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Abstract

This paper introduces a novel Al-driven platform that integrates satellite imagery, unmanned aerial
vehicle data, and Automatic Identification System signals into an analytics pipeline for hazardous object
detection in maritime and coastal environments. The system leverages YOLO11 for object detection and a
knowledge graph based on Blue Brain Nexus to achieve semantic interoperability. Results demonstrate
the ability of the developed information technology to detect maritime debris, oil spills, and vessel
activity, while enabling adaptive route planning and decision support. This approach provides a scalable
framework for emergency response and environmental monitoring, aligning with current advances in
Artificial Intelligence, machine learning, and applied modeling in information technologies.
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1. Introduction

The frequency of natural disasters, maritime accidents, and climate-related hazards has increased
significantly in recent years [1]. Traditional monitoring systems that rely solely on satellite data or
unmanned aerial vehicle (UAV)-based inspections often fail to provide a complete and timely
situational picture [2, 3]. There is a growing need for integrated approaches that combine multiple
heterogeneous data sources with Artificial Intelligence (AI) to support emergency response [4, 5].
This is particularly relevant in the context of digital sovereignty and cloud infrastructure projects
like Gaia-X [6]. For near-real-time hazardous object detection, and actionable insights for safer
maritime operations within coastal areas or large rivers one needs the solution, merging satellite
data with accurate drone imagery and heterogeneous data sources enriching the precision and
accuracy of the system.

This paper presents a multimodal Al platform that merges satellite imagery, UAV data, and
Automatic Identification System (AIS) signals into a unified knowledge graph, enabling near-real-
time hazardous object detection and decision support. The goal of this paper is to demonstrate the
feasibility of multimodal fusion for maritime monitoring, present a knowledge-driven architecture
for semantic interoperability, and validate the system.
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2. Related works

Research on Al for remote sensing has expanded rapidly [3], focusing on applications such as
vessel detection, oil spill monitoring, and disaster assessment, based on developments of neural
networks for image analysis [7, 8, 9]. Multimodal data fusion has been studied extensively [10],
with approaches ranging from simple statistical techniques to advanced semantic integration.
Knowledge graphs (e.g., Blue Brain Nexus) have emerged as effective tools for organizing
heterogeneous data while ensuring interoperability [11]. Despite progress, existing works rarely
integrate near-real-time Al models, multimodal fusion, and knowledge graphs into a single system
for maritime safety and emergency response. Integration of cutting-edge object detection
algorithms, such as YOLO, becomes critical for enhancing near-real-time situational awareness and
rapid response in maritime environments. The YOLO object detection algorithm [9, 12] is used for
visual recognition of quadcopter streaming videos. Cargo ships can use drones for monitoring
dangerous sea routes. Having such drones in air and sea all the time would be too expensive and
ineffective. Our platform combines available satellite and tracking data for preliminary analysis
and deploy sea drones or UAVs when needed, to receive local accurate data, transform these and
analyze them all in real time.
Relevant data, offered by monitoring services, can be classified by source:

e Copernicus Marine Service (CMEMS): provides comprehensive sea surface temperature,
salinity, and currents data, along with marine ecosystem data and sea ice concentration and
extent measurements.

e European Marine Observation and Data Network (EMODnet): offers bathymetry, seabed
habitats, and human activities information, complemented by oceanographic data including
tides and currents, as well as geological, biological, and chemical datasets.

e National Oceanic and Atmospheric Administration (NOAA): contributes ocean
temperatures, salinity, and currents data, marine debris monitoring and habitat mapping
services, and weather and sea surface data collected from buoys and drones.

e Ocean Observatories Initiative (OOI): delivers ocean temperature, salinity, and chemical
properties data, seafloor imaging and topography information, and biological observations.

To collect necessary data, MariNeXt service [13] can be utilized to classify critical maritime
hazards like oil spills and debris. Its robust predictions ensure effective hazard monitoring for
maritime surveillance, even in challenging environments.

3. Methodology

This study presents the development and validation of a UAV-based object detection system for
maritime surveillance applications. While the broader multimodal data fusion framework
encompasses satellite imagery (Sentinel-1 SAR, Sentinel-2), Automatic Identification System (AIS)
data, and knowledge graph integration, this paper specifically focuses on the UAV component
utilizing YOLOv11 object detection algorithms.

3.1. System architecture overview

The proposed information technology implements a five-component modular pipeline architecture
(Figure 1). The data ingestion layer aggregates heterogeneous sources including Copernicus
Sentinel Hub API, UAV-mounted sensors, and AIS data streams. Data preprocessing is performed
through the QueryOptima™ platform for harmonization and normalization. A Blue Brain Nexus-
powered knowledge graph manages semantic data storage and interoperability. The analytics layer
integrates YOLOv11l object detection with graph-based reasoning, while the visualization
component provides real-time dashboards and geospatial interfaces for end-user interaction.



3.2. UAV-based object detection system

A Minimum Viable Product (MVP) of the system was developed and tested during the Case Study:
8th CASSINI Hackathon (November 2024) at the POLE Product Design Center, Ukraine.
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Figure 1: Diagram of Al-driven multimodal data fusion and risk assessment process.

The core contribution of this work centers on the development of a specialized UAV-based
maritime object detection system employing the YOLOv11 architecture. The detection model was
trained exclusively on the High-Resolution Ship Collections 2016 Multi-Scale (HRSC2016-MS)
maritime dataset [14], representing a significant enhancement over the original HRSC2016 dataset.

Dataset Characteristics and Preprocessing. The HRSC2016-MS dataset comprises 1,680
high-resolution optical remote sensing images containing 7,655 annotated ship instances. The
dataset exhibits comprehensive environmental diversity, encompassing maritime scenes across
multiple operational conditions: sea and coastal environments, diurnal and nocturnal imaging
scenarios, and varied meteorological conditions including clear and cloudy weather patterns. The
dataset’s multi-scale nature provides images with varying resolutions and aspect ratios, essential
for training robust detection algorithms capable of identifying vessels across different scales and
perspectives.

YOLOv11 Model Training and Fine-tuning. The YOLOv11 object detection architecture was
selected for its demonstrated superiority in real-time object detection tasks and computational
efficiency suitable for UAV deployment scenarios. The model was trained end-to-end on the
HRSC2016-MS dataset, which was split into 60% for training, 20% for testing and 20% for validation,
using transfer learning from pre-trained weights, with specific hyperparameter optimization for
maritime object detection. Fine-tuning procedures incorporated UAV-specific imagery to enhance
detection performance in coastal operational environments. The training process employed data
augmentation techniques including geometric transformations, photometric adjustments, and
multi-scale training to improve model generalization across diverse maritime conditions. Model
convergence was monitored through validation metrics including precision, recall, and mean
Average Precision (mAP) at multiple Intersection over Union (IoU) thresholds.



3.3. Integration framework

While this paper focuses on the UAV detection component, the broader system integrates with
semantic knowledge representation through Blue Brain Nexus, enabling cross-modal data fusion
and reasoning capabilities. The knowledge graph architecture facilitates semantic interoperability
between UAV detection results, satellite imagery analysis, and AIS tracking data, supporting
comprehensive maritimesituational awareness and risk assessment applications.

4. Results

The system was validated through three primary use cases: (1) detection and classification of oil
spills, debris, and environmental anomalies using MariNeXt; (2) ship detection using Sentinel-1
SAR imagery (trained on SAR-Ship-Dataset?) split into 60% for training, 20% for testing and 20% for
validation that was cross-validated with UAV imagery; and (3) prediction of vessel routes with
anomaly detection using AIS data.

The comparison highlights that the YOLO11 model, fine-tuned with UAV imagery,
demonstrates reliable ship detection in coastal environments. While some false positives occur, the
overall bounding box alignment with labeled data confirms high precision (Figure 2).
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Figure 2: Comparison of labeled (a) and predicted (b) ships.

The Figure 3 illustrates the evolution of validation metrics during model training. The initial
drop in precision is an artifact of the learning rate scheduler and optimizer state at the beginning of
the training. Precision rapidly stabilizes around 0.9, while Recall converges near 0.75. The mean
Average Precision at Intersection over Union threshold 0.5 reaches approximately 0.85, and the
stricter metric mAP@[0.5:0.95] converges to 0.66. These results indicate consistent model
improvement across epochs and confirm robust generalization for maritime object detection.

All losses decrease steadily, with the most significant reduction observed during the first 20
epochs, after which the curves gradually converge and stabilize. The absence of divergence
between training

*https://github.com/CAESAR-Radi/SAR-Ship-Dataset
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Figure 3: Validation metrics over training epochs.

and validation losses indicates that the model does not suffer from overfitting and generalizes well
to unseen data (Figure 4).
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Figure 4: Training and validation losses over training epochs.

Therefore, the main results of the information technology validation can be summarized as
follows:

e Detection Accuracy: The fine-tuned YOLO11 model achieved a precision of 90% and a
recall of 75%, demonstrating robust performance in identifying maritime objects with UAV-
enhanced data.

e Processing Latency: The analytics pipeline maintained an average processing time of
under 5 seconds per frame, ensuring near-real-time performance suitable for time-critical
applications.



e Data Integration: The platform successfully integrated multimodal data sources (satellite,
UAYV, and AIS) into a unified knowledge graph using Blue Brain Nexus, enabling effective
semantic linking and querying.

The MVP was awarded third place at the national level of the 8th CASSINI Hackathon
competition.

5. Discussion

The validation of the proposed information technology confirmed its strengths, including the
provision of analytics with low latency, semantic interoperability through a knowledge graph, and
a scalable pipeline applicable to multiple domains such as maritime, coastal, and disaster response.
However, a few challenges were identified. These include limitations in data access, such as
restricted AIS feeds and cloud dependency, the high computational demand of near-real-time
pipelines, and the limited availability of labeled datasets for training YOLO11 on maritime hazards.
Future work should focus on expanding the platform’s capabilities beyond maritime safety to
address other disaster types like floods and wildfires. Furthermore, important future developments
include integration with European Data Spaces initiatives and ensuring compliance with FAIR data
principles’ for open science.

6. Conclusion

The proposed information technology demonstrates the feasibility of an Al-driven multimodal data
fusion system for maritime safety and environmental monitoring. By combining satellite, UAV, and
AIS data within a knowledge graph architecture, the system provides near-real-time hazardous
object detection and decision support. The fine-tuned YOLO11 model achieved a precision of 90%
and a recall of 75%, with a mAP@[0.5:0.95] of 0.66, demonstrating robust performance. Data
owners will benefit from the developed information technology by maximizing the value of their
data assets to provide high-quality insights for maritime security.

The ship detection model from Sentinel-1 SAR data performs exceptionally well achieving 93%
precision and 92.5% recall. This demonstrates high accuracy in identifying ships with minimal false
positives, critical for cross validation with AIS third party API data.

The results from the CASSINI Hackathon validate its effectiveness and highlight the potential of
such approaches in broader applications, including emergency response, sustainable maritime
operations, and environmental protection.
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