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Abstract
This work is devoted to develop a scalable multi-label classification system for Norwegian texts. We 
propose a novel architecture that fuses contextual embeddings from the NbAiLab/nb-bert-base model 
with a feature-level generative augmentation module based on f-VAEGAN-D2. By synthesizing label-
conditioned embeddings for underrepresented classes and applying on-the-fly generative oversampling 
during classifier training, our method alleviates class imbalance and enhances recognition performance 
for both frequent and rare categories. We adapt the f-VAEGAN-D2 discriminator to operate on text 
embedding  spaces,  yielding  substantial  recall  improvements  on  tail  labels.  It  is  offered  practical 
guidelines for integration into municipal electronic document-routing systems that support both Bokmål 
and Nynorsk. 
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1. Introduction

Currently, with the growth of information volume, the problem of processing and classifying 
textual data remains undoubtedly relevant. It has gained wide popularity and is used for various 
tasks,  such  as  spam classification,  sentiment  classification  (sentiment  analysis),  and  document 
categorization. In general, the classification process - namely assigning texts to a predefined set of 
classes - requires significant time and human resources when dealing with global tasks and large 
data volumes; therefore, using machine learning for text classification is a more appropriate option.

This is especially relevant for public authorities that receive thousands of emails per day which 
must be processed and routed [1]. For automatic distribution of emails by categories, it is necessary 
to analyze their content, identify key topics, and forward them to the email address of the relevant  
departments. Existing solutions based on manual processing or simple algorithms (such as keyword 
filters) are ineffective due to subjectivity, high time costs, and the growing variety of linguistic  
constructions in emails. Of special interest are the Scandinavian countries, in particular Norway, 
since  according  to  the  report  by  Statistisk  sentralbyrå  (SSB)  [2]  the  share  of  Norwegian 
municipalities that do not use electronic tools, including email, fell from 37% (2018) to 6.5% (2022);  
95.5% of municipalities in 2022 used email as the main channel of communication with citizens, 
which leads to additional load due to the large number of electronic requests.  Norwegian language, 
having  two  official  written  standards  and  limited  annotated  corpora,  poses  a  challenge  for 
traditional machine learning methods applied to classification tasks.

Natural  Language  Processing  (NLP)  is  a  machine  learning  (ML)  technology  that  enables 
computers to interpret, manipulate, and understand human language [3]. Programming within NLP 
combines linguistics and computer science with the aim of decoding the structure of language and 
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the  rules  of  its  use  in  order  to  detect,  decompose  into  components,  and  extract  meaningful 
information  from text  and  speech  [4].  By  combining  computational  linguistics  with  statistical 
models, machine learning, and deep learning, NLP enables computers to recognize, analyze, and 
generate text and speech [5]. The field traces back to the Turing Test proposed by Alan Turing in the 
1950s [7]. Subsequent milestones include the 1954 Georgetown experiment in machine translation 
[7], rule–based systems such as ELIZA in the 1960s [8], the rise of corpus–based statistical methods 
in the 1980s and 2000s (Penn Treebank, WordNet, SVMs, HMMs) [7], and the launch of Google 
Translate in 2006 [8]. From 2000 to 2010, ML and neural networks transformed NLP; today models 
like [26], GPT, and LLaMA achieve high accuracy across tasks, and the market is projected to reach 
USD 92.7 billion by 2028 [8].  In practice,  approaches span rules-based NLP, statistical  NLP, and 
deep-learning-based NLP.

Norwegian presents specific challenges for NLP. Two written standards – Bokmål (≈85–90%) 
and Nynorsk (≈10–15%) – differ in orthography,  grammar,  and lexicon,  preventing a universal 
model without multi-corpus preparation [19].  The language is morphologically productive with 
extensive  compounding  (e.g.,  høyhastighetstog),  which  complicates  tokenization  [20].  Rich 
inflection,  flexible  word  order,  and  numerous  regional  dialects  further  increase  variability,  
impacting parsing and representation learning [19].

This research explores the integration of an intelligent multi-label text classification system for 
Norwegian using NLP, machine learning, and generative adversarial neural networks. The system 
is  aimed  at  automatically  determining  to  which  category  or  categories  an  input  text  belongs. 
Special attention is paid to limited training data; we therefore apply a generative learning approach 
based on the f-VAEGAN-D2 framework, which augments the training corpus with high-quality 
synthetic examples.

2. Literature review

In the field of Natural Language Processing for text classification is commonly organized as a 
staged pipeline that converts raw messages into machine-interpretable features [9]. The literature 
describes a progression from tokenization, sentence and word segmentation, stop-word filtering, 
normalization,  and  vectorization  to  downstream  classifiers  ranging  from  linear  models  and 
ensembles to deep neural networks and transformers; ensemble and hybrid designs are well studied 
in this context [30]. For Norwegian – where two written standards (Bokmål and Nynorsk) coexist 
and morphological productivity is high – the quality of each stage has a measurable effect on final 
metrics, making preprocessing and representation learning particularly consequential [19],  [20]. 
These choices can be framed as multi-criteria trade-offs among accuracy, robustness, and cost, for  
which formal multi-criteria optimization perspectives are relevant [33].

Research on tokenization for Norwegian addresses ambiguous periods (abbreviations, domains, 
decimals), hyphenated constructions, fixed expressions, and compound nouns. Practical systems 
combine rules, regular expressions, and machine learning, while modern pipelines favor subword 
approaches  such  as  SentencePiece  within  AutoTokenizer,  which  remove  fixed-vocabulary 
dependence  and  better  handle  compounding  and  orthographic  variation  between  Bokmål  and 
Nynorsk [21]. Preserving semantics at this earliest stage improves the fidelity of later vectorization 
and classification.

Stop-word filtering, normalization, and lemmatization are standard tools for reducing noise and 
vocabulary size. Off-the-shelf Norwegian stop-lists (e.g., in NLTK) are often a starting point but 
typically require domain adaptation. Normalization via stemming or lemmatization reduces type 
sparsity and stabilizes frequency statistics, which is useful for both inflection and compounding. 
These steps tend to improve efficiency and, when tuned to the domain, can improve effectiveness 
by  sharpening  the  signal  available  to  classifiers. The  selection  and  topology  of  models  used 
downstream  are  also  influenced  by  foundational  analyses  of  artificial  neuron  and  network 
topologies [31].



Vectorization  has  shifted  from  Bag–of–Words  and  TF-IDF–simple,  interpretable,  but 
context-agnostic representations–to contextual embeddings that encode meaning as a function of 
surrounding tokens. BERT-style representations operate at the subtoken level, capture context, and 
preserve multi-word expressions, delivering higher accuracy on Norwegian classification tasks than 
sparse, high-dimensional count vectors. Contextualization is especially valuable where inflection and 
compounding would  otherwise  explode  the  vocabulary  and obscure  semantic  relatedness  across 
forms.

Classical classifiers remain relevant reference points. Naive Bayes and logistic regression are 
strong  baselines  for  short  texts  but  rely  on  assumptions–conditional  independence  and  linear 
separability –  that limit performance on longer sequences and multi-label settings [11]. Support 
Vector Machines (SVM) perform well with TF-IDF features and small training sets but are sensitive 
to kernel choice and regularization and do not scale gracefully to a large number of labels without 
reduction schemes [11]. Ensembles such as Random Forests and XGBoost capture nonlinearities 
and are robust to sparse or noisy inputs, yet, like linear models, they lack explicit modeling of word 
order and long-range dependencies.

Early neural  approaches for text  classification addressed these gaps by modeling sequential 
context.  Recurrent Neural Networks (RNN) removed the independence assumption but suffered 
from vanishing and exploding gradients on long sequences.  LSTM and GRU introduced gating 
mechanisms  that  significantly  improved  long-distance  dependencies,  at  the  expense  of  slower 
training and limited parallelism [12]. Convolutional Neural Networks (CNN) for text offered speed 
and the ability to learn local n-gram-like patterns useful for sentiment, toxicity, and stylistic cues, 
but they are less suited to capturing global  discourse structure compared with attention-based 
models. When multiple, often conflicting, objectives arise—e.g., accuracy vs. latency vs. robustness
—multi-criteria  and  evolutionary  optimization  methods,  including  genetic-algorithm-based 
conditional  optimization,  can  guide  model  and  threshold  selection  [32],  [33].  Transformers 
fundamentally changed the state of the art. Architectures such as BERT, GPT, T5, and RoBERTa 
leverage self-attention to use full-sentence context [10]. BERT introduced bidirectional encoding 
and  the  [CLS]  token  as  a  document-level  aggregate,  which  became  a  de  facto  standard  for 
classification  heads.  For  Norwegian,  NB-BERT/NbAiLab  variants  adapted  to  Bokmål/Nynorsk 
consistently outperform classical methods on categorization tasks. In practice, however, scarcity of  
labeled data and severe label imbalance remain barriers, leading to overfitting on frequent classes  
and low recall in the long tail - effects that are amplified in multi-label regimes.

To reduce reliance on large labeled corpora, several works explore adversarial generation for 
text[13].  SeqGAN casts the generator as a reinforcement-learning agent that receives a reward 
from the discriminator after sequence completion, enabling GANs to operate over discrete tokens 
[14].  TextGAN  introduces  a  feature-matching  loss  that  encourages  the  generator  to  align 
distributions  of  discriminator-level  features  between  real  and  generated  sentences  [15],  [27]. 
MaliGAN reduces gradient variance by reparameterizing rewards, improving training stability [16]. 
RankGAN  replaces  binary  discrimination  with  pairwise  ranking,  which  correlates  better  with 
graded text quality [17]. Despite these advances, such models emphasize generation rather than 
many–to–one classification and seldom incorporate label information explicitly during training.

Hybrid  approaches  combine  the  strengths  of  autoencoding  and  adversarial  training. 
f-VAEGAN-D2  generates  discriminative  feature  vectors  in  an  embedding  space  and  supports 
any-shot scenarios (zero-/few-shot) by pairing a conditional discriminator with an unconditional that 
improves the marginal feature distribution [18]. The presence of an encoder permits many-to-one 
usage that aligns with classification. In text adaptations, contextual vectors (e.g., the BERT [CLS] 
embedding) serve as inputs, and the generator synthesizes label–conditioned features to expand rare 
classes  without  duplicating  real  examples.  Such  synthetic  feature–level  oversampling  tends  to 
preserve semantics better than simple data–level heuristics such as EDA or back–translation and 
integrates  naturally  with  multi–label  optimization  and  per–label  threshold  calibration.For 
Norwegian’s  dual  standards,  compounding,  and  dialectal  variability,  robust  preprocessing  and 
subword  tokenization  (SentencePiece)  are  necessary  components  [19] – [21].  Building  on  these 



findings, our approach fuses NbAiLab/nb–bert–base with     f–VAEGAN–D2 to target rare–label 
enrichment in a multi–label setting, addressing gaps left by prior work in handling imbalance and 
preserving class semantics during training.

3. Problem Statement

The  problem is  to build  multi label text classification system for Norwegian under scarce an 

notation sand label imbalance. The input corpus contains labeled samples  L={(t i , y i)}i=1
N L , where 

each text t i is accompanied by a binary label vector y i∈{0,1}K and unlabeled samples U={t j}j=1
NU . 

Texts  are encoded with contextual features using NbAiLab/nb-bert-base[6].  The  document 
embedding is taken from the [CLS] token (classification token), which is added at the beginning of 
the input sequence[28]. After passing through several transformer layers, this token aggregates 
contextual information about the entire text, as in:

x real=BERT[CLS]([t1 , t2 ,… , tn]) . (1)

The goal is to estimate the conditional  probability  p( x|y) of  the label  vector y given the 
embedding x and learn a mapping, as in:

f θ :ℝ768→[0,1]K , (2)

ŷ=f θ(x) , (3)

with independent per-label thresholding ŷk≥τ k environments, where ŷk  - the model-predicted 

probability that the document belongs to label k, τ k - the threshold set for label k.

The  function  fθ is  a  parameterized  model  that  takes  as  input  a  768-dimensional  document 
embedding (the output of the BERT \[CLS] token) and returns K values in the range [0,1]. Each of 
these values represents the predicted probability that the document belongs to the corresponding 
label. 

4. Method overview

4.1. Neural Network Model

The key idea is to use the generative model f-VAEGAN-D2 as a classifier booster and as a source of 
synthetic  features  (vector  representations)  for  rare  classes.  This  enables  robust  learning  on 
imbalanced datasets typical of real-world classification of municipal email inquiries.

Figure 1: Topology of the proposed Neural Network Model



4.1.1. Encoder

The encoder approximates the posterior of a latent variable  z  given text embeddings and class 

labels.  It  maps  [x , y ],  where x̂∈R768 is  the BERT embedding and y∈ {0,1 }K  is  the multi-label 

vector, to latent parameters z∈R64 with q ( z|x , y)N∼(μ ,σ 2 I ) , where meaning the approximate 
posterior over  is modeled as a multivariate normal distribution whose mean  μ(x , y) and diagonal 

covariance σ 2(x , y) I  are output by the encoder. 

Architecture:  one  hidden  layer  with  128  units  and  two  heads  outputting μ and  log σ 2. 
Reparameterization:

z=μ(x , y)+σ (x , y)⊙ε , ε∼ N (0 , I ) , (4)

where μ(x , y) and σ (x , y) are the mean and standard-deviation vectors output by the encoder 

for input (x, y) and ϵ ∼ N (0 , I ) is random noise drawn from the standard normal distribution.
Encoder loss includes (i) reconstruction MSE between original and reconstructed embeddings, 

and (ii) KL divergence between the approximate posterior q( z|x , y) and the prior p(z)∼ N (0 ,1):

Lenc=MSE (x , x̂)+β⋅DKL(q( z|x , y)∥p(z)) , (5)

where x̂ is the reconstruction of the input embedding, β is a weighting coefficient that balances 
reconstruction (MSE) and latent-space regularization (encouraging proximity to N (0 ,1).

This yields a smooth, meaningful latent space suitable for reconstruction and feature generation 
for downstream classification.

4.1.2. Generator

The generator synthesizes text embeddings. It is a two-layer MLP that takes (z , y) with z∈R64 

and y i∈0 ,1K.

Figure 2: Architecture of the Generator of the proposed Neural Network Model

Layer 1: 128 units, ReLU. Layer 2: output x̂∈R768 matching BERT’s embedding size. 
Models:

– reconstruction: z from the encoder to recover x ≈ x̂ ;

– generation: z∼ N (0 ,1) with arbitrary y to synthesize embeddings for zero-/few-shot support, 
especially for rare classes. The synthetic samples augment the training set prior to classifica-
tion.

Generator loss:

LG=Ladv+ λrec⋅LMSE+ λKL⋅LKL+ λFM⋅LFM , (6)

where Ladv is  the  adversarial  loss, LMSE reconstruction  error,  as  in  (7)  between  real  and 

generated  embeddings,  LKL latent  regularization  via  the  encoder,  as  in  (8),  and  LFM  feature 



matching between intermediate discriminator features ϕ(⋅), as in(9), and λrec , λKL , λFM≥0  weight 
the respective terms.

LMSE=
‖ x− x̂ ‖2

2

d
,

(7)

where d is a is the embedding dimensionality and d = 768.4

LKL=DKL( z|x , y)∥N (0 , I ) , (8)

LFM=‖ ϕ( x̂ , y)−ϕ(x , y)‖1.. (9)

4.1.3. Discriminator

The discriminator solves two tasks:

1. Adversarial discrimination between real x and synthetic G(z,y)
2. Feature matching to stabilize training by aligning hidden-layer statistics

Figure 3: Architecture of the Discriminator of the proposed Neural Network Model

Input is the concatenation of an embedding and its label; processing follows[29]:

h1=ReLU (W 1h1+b1) , (10)

h1=Dropout (h1 , p=0.4) , (11)

D (x , y)=σ (W 2h1+b2) , (12)

where  σ  is  the sigmoid,  D (x , y)∈(0 ,1) is  the probability  that (x , y) is  real,  W i -  weight 

matrix, bi is the bias, which yields the hidden representations before the nonlinearity. The hidden 

activation h1 is also returned for feature matching. 
Total discriminator loss combines:

• Adversarial loss (binary cross-entropy), as in:

Ladv=−E(x , y)∼ p [ log D (x , y)]−E z∼ N (0 ,1) , y∼ p y
[ log (1−D (G(z , y) , y))] , (13)

where E(x , y)∼ p [·]  is  expectation over real pairs (x , y), E z∼ N (0 ,1) , y∼ p y
[·]  is expectation over 

latent noise z and sampled labels y.

• Feature matching comparing hidden means:

LFM=‖ Ex [h(x , y)]−E z [h(G (z , y) , y)]‖2 , (14)

where h is the discriminator’s hidden feature vector.
The hidden vector h is also returned to compute LFM in the generator.



4.1.4. Classifier
The classifier is a three-layer MLP (384→192→output) trained on the expanded dataset (original 
and synthetic embeddings). Each class uses its own decision threshold optimized for F1.

Table 1
Classifier Architecture 

Layer Input size Output size Activation Parameters

FC1 [64, 768] [64, 384] ReLU 295296

Dropout(p=0.4) [64,384] [64, 384] - 0

FC2 [64, 384] [64, 192] ReLU 73920

Dropout [64, 192] [64, 192] - 0

FC3 [64, 384] [64, 192] ReLU 4825

4.2. GANs Training Problems

4.2.1. Vanishing Gradient Problem

When the discriminator D becomes too accurate early, generator G receives almost no learning 
signal. With the “saturating” generator objective:

LG=E z∼ pz(z)
[ log (1−D (G(z , y) , y))] , (15)

we get LG→0 and ∇θ LG→0, so training stalls [24].To stabilize gradients, use the Wasserstein 
objective that optimizes Earth Mover’s Distance [24]:

LWGAN=Ex∼ pdata
[D (x , y)]−E z∼ pz

[D (G (z , y) , y)] (16)

4.2.2. Mode collapse

Mode collapse occurs when G outputs a few patterns that fool D  but do not cover the data 
distribution [23]:

G(z , y)≈ x y , ∀ z∼ N (0 , I ) (17)

The Wasserstein objective reduces collapse because minimizing a distance, not a log-probability, 
continues to provide usable updates even when D separates modes well. An equivalent form is

L=Ex∼ pdata
[D (x , y)]−E z∼ pz

[D (G(z , y) , y)] , (18)

which preserves non-degenerate gradients when diversity drops.

4.2.3. Non-Convergence

In this case, a small Gaussian noise is added to the real data to make the task slightly harder 
for D and give G more time to adapt. Penalties on excessively large weights in D are also applied, 
which makes its task harder and helps preserve competition [22].

5. Results

The algorithm was tested on a manually collected dataset of the emails in Norwegian language, 
collected from the internal correspondence of the Nord-Aurdal kommune. Each email could belong 
to  one  or  more  of  17  predefined  municipal  categories  (Aurdal  omsorgssenter,  Barnehage 



virksomhetsleder,  Brannvesenet,  Eiendom,  Fagernes  legesenter,  Helse  og  omsorg, 
Helsesøstertjenesten,  Interkommunal  barneverntjenest,  Kultur,  Miljø  og  Næring,  Nord-Aurdal 
folkebibliotek,  PP-tjeneste  for  Valdres,  Regnskap,  Skole  virksomhetsleder,  Teknisk,  Økonomi), 
forming a multi-label classification task. 

The  dataset  was  split  into 70/15/15,  where  70%  is  training, 15%  is  validation  and  15%  is 
test subsets with three random initializations (7, 42, 2025) ensembled by probability averaging.

Figure 4: Number of categories per text for the collected dataset

One of the key issues identified during the dataset analysis is a significant imbalance between 
categories: several classes (such as Kultur and Regnskap) are represented by fewer than 20 examples. 
This situation prevents stable classifier training—the model tends either to completely ignore rare 
labels or to overfit on noisy patterns. For each underrepresented class, 1,000 new embeddings were 
synthesized by passing a random latent vector through the generator along with the corresponding 
one-hot  label  representation.  The  generated  embeddings  were  integrated  into  the  training  set, 
augmenting the real examples. The classification model (an ensemble of MLPs) was then trained on 
this  extended  dataset and was  trained  for 50  epochs  with  a  batch  size  of  32  using  the 
optimizer(learning rate = 1e-3). GAN was trained for 12 epochs with batch size 64 using Adam (lr = 
1e-3)  for  Encoder,  Generator,  Discriminator.  The  loss  combined  BCE  (adversarial),  MSE 
(reconstruction), KL-divergence, and feature matching and gradients were batch-averaged. Three 
random initializations (7, 42, 2025) were ensembled by probability averaging.

To evaluate the performance of the proposed neural network model, several standard metrics 
are used:

• Precision
• Recall
• F1 score. Two forms of F1-score were analyzed separately: 

1.    Micro-F1 is calculated globally across all  labels at once (i.e.,  all  TP, FP, and FN are 
summed). It is sensitive to classes with a large number of examples.
2.    Macro-F1 is the average F1-score computed separately for each class. Unlike Micro-F1, 
it is not affected by class frequency and better reflects performance on rare categories.

To evaluate the reliability of threshold-based predictions, calibration metrics are used:

• AUPRC (Area Under Precision–Recall Curve)
• Brier score (mean squared error between predicted probabilities and actual labels)

This allows us to clearly compare model versions and ensure the system works reliably in 
practical scenarios.



Table 2
Metrics for evaluation

Metric Value

Precision 0.92

Recall 0.744

F1 Micro-F1 0.823

Macro-F1 0.68

AUPRC 0.832

Brier 0.17

Per-label thresholds is tuned on the validation split to maximize Macro-F1 and then froze them 
for  testing.  An  ablation  study  (no  augmentation  vs  class-conditional  augmentation)  showed 
consistent  gains  on  tail  labels  when  synthetic,  label-conditioned  embeddings  were  included. 
Precision–Recall  curves  (micro  and  macro)  further  confirm  robustness  under  class  imbalance.  
Calibration was evaluated using mean AUPRC = 0.83  and mean Brier  score  = 0.17 with good 
alignment between predicted probabilities and true label frequencies.

6. Conclusions

In this work was presented system that combines BERT-based embeddings with generative data 
augmentation for multi-label classification for texts in Norwegian Language. The pipeline ensures 
normalized and denoised text, cleaned from noise and redundant morphology.

Text vectorization is carried out using the NbAiLab/nb-bert-base model, which produces deep, 
contextualized embeddings.  To address class  imbalance,  used an f-VAEGAN-D2 architecture to 
synthesize additional  embeddings for rare categories,  preserving the latent-space structure and 
enhancing classification quality.

Inference is performed using an ensemble of neural networks trained on both real and synthetic  
embeddings,  with  per-label  probability  thresholds  optimized  for  each  category.  Architectural 
choices,  regularization techniques,  and a  carefully  designed training regimen prevent  common 
GAN-related failures—gradient vanishing, unstable convergence, and mode collapse—even in the 
challenging setting of multi-label text classification.

Evaluation on test dataset by macro-F1 and micro-F1(0.823 and 0.68, respectively) confirms that  
overall performance improved and rare-class accuracy rose, reducing neglect of underrepresented 
labels.  A  mean  AUPRC  of  0.83  and  Brier  score  of  0.17  indicate  strong  calibration.  Per-label  
thresholds  and  ensemble  inference  ensured  stable,  accurate  detection  of  rare  categories.  The 
architecture therefore shows strong potential for classification.

Declaration on Generative AI

During the preparation of this work, the author(s) used X-GPT-4 in order to: Grammar and spelling 
check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed 
and take(s) full responsibility for the publication’s content.
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