polytechnic, Zhukovskogo str., 64, Zaporizhzhia, 69011, Ukraine
? Ternopil Volodymyr Hnatiuk National Pedagogical University, 2, Maxyma Kryvonosa Street, Ternopil 46027, Ukraine

Abstract

The article presents an analysis of modern methods and tools for implementing databases and web
interfaces in student management systems, covering both traditional and modern approaches to software
development. It begins with a review of architectural solutions where Java is used to implement core
services, while MySQL ensures data storage with support for ACID transactions, complex queries,
triggers, and stored procedures. The application of Django for building RESTful APIs enables the
separation of the client-side from internal database operations, facilitating rapid prototyping and
automatic database migrations. At the same time, Vue.js provides a dynamic and reactive interface that
enhances user interaction with the system. The article also highlights security issues, emphasizing on
using JWT for authentication, and the integration of Auth0 facilitates request validation. The advantages
of using Spring Boot in enterprise solutions are discussed, where Spring Data JPA reduces boilerplate
code when working with relational databases, and configuration files provide MySQL connection settings.
Particular attention is paid to the comparison of monolithic and microservice architectures. The study
underscores the importance of containerization through Docker, which enables the creation of a stable
environment throughout development, testing, and production deployment. The implementation of
Infrastructure as Code (IaC) principles using Terraform or Ansible ensures automation in server
deployment, load balancing, and network resource management, which is critical for cloud
infrastructures. The integration of GraphQL optimizes queries by allowing clients to retrieve only the
necessary data. The article also highlights the relevance of classical solutions in C++ with direct MySQL
connectivity via the C APIL The results of this analysis contribute to well-grounded decision-making in
the development of software products focused on information management and user interaction.

Keywords
Endpoints, microservice architecture, blue-green deployment, containerization, token validation, business
logic

1. Introduction

Today in the digital environment, it is impossible to develop effective information systems without
the proper organization of data storage, processing, and access. Databases and web interfaces are
crucial to the software functionality that is used in various industries, starting from education and
healthcare to finance and industry. With the growing demands for security and speed of system
deployment, developers are increasingly implementing projects using combined technological
solutions that incorporate different tools and architectural approaches.

The choice of an appropriate database model and interface creation tools depends not only on
specific tasks, but also on the extent to which the system must support integration with other

*AdvAIT-2025: 2nd International Workshop on Advanced Applied Information Technologies: AI & DSS, December 05, 2025,
Khmelnytskyi, Ukraine, Zilina, Slovakia
" Corresponding author.
"These authors contributed equally.
leonidromanyuk@ukr.net (L. Romaniuk); subbotin@zntu.edu.ua (S. Subbotin); ig.vi.chi@gmail.com (I. Chykhira);
olesyashtanyuk@ukr.net (O. Shtanyuk); tulaidan@tnpu.edu.ua (H. Tulaidan)

0000-0002-2538-4026 (L. Romaniuk); 0000-0001-5814-8268 (S. Subbotin); 0000-0002-8615-3635 (I. Chykhira); 0000-0002-
4388-2942 (O. Shtanyuk); 0000-0003-2306-6435 (H. Tulaidan)

@ @ © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://orcid.org/0000-0003-2306-6435
https://orcid.org/0000-0002-4388-2942
https://orcid.org/0000-0002-4388-2942
https://orcid.org/0000-0002-8615-3635
https://orcid.org/0000-0001-5814-8268
https://orcid.org/0000-0002-2538-4026
mailto:tulaidan@tnpu.edu.ua
mailto:olesyashtanyuk@ukr.net
mailto:ig.vi.chi@gmail.com
mailto:subbotin@zntu.edu.ua
mailto:leonidromanyuk@ukr.net

services, adapt to changes in the data structure, or ensure the protection of users’ personal
information. In this context, it is necessary to conduct an in-depth analysis of modern methods and
means of implementation, which allows us to develop an idea of the most effective solutions for
different usage scenarios.

The relevance of the study is driven by the need for practical recommendations for developers,
software architects and system integrators who are searching for optimal approaches to the
implementation of information systems, taking into account real-world constraints, standards,
market trends and technological progress.

2. Analysis of recent research and publications

To begin with, the paper [1] discusses the methodology for installing PHP extensions in Docker
images without using the default disabled PECL, which is especially relevant with PHP 7.4. It
demonstrates a step-by-step approach using tools such as docker-php-ext-configure and docker-
php-ext-install that allow creating clean and modular Docker files tailored to specific project
requirements. Practical instructions include the APCu, Redis, Igbinary, and MongoDB extensions.
Particular attention is paid to the problems that arise when installing some extensions, in particular
MongoDB, which requires working with submodules and multi-stage builds.

The paper [2] compares the performance of three PHP frameworks — Laravel, Symfony, and
Codelgniter. The analysis is based on the Model-View-Controller (MVC) architecture and the
application of the QSOS evaluation methodology, which allows measuring the number of requests
per second, memory usage, response time, and other parameters. The results show that Laravel is
dominant due to its high performance, low response time, and ability to handle a large number of
requests. In turn, Symfony, although multifunctional, requires deeper knowledge in order to
implement complex solutions, while Codelgniter, due to its simplicity, is optimal for small and
medium-sized projects with simpler requirements.

Research [3] focuses on the development of a web-based Docker Image Assistant Generator
(DIAG) tool in the context of User-PC Computing system (UPC). DIAG adopts Angular for creating
a dynamic interface, Laravel for handling the server logic and data processing using RestAPI,
MySQL for storing structured data, and Shell scripting in order to automate processes. A key
feature of the tool is the ability to modify the source code directly during the performance of a task,
which allows users to update Docker images in real time. The use of the MVC pattern facilitates
the separation of tasks.

Research [4] analyses the tools for deploying and managing cloud resources — Google Cloud
Deployment Manager and Terraform. The assessment is based on testing the resource deactivation
time, which allows determining the operational efficiency of these technologies. The results show
that Terraform provides faster resource deactivation due to its independence from specific cloud
platforms. However, Google Cloud Deployment Manager has better native integration with Google
Cloud resources, which can be a decisive factor for projects that operate exclusively within GCP.

Paper [5] investigates the impact of microservice architecture and containerisation on resource
efficiency and overall performance of SAAS CRM systems. Experiments proved that the use of
microservices in a containerised environment, in particular, using Docker and orchestration with
Kubernetes, can significantly reduce CPU and memory consumption compared to monolithic
systems.

Thus, the analysis of the literature shows a wide range of modern technological solutions for
optimising software development. However, taking into account the above-mentioned scientific
publications, the issue related to the development of database and web interface implementation
infrastructure remains still insufficiently studied and requires further elaboration.

3. Statement of the task

The aim of the research is to review the methods and models of implementing databases and web
interfaces on the example of various student management systems.

4. Presentation of the main material

The present study examines a range of contemporary implementations of student management
systems and analyses their operational principles, technological composition, and architectural
characteristics. Such systems increasingly serve as central components of modern educational
infrastructures, requiring high reliability, configurability, and scalability. The discussion below
systematises five principal implementation approaches, highlighting their software stacks,
integration mechanisms, and security considerations. To provide analytical clarity, each subsection
concludes with a summarised Results component that emphasises the main findings associated
with the corresponding technological approach.

1. Java-Based Backend with Django, Vue.js, and MySQL Integration.

One of the more hybridised implementations of student education management systems
combines a Java backend with MySQL-based data persistence and a layered presentation strategy
utilising both Django and Vue.js [6].

Java Application

JDBC API
l
JDBC Driver
Manager
JDBC Driver JDBC Driver JDBC Driver
[== T
MS SQL MySQL ‘ H2

Figure 1: Connecting a Java application to a database.

In this configuration, Java functions as the foundation for the core business logic, benefiting
from its maturity, threading model, and ability to maintain high throughput under concurrent
workloads. MySQL, as the relational database component, contributes ACID-compliant
transactions, stored procedures for encapsulating database logic, triggers for reactive updates, and
robust JOIN capabilities essential for querying interconnected datasets [7].

A notable feature of this approach is the use of parameterised Java queries, which enhance
protection against SQL injection attacks by separating query logic from user-provided values.
Django, operating above the Java layer, offers RESTful endpoints that mediate interactions between
client-side components and internal services.

SXH0S

] Database

L

Figure 2: Vue.js relationship with Django.

This separation ensures that the client layer remains unaware of the underlying database
structure, improving maintainability and facilitating the introduction of additional security layers.

From the frontend perspective, Vue.js provides reactive rendering and efficient state
management via asynchronous communication with the Django REST API Libraries such as Axios
or the native fetch API enable smooth data exchange between interface components and backend
services. Additionally, authentication procedures can be reinforced using Auth0, which validates
tokens via JSON Web Key Sets retrieved from trusted endpoints.

2. Spring Boot and MySQL with Structured Configuration.

For enterprise-oriented development, Spring Boot represents a more consolidated Java-centred
approach. Its configuration model, typically expressed through application.properties or
application.yml files, provides an automated and structured environment for linking the
application with a MySQL database. Through Spring Data JPA, repository interfaces encapsulate
database operations, drastically reducing boilerplate code and allowing developers to express
complex queries declaratively [8].

‘ Spring Data JPA |

' A

[JpaRepository if mom—
DB

\ 4

Using Contains Keyword
Using Containing Keyword
Using IsContaining Keyword
Using Like Keyword

Figure 3: Using JPA Repository to search for records.

REST controllers built within Spring Boot map HTTP requests to service-layer operations,
providing a unified interface across multiple frontends. The business logic layer ensures
transactional integrity, especially when coordinating interactions across several repositories.
Because configurations, dependencies, and ORM mappings are largely automated, Spring Boot
supports a high degree of scalability and reproducibility.

3. Rapid Prototyping via Django and Vue.js with Automated Migrations.

For environments requiring rapid iteration, Django paired with Vue.js constitutes a productive
development model. Django’s ORM allows developers to design domain-specific models that are
automatically translated into SQL schema definitions during migrations. This autonomous process
minimises the initial database design workload and facilitates fast revisions during the early stages
of system prototyping.

Django’s templating engine assists in generating server-rendered HTML layouts, into which
Vue.js components can be dynamically mounted [9]. This hybrid rendering model enables a smooth
transition from traditional server-side page generation to fully interactive client-side interfaces. In
more complex setups, Vuex centralises state management across components, improving
consistency in data handling.

Legacy Systen
Rl | 2 | — o0
—_—
HTTP POST @
GraphQL Server
| | — “—3 Microservice @

\-5

RESTrul AP1 @
=]

Figure 4: GraphQL client-server architecture.

4. GraphQL-Based Microservice Architecture with Spring Boot and MongoDB.

As data complexity increases, GraphQL has emerged as an attractive alternative to traditional
REST architectures. GraphQL allows clients to specify precisely which fields are required,
minimising overfetching or underfetching of information [10]. When deployed using Spring Boot
in combination with MongoDB, the backend attains flexibility in accommodating frequently
changing data structures, as MongoDB’s schema-less document model permits structural variation.

Staging Server
i : Containe
(] L]
L] L]
i L] e
IH:‘H S Docher bmage -y Dockes Hub
i
' '
] L]
' L]
L] "
L}
- . | Production Server
L] Docker L]
- Contairt L
.] Containe
L] L]
' "
L] "

Figure 5: Docker containerization platform.

Resolvers serve as the bridging logic between GraphQL queries and backend services. These
resolvers operate according to predefined schemas and allow both highly granular and aggregate
queries through a single endpoint. In distributed environments, this architecture supports the
unification of disparate microservices under a common API layer.

docker

‘ java HDjango

3 I
s W
| T

. /

Figure 6: Example of multi-container environment with services for the main application,
databases, and optional tools.

5. Classical Implementation Using C++ with MySQL Integration.

Although less common in modern web-oriented systems, C++ continues to offer a high-
performance alternative for developing student management platforms. Its low-level resource
management enables fine-grained control over memory and networking operations. Integration
with MySQL is facilitated through the MySQL C API, enabling direct execution of database queries
[11].

However, the absence of built-in abstractions analogous to ORM frameworks requires
developers to manually handle data transformations, memory allocation, and security checks.
While this approach yields performance advantages, it also increases development complexity and
extends the learning curve for new contributors.

Containerisation and DevOps Considerations.

Irrespective of the underlying implementation, containerisation plays a central role in modern
deployment workflows. Docker ensures that applications run consistently across development,
testing, and production stages by isolating dependencies within container images. Multi-container
environments commonly include application servers, databases, message brokers, and auxiliary
utilities. When scaling becomes necessary, orchestration tools allow replication, rolling updates,
and blue—green or canary deployment strategies.

Testing
Figure
7. Infrastructure in
the Cloud
A
v v
Infrastructure w -
Developers Code A7
: = Push ﬁ Automation
— write - |: e O ——t AP or Server
. H Pull v
b 'l.:_l;" . s
OO
== ol
Version Control Infrastructure

on Premises

Integration Infrastructure as Code (IaC).

Infrastructure as Code (IaC) techniques using Terraform or Ansible further support consistent
provisioning of cloud environments. By codifying network configurations, load balancers, and
server parameters, laC ensures reproducibility and enables controlled incremental rollouts [12].

Future implementations are likely to benefit from frameworks such as FastAPI, which supports
asynchronous operations and integrates effectively with SQLAlchemy. TypeScript-based backends

(NestJS or Express) offer unified development experiences across client- and server-side logic.
Furthermore, advancements in machine learning, probabilistic models, and neural network-based
pattern recognition may significantly enhance student analytics, document processing, and
personalised feedback mechanisms.

e

a8 aken o
avl regueast

| Checks
y [Java |« i

l '.UI\-'.'IIVLF'.'rI_ =l

Figure 8: Auth0 authentication sequence in Vue.js frontend with Django/Java backends.

A consistent authentication model is essential when coordinating multiple frameworks or
microservices. Java backends typically validate JSON Web Tokens (JWTs), while Django leverages
middleware and decorators to restrict access to protected views. Vue.js components can
dynamically adjust rendered elements based on token presence or session validity. GraphQL
implementations apply token checks directly within resolvers. Cross-service authentication can be
unified using AuthO or similar providers that issue signed tokens recognisable by all participating
services.

5. Results&Discussion

Approach 1

- The hybrid stack benefits from modularity but introduces additional integration overhead
between Java, Django, and Vue.js.

- Security is strengthened through layered token validation, parameterised database queries,
and Django middleware.

- The architecture offers rapid frontend response and clear separation of concerns, though
its operational complexity increases proportionally with system scale.

Approach 2

- JPA repositories significantly streamline data access logic and reduce development time.

- The approach is well-suited for both monolithic and microservice deployments due to its
standardised configurations.

- Security based on JWT and role-based access policies integrates naturally with Spring’s
authentication mechanisms.

Approach 3

- This approach enables rapid prototyping due to automated schema management and
flexible template rendering.

- It reduces initial development costs but may face limitations when handling heavy traffic
or high concurrency.

- Authentication is readily available through Django’s built-in systems, enabling secure trial
deployments.

Table 1

Key aspects of the described approaches

Approach Backend Frontend/API Security

Ne 1 — Java + Django & Java for basic Django for server-side JWT validation;
Vue.js + MySQL with services, Django technologies (HTML AuthO for token
ACID support for REST API generation, REST API); validation

Vue.js for client response

(fetch/Axios)
Ne 2 — Spring Boot + Spring DataJPA REST controllers; JWT and role
MySQL with integration with each wvalidation
configuration files frontend
Ne 3 — Rapid prototyping Django with Vue.js for server-generated Built-in Django
(Django + Vuejs) + ORM pages authentication and
MySQL with JWT
automigrations
Ne 4 — Microservice Spring Boot with Single endpoint for all data ~ Tokenized checks

architecture (GraphQL 3 GraphQL for resolvers

Spring Boot and resolvers

MongoDB)

Ne 5 — C++ + MySQL via Pure C++ for UI generation occurs Manual security

C API low-level control directly and memory
management

Approach 4

GraphQL ensures efficient client-side data retrieval by eliminating unnecessary fields.
MongoDB complements this approach through schema flexibility suited for evolving
datasets.

The architecture supports microservice models, though it increases the need for robust
service discovery and debugging mechanisms.

Approach 5

C++ provides superior performance but lacks automation and abstraction layers typical of
modern frameworks.

Security and memory management must be implemented manually, increasing the
likelihood of implementation errors.

The approach is suitable for specialised systems but is less practical for large-scale or
rapidly evolving educational platforms.

General Results.

1.

»

N

Modern student management systems rely on multi-layered architectural patterns that
balance performance, flexibility, and maintainability.

Hybrid implementations provide strong modularity but introduce operational complexity.
Spring Boot offers an enterprise-grade framework with automated configuration and
scalable deployment options.

Django—Vue.js combinations are optimal for prototyping.

GraphQL-based microservices support fine-grained queries and flexible modelling.

C++ solutions offer high performance but increased development cost.

Containerisation and IaC underpin modern deployment reliability.

6. Conclusions

In general, a comprehensive analysis of the methods and means of implementing databases and
web interfaces in the context of student management systems allows us to identify both the
strengths and limitations of each approach depending on the context of application. The
combination of Java or Spring Boot with MySQL and modern frontend technologies such as Vue.js
ensures high stability and security, while Django simplifies prototyping and speeds up
development through process automation. The application of machine learning for predictive
analytics in data backup strategies can significantly improve the reliability and security of student
management systems. Innovations in hardware and communication technologies, such as advanced
antenna systems, can support the development of more efficient and scalable educational
information infrastructures.

The integration of GraphQL, Docker containerization, and IaC implementation contribute to the
creation of a scalable architecture. Consideration of classic programming languages such as C++
demonstrates the continuing relevance of low-level solutions in specific cases.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] O. Laviale, Installing PHP extensions from source in your Dockerfile (2019). URL:
https://olvlvl.com/2019-06-install-php-ext-source.html

[2] M. Laaziri, K. Benmoussa, S. Khoulji, L. Kerkeb, A comparative study of PHP frameworks
performance, Procedia Manuf. 32 (2019) 864-871. doi:10.1016/j.promfg.2019.02.295.

[3] L. Htet Aung, N. Funabiki, S. Aung, X. Zhou, X. Xiang, W.-C. Kao, A web-based Docker image
assistant generation tool for user-PC computing system, Information 14 (2023) 300.
doi:10.3390/inf014060300.

[4] S. Chinthapatla, Unleashing the power of AWS: revolutionizing cloud management through
infrastructure as code (IaC) (2024).

[5] M. Roser, Customer relationship management in new business models (2024).
doi:10.5772/intechopen.114840.

[6] A. Bouchefra, Building modern applications with Django and Vue.js, Auth0 Blog (2021). URL:
https://auth0.com/blog/building-modern-applications-with-django-and-vuejs/

[7] S. Trimal, Z. Shaikh, A. Chavan, S. M. Kamble, Student management system, JournalNX 10(6)
(2024) 116-118.

[8] Wagqasafzal, Integrating MySQL with Spring Boot: An in-depth student management example,
Medium (2024). URL: https://medium.com/@waqasafzal/integrating-mysql-with-spring-boot-
an-in-depth-student-management-example-6¢2de0d18b06

[9] L. del Alba, How to prototype a web app with Django and Vue.js, SitePoint (2020, updated
2024). URL: https://www.sitepoint.com/prototype-web-app-django-vuejs/

[10] A. Jhingran, Accessing SQL and NoSQL databases with a GraphQL API, StepZen Blog (2021).
URL: https://stepzen.com/blog/accessing-sql-and-nosql-databases-with-a-graphql-api

[11] S. Zhong, M. Rigger, Understanding and reusing test suites across database systems, Proc.
ACM Manag. Data 2(6) (2024) Article 253. doi:10.1145/3698829.

[12] M. Eleraky, W. Anis Aziz, J. Soliman, Using cloud infrastructure as a code (IaC) to set up web
applications, Int. J. Simul.: Syst., Sci. Technol. 24 (2023).

https://doi.org/10.1145/3698829.
https://stepzen.com/blog/accessing-sql-and-nosql-databases-with-a-graphql-api
https://www.sitepoint.com/prototype-web-app-django-vuejs/
https://medium.com/@waqasafzal/integrating-mysql-with-spring-boot-an-in-depth-student-management-example-6c2de0d18b06
https://medium.com/@waqasafzal/integrating-mysql-with-spring-boot-an-in-depth-student-management-example-6c2de0d18b06
https://auth0.com/blog/building-modern-applications-with-django-and-vuejs/
https://doi.org/10.5772/intechopen.114840.
https://doi.org/10.3390/info14060300.
https://doi.org/10.1016/j.promfg.2019.02.295.
https://olvlvl.com/2019-06-install-php-ext-source.html

	1. Introduction
	2. Analysis of recent research and publications
	3. Statement of the task
	4. Presentation of the main material
	5. Results&Discussion
	6. Conclusions
	Declaration on Generative AI
	References

