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Abstract
Face anti-spoofing (FAS) on mobile devices requires models that are not only accurate and robust across  
domains but also optimized under strict SWAP (Speed, Weight, Accuracy, Power) constraints. Current  
approaches often face a trade-off: strong generalization relies on additional modalities such as depth or 
rPPG signals, but mobile deployment can only afford lightweight RGB-only models. In this paper, we 
propose a privileged-information knowledge distillation (PI-KD) framework that enables multi-teacher 
supervision  during  training  while  keeping  the  deployment  student  efficient  and  mobile-friendly. 
Specifically, we outline how temporal teachers (rPPG-based) and geometric teachers (depth-based) can 
transfer complementary supervisory signals into a compact RGB-only student model. We discuss expected 
advantages for cross-dataset generalization, robustness to unseen attacks, and SWAP trade-offs, and we 
propose evaluation protocols that future empirical work should adopt. Our contribution lies in presenting 
a  methodology  that  bridges  privileged  multimodal  supervision  with  practical  on-device  constraints, 
opening a pathway toward more reliable and efficient mobile face anti-spoofing systems.

Keywords 
face anti-spoofing (FAS), presentation attack detection (PAD), knowledge distillation (KD), CEUR-WS 1

1. Introduction

Face anti-spoofing (FAS) is a critical safeguard in mobile biometric authentication, where decisions 
must be both reliable and resource-efficient.  Production systems must optimize SWAP metrics: 
Speed  (latency),  Weight  (model  size/memory),  Accuracy  (PAD  metrics  such  as 
APCER/BPCER/ACER/RIAPAR),  and  Power  (energy  consumption  per  inference).  The  ISO/IEC 
30107-3 test methodology formalizes PAD error metrics and evaluation protocols, anchoring how 
operating points are compared in practice [1]. Deep learning methods have substantially advanced 
FAS,  including  pixel-wise  supervision  and  domain-generalization  strategies.  Yet,  models  that 
generalize best, often rely on sensing or capacity that mobile devices cannot afford at inference 
(e.g., depth, rPPG, or heavy backbones). This tension in robustness versus deployability persists  
across recent surveys reviewing cross-dataset performance and multi-modal setups [2].

A principled way to bridge this gap is Learning Using Privileged Information (LUPI): during 
training,  a  “Teacher”  may  access  auxiliary  information  not  available  at  test  time,  while  the 
deployed “Student” obeys the standard runtime contract (e.g.,  RGB-only).  LUPI formalizes how 
such additional signals can shape decision boundaries and accelerate learning without altering the 
inference interface [3]. Within FAS, two privileged cues are especially complementary: depth (3D 
structure/recapture artifacts) and rPPG (physiological rhythms). Liu et al. showed that pixel-wise 
depth  estimation  and  sequence-level  rPPG  supervision  guide  a  network  toward  more 
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discriminative. generalizable liveness cues, improving intra-dataset and cross-dataset robustness – 
exactly the properties desired before compressing knowledge into a mobile-sized student [4]. 

To realize a deployable solution, we propose to adopt knowledge distillation as the compression 
mechanism –  transferring  the  behavior  of  one  or  more  teachers  into  a  compact  student  that  
preserves  accuracy  while  meeting  mobile  constraints  [5].  In  our  privileged  multi-teacher  KD 
design, an rPPG-aware temporal teacher and a depth/landmark-aware geometric teacher supervise 
an RGB-only student; the student alone runs on-device, enabling better SWAP trade-offs without 
changing the inference inputs. This paper is a method proposal and discussion: we specify the PI-
KD design choices and a SWAP-aware evaluation blueprint for future empirical validation.

2. Problem formulation

This  work  proposes  a  privileged-information,  multi-teacher  distillation  scheme  that  trains  on 
multi-modal  supervision  (available  only  during  training)  while  deploying  a  single  RGB-only 
student  optimized  under  SWAP  constraints.  We  formalize  the  task,  models,  objective,  and 
constraints below.

2.1. Task and data

Let x∈X RGB denote an RGB video clip (or short sequence of frames) captured by a mobile camera,  

and y∈{0 ,1} the PAD label (0: attack, 1: bona fide). During training (only), we assume access to 
privileged signals tied to the same clip:

 zrPPG – temporal/physiological cues (e.g., rPPG traces or features)

 zgeom – geometric cues (e.g., depth/landmarks)

Training data thus form Dtrain=(xi , y i , zi
rPPG , zi

geom , si)i=1
N , where si indicates the source domain 

(sensor, PAI type, capture condition). At deployment, only x is available, meaning that the target 
domain may be  unseen. Performance is evaluated with PAD metrics (APCER, BPCER, ACER) as 
formalized in ISO/IEC 30107-3 [1].

2.2. Models

 Student  f θ : X RGB→[0 ,1] outputs a liveness score  pθ( y=1|x).  The backbone is  mobile-
efficient (e.g.,  MobileNetV3/EfficientFormer/MobileViT)  to  enable  SWAP-constrained 
deployment

 Temporal teacher T ω is trained with/for rPPG-aware supervision on (x , zrPPG), producing 

logits tω(x) or intermediate features ϕω(x)
 A  geometric  teacher  Gψ is  trained  with/for  depth/landmark  supervision  on  (x , zgeom), 

producing logits gψ (x) or features ϕψ (x)

This  setting follows  Learning Using Privileged Information (LUPI)  –  auxiliary signals  guide 
learning but are absent at test time [3] – and uses knowledge distillation (KD) to transfer teacher 
behavior into the deployable student [5].  Prior PAD work shows that  depth and  rPPG provide 
complementary liveness cues that improve generalization [4].  



2.3. Training objective

The student is trained with standard classification on hard labels with binary cross-entropy to 
establish a strong baseline decision surface. Let  σ (·/T ) denote softmax at temperature  T . Then, 
classification loss can be described using formula 1:

Lcls=
1
N
∑
i=1

N

BCE ( y i , f θ(xi)) (1)

where xi is the RGB input sample; y i∈{1,0 } (1 = bona fide, 0 = attack); f θ(xi) is the student’s 

predicted probability for bona fide;  N  is the number of training samples;  BCE is Binary Cross 
Entropy.

We  align  the  student’s  softened  outputs  with  both  temporal  (rPPG)  and  geometric 
(depth/landmark) teachers using KL divergence; the temperature  T>0 and weights  α , β control 
the strength of each signal. 

Llogit=
1
N
∑
i=1

N

(α KL(σ (tω(xi)/T )∥σ ( f θ(xi)/T ))+β KL(σ (gψ (xi)/T )∥σ ( f θ(xi)/T ))) (2)

where tω(xi) and gψ (xi) are logits from the temporal (rPPG) and geometric (depth/landmark) 

teachers; C  is the number of classes (for PAD, C=2); α , β ≥0 are distillation weights; T>0 is the 
temperature.

To  further  transfer  inductive  biases,  we  could  match  intermediate  representations:  student 
features may be projected and pulled toward each teacher’s features with squared  L2 penalties 

weighted by γ , δ :

Lfeat=
1
N
∑
i=1

N

(γ‖Pθϕθ(xi)−Pωϕω(xi)‖2
2
+δ‖Pθϕθ(xi)−Pψ ϕψ (xi)‖2

2
) (3)

where  ϕθ , ϕω , ϕψ are student/teacher feature vectors;  Pθ , Pω , Pψ are linear projections to a 

shared feature space; ‖u‖2
2
 denotes the squared L2 norm; γ , δ ≥0 are feature-distillation weights.

The final objective sums the classification term, dual logit-distillation, and (optionally) feature-
distillation; only the student is deployed at inference. 

minθ L=Lcls+Llogit+Lfeatwithhyperparameters :α , β , γ , δ ,T (4)

This formulation supports  domain-generalization by (1) leveraging complementary privileged 
cues during training [4], and (2) allowing standard regularizers (e.g., style/augmentation schedules) 
without altering the runtime model. 

2.4. SWAP constraints and optimization goal 

Let the measured deployment characteristics on a target device be:

 L(θ) – latency (ms/inference)

 W (θ) – model size or peak memory (MB)

 E (θ) – energy (mJ/inference)

 Err (θ , τ ) – PAD error at operating point τ  (e.g., ACER computed per [1]).

Then we get the optimization view:

minθ , τ Err (θ , τ )+ λL L(θ)/Lmax+ λW W (θ)/W max+ λE E (θ)/Emax (5)



where Lmax ,W max , Emax encode the deployment constraints, which are device and app-specific; 

the operating point τ  is the decision threshold which should be selected according to [1, 6] to meet 
application requirements (e.g., fixed BPCER); KD terms α , β , γ , δ  act as training-time levers that 
can shift the Pareto frontier toward lower error without increasing runtime cost, consistent with 
the LUPI/KD paradigm [3,5]

2.5. Evaluation targets (for future empirical work)

Although this paper is a method proposal, a future study validating the approach should report:

 Accuracy: APCER/BPCER/ACER or other metrics at specified τ  per [1, 6], including cross-
dataset and unseen-attack splits.

 Speed & Weight: on-device latency and model size of the student.
 Power: energy per inference of the student (mJ/inference).
 Ablations: effect of each teacher (set  α=0 or  β=0); effect of feature-level vs. logit-level 

distillation.
 Pareto  analysis: Accuracy  over  Latency  and  Accuracy  over  Energy  curves  to  illustrate 

SWAP trade-offs.

3. Comparative analysis of known solutions

3.1. RGB-only classifiers vs. auxiliary or privileged supervision

Early deep FAS systems commonly treat spoof detection as  binary RGB classification, which is 
attractive for mobile deployment but fragile under cross-dataset shift. Surveys consistently report 
that  purely  RGB,  label-only  training  tends  to  overfit  to  capture  artifacts  and  backgrounds, 
degrading robustness when the camera, illumination, or PAI species changes [2].

A major step forward was auxiliary/privileged supervision: Liu et al. [4] showed that training 
with  pixel-wise depth and  sequence-level rPPG targets guides the network toward liveness cues 
tied  to  3D  structure  and  physiological  rhythms,  boosting  both  intra-dataset  and  cross-dataset 
accuracy. The catch is that these signals are not available on consumer phones at inference time.

3.2. Multi-modal at training vs. deployment reality (LUPI) 

The  Learning  Using  Privileged  Information  (LUPI) paradigm  formalizes  exactly  this  situation: 
richer signals may be used  during training to shape the student’s decision boundary, while the 
deployed interface remains RGB-only [3]. LUPI provides the theoretical justification for separating 
training-time supervision from test-time inputs and for using teachers to accelerate and regularize 
learning. 

3.3. Knowledge distillation for FAS 

Knowledge distillation (KD) is the practical mechanism to compress teacher behavior into a small 
student  with  little  or  no  runtime  overhead.  Classic  KD  uses  temperature-softened  targets  to  
transfer “dark knowledge”, improving the accuracy of compact models. Recent FAS work applies 
KD explicitly to efficiency: a  head-aware Transformer KD compresses to ~5 MB while remaining 
competitive, combining logit-level and feature-level terms. However, existing KD for FAS typically 
relies on single-teacher RGB supervision, leaving rPPG and depth advantages on the table [4, 7]. 

3.4. Mobile backbones and SWAP considerations

For on-device use, students should be instantiated with  mobile-efficient backbones.  MobileNetV3 
[8] is  hardware-aware  and  widely  used  in  production;  EfficientFormer  [10] demonstrates 



transformer-level accuracy at MobileNet-class latency on iPhone;  MobileViT [9] is a light hybrid 
that brings global context with modest cost. These neural network architectures form strong, fair  
baselines for SWAP-aware comparisons (latency/size/energy vs. accuracy).

3.5. Metrics and operating points 

When comparing systems, ISO/IEC 30107-3 requires reporting APCER, BPCER, ACER, and RIAPAR 
at defined operating points [1]. Many efficiency papers under-report operating-point specifics and 
almost  never  report  energy per  inference,  complicating appropriate  SWAP comparisons across 
models and devices. A standards-aligned, SWAP-aware protocol is therefore essential for credible 
claims. 

4. Suggested improvements 

1. Dual-teacher,  privileged KD  rather  than  single-teacher  RGB  KD.  Use  an  rPPG-aware 
temporal  teacher  and  a  depth  and  landmark-aware  geometric  teacher  to  transfer 
complementary liveness signals into an RGB-only student. This leverages the robustness 
gains of auxiliary supervision (depth/rPPG) while keeping mobile inference unchanged [3, 
4].

2. SWAP-aware student selection and reporting.  Ground the study in one of mobile-focused 
architecture based students (MobileNetV3, EfficientFormer, MobileViT) [8, 9, 10], and report 
accuracy  and device-measured latency, size, energy alongside ISO 30107-3 metrics [1] at 
clearly stated operating points, closing the common reporting gap. 

3. Logit and feature KD with minimal overhead.  Follow evidence from FAS-specific KD by 
combining  temperature-softened  logit  matching  with  one  light feature-matching  head 
(single  mid or  high-level  tap),  then ablate  to  show the  smallest  configuration that  still 
moves the Pareto frontier [7]. 

4. LUPI-consistent  training  schedule.  Warm up on  hard  labels,  enable  KD with  moderate 
temperature, optionally add a small feature loss; this aligns with LUPI’s goal of accelerating 
learning while preserving a simple RGB runtime interface [5]. 

5. Comparative baselines that reflect deployment reality. Compare against: RGB-only students 
trained with labels; RGB single-teacher KD (as in head-aware KD) [7]; and the proposed 
dual-teacher privileged KD – reported under identical, ISO-aligned protocols [1]. 

Net effect: relative to RGB-only or single-teacher KD baselines, the proposed PI-KD aims to shift 
the SWAP Pareto front, achieving lower accuracy metrics at fixed latency, size, and energy by 
distilling temporal (rPPG) and geometric (depth) knowledge into a single deployable student. This 
directly reconciles the robustness of auxiliary supervision with the constraints of mobile inference. 

5. Results & discussion

This  paper  proposed  a  privileged-information,  dual-teacher  knowledge  distillation  (PI-KD) 
framework for mobile face anti-spoofing that explicitly targets SWAP constraints – Speed, Weight, 
Accuracy, and Power. The key idea is to learn from temporal (rPPG-aware) and geometric (depth 
and landmark-aware) teachers during training, while deploying only a compact RGB-only student 
on the device. We detailed the training objective (hard-label BCE and two logit-KD terms, with  
optional  feature-KD),  articulated  a  SWAP-aware  optimization  view,  and  outlined  a  standards-
aligned evaluation blueprint (ISO/IEC 30107-3 operating points; cross-dataset and unseen-attack 
protocols; on-device latency, size, and energy with Pareto analysis).

If proved out experimentally, PI-KD should shift the Pareto frontier, delivering lower accuracy 
metrics at fixed latency, size, and energy, i.e., improved robustness without increasing deployment 



cost.  By  decoupling  rich  training-time  supervision from  test-time  simplicity,  the  approach 
reconciles laboratory gains with real-world mobile constraints.

There are some limitations, as the approach assumes access to privileged signals (or credible 
surrogates)  for  teacher  training,  and  introduces  teacher-pretraining  cost.  Domain  mismatch 
between teachers and target environments, as well as privacy considerations for physiological and 
depth data, must be managed.

Immediate next steps include empirical validation on OULU-NPU, SiW-M, CASIA-FASD, and 
CelebA-Spoof  datasets  under  unified  SWAP  reporting;  SWAP-U extensions  that  integrate 
calibrated  uncertainty/abstention for  operating-point  control;  test-time  domain  handling for 
training-free  normalization  or  light  adapters  compatible  with  on-device  budgets;  data-centric 
boosts (e.g., diffusion-generated hard negatives) to widen coverage of unseen PAIs; fairness audits 
across  demographics  and  cosmetics;  and  standardized  energy-measurement protocols  across 
Android/iOS  toolchains.  Together,  these  directions  aim  to  turn  the  proposed  blueprint  into  a 
deployable, reproducible, SWAP-centric path for reliable mobile PAD.
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