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Abstract
This  paper  addresses  the  challenge  of  generating  software  projects  efficiently  from natural  language 
descriptions. Instead of relying on unconstrained code generation, which often produces inconsistent or 
unreliable results, this research explores an approach based on reusing curated, pre-stored code snippets.  
The study focuses on the critical step of mapping project descriptions to relevant code assets, evaluating  
how effectively  an AI  model  can predict  snippet  relevance  through systematic  experimentation.  The 
methodology combines deterministic filtering with semantic reasoning, utilizing a NoSQL database for 
snippet storage and large language models for relevance prediction. Multiple models including GPT-4o-
mini, O3-mini, and GPT-4o are evaluated on a benchmark of 100 synthetic project descriptions against 
100 curated code snippets. The research investigates three prompt engineering strategies: zero-shot, few-
shot, and chain-of-thought approaches. Results demonstrate that natural language input can be reliably 
aligned  with  reusable  code  components,  with  chain-of-thought  prompting  achieving  43.1%  accuracy 
compared  to  30.3%  for  zero-shot  approaches.  GPT-4o-mini  emerges  as  the  optimal  model,  balancing 
performance with cost-effectiveness at approximately 7.33× lower cost than premium alternatives. The 
findings support the feasibility of snippet-augmented project generation as a pathway toward faster and 
more consistent  software development.  This  study highlights  the potential  of  combining AI-powered 
interpretation with structured code reuse, offering an alternative to purely generative approaches that  
maintains  quality  while  accelerating  development  cycles.  The  approach  provides  a  foundation  for 
enterprise-scale deployment and integration into existing coding environments.
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1. Introduction

In enterprise software development, the reuse of existing code is a well-established practice aimed 
at  enhancing  productivity  and  maintaining  consistency  across  projects.  However,  despite  the 
availability of extensive codebases, developers often resort to "vibe coding" — a rapid, heuristic-
driven approach to coding that prioritizes speed over reliability. This method frequently leads to 
the introduction of defects and technical debt, undermining long-term maintainability. A study by 
Tornhill and Borg [1] highlights the significant impact of code quality on development efficiency,  
revealing  that  low-quality  code  contains  15  times  more  defects  than  high-quality  code,  and 
resolving issues in such code takes, on average, 124% more time. This underscores the necessity for  
a more structured approach to code reuse that balances speed with reliability. 

The challenge lies in effectively identifying and integrating relevant, high-quality code snippets 
from  vast  repositories.  Manual  selection  is  time-consuming  and  error-prone,  while  existing 
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automated systems often lack the sophistication to understand the context of a developer's natural  
language input, leading to irrelevant or suboptimal code suggestions. This paper introduces an AI-
powered system designed to enhance software project generation by predicting the relevance of 
pre-stored code snippets to a given natural language project description [2]. By focusing on the 
critical  task of  snippet relevance prediction,  this approach aims to streamline the development 
process, enabling developers to leverage existing code assets efficiently.

The key contributions of this research are the development of a relevance prediction algorithm 
that  accurately  predicts  the  relevance  of  code  snippets  based  on  natural  language  project 
descriptions, the evaluation of the algorithm’s performance through comprehensive experiments 
demonstrating  its  capability  to  enhance  the  software  development  process,  and  providing  a 
foundation for integrating curated code databases and relevance prediction into advanced coding 
agents, such as Cursor, to further automate and improve the software development lifecycle.

2. Related works

The  practice  of  code  reuse  has  long  been  recognized  as  a  key  strategy  to  improve  software  
development productivity and maintainability. Studies have shown that systematic reuse of code 
components,  templates,  and  libraries  reduces  defects  and  development  time,  particularly  in 
enterprise  environments  with  complex,  proprietary  codebases.  Research  by  Borg  et  al.  [3] 
investigates the returns of highly maintainable code, revealing that maintaining high code quality 
can lead to significant reductions in maintenance costs and defect risks. Their study emphasizes the 
importance of proactive code quality management in sustaining long-term software health.

Recent advances in artificial intelligence have enabled the development of AI-powered coding 
agents capable of generating code from natural language descriptions. Systems such as GitHub 
Copilot and Cursor leverage large language models to assist developers by producing code snippets  
or  scaffolds.  While  these  agents  can  accelerate  coding,  their  outputs  often  lack  precision  and 
consistency, particularly when dealing with enterprise-specific or legacy code. The effectiveness of 
such systems is therefore closely tied to their ability to retrieve relevant code snippets and adapt 
them appropriately to the context of a given project [4].

Relevance prediction and code retrieval have emerged as critical components in improving the 
utility of AI-assisted coding systems. Approaches in this domain typically involve embedding code 
snippets  and project  descriptions into a shared semantic  space to measure similarity,  allowing 
models  to  recommend  the  most  contextually  relevant  components.  Prior  work  has  explored 
techniques  such  as  neural  code  search,  retrieval-augmented  generation,  and  embedding-based 
similarity metrics to identify applicable code assets efficiently. These methods demonstrate that 
structured  retrieval  and  prediction  mechanisms  can  significantly  enhance  code  reuse  while 
maintaining high-quality output [5].

This work builds on these foundations by focusing specifically on predicting the relevance of 
pre-stored code snippets given a natural language project description. Unlike prior research that 
emphasizes full project generation or LLM-only outputs, this approach isolates the retrieval and 
relevance prediction step, providing a scalable foundation for future integration into coding agents 
and enterprise software pipelines.

3. Methodology

The methodology outlines the overall design of the system and the experimental approach taken in 
this  research.  The aim is  to  establish a repeatable framework for  connecting natural  language 
project  descriptions  to  relevant  code  snippets  stored  in  curated  repositories.  To  achieve  this, 
principles from information retrieval, machine learning, and prompt engineering are combined into 
a unified pipeline.

The section is structured into three main components. First, the process of retrieving candidate  
snippets from a company-specific code database is described. Second, the rationale for selecting the 



large language model used to evaluate snippet relevance is presented, supported by experimental 
comparisons. Finally, the role of prompt engineering in shaping the interaction between project  
descriptions and the model is discussed, including the evaluation of different prompting strategies. 
Together, these elements form the methodological foundation for assessing how effectively AI can 
assist developers in leveraging existing code snippets for project generation. Implementation is 
available at https://github.com/Shchoholiev/assets-manager-api.

3.1. Process of getting relevant code snippets

Before the process  of  identifying relevant code snippets can begin,  snippets  must  be  ingested. 
During ingestion, the complete source code of each snippet is provided to a large language model 
to generate a rich, task-oriented description that captures purpose, inputs/outputs, dependencies,  
preconditions,  side  effects,  security/compliance  notes,  and  typical  usage.  This  description  is 
persisted as metadata and later serves as the primary semantic signal during selection. Ingestion 
also performs schema validation and deduplication to keep the corpus clean.

All code snippets are stored in a NoSQL database (CosmosDB)  which serves as a centralized 
repository of curated components. CosmosDB is chosen because its document model lets us persist 
the full snippet source code alongside rich relationship data within a single logical record, with 
automatic indexing for low-latency queries. Each snippet is annotated with metadata such as name, 
programming language, description, and company identifier [6]. This metadata makes it possible to 
enforce strict technical and organizational boundaries before introducing semantic reasoning into 
the selection process.

The  process  of  identifying  relevant  code  snippets  starts  with  a  natural  language  project 
description provided by the developer. The input includes three components:  the programming 
language,  the company identifier,  and the textual  project  description.  These parameters  act  as 
constraints that guide the retrieval pipeline, ensuring that only contextually appropriate snippets 
are considered for reuse. 

As shown in Fig. 1, the system first applies deterministic filtering. Snippets are restricted by 
programming language  to  match  the  intended  technology stack  and by  company identifier  to 
ensure that  only organization-specific,  internally  approved code is  included.  This  filtering step 
prevents irrelevant or incompatible code from entering the workflow and reduces the number of 
candidate snippets that need to be evaluated downstream.

Figure 1: Flowchart for retrieving relevant code snippets [created by the authors].

Once the candidate snippets are identified, they are passed to the large language model (LLM). 
At this stage, the LLM evaluates the semantic relationship between the project description and the  
available snippets; however, to keep inference practical, only each snippet’s project-level metadata 
(its identifier, name, and short description) is sent to the model. During ingestion, the full source is 
distilled  into  a  robust,  task-oriented  description  that  captures  purpose,  inputs/outputs, 
dependencies, and security/compliance notes; this serves as a compact semantic proxy for the code 
that the model can reliably consume. Full source files are intentionally excluded: including raw 
code for a large candidate set would quickly exceed typical context windows and make prompts 



unwieldy,  while  per-snippet  ranking  via  separate  LLM  calls  would  drive  latency  and  cost  to 
impractical  levels.  Although  reading  full  code  might  improve  relevance  during  research 
experiments,  it  is not viable for a production system operating at enterprise scale.  Instead, the 
model selects the snippets it deems most relevant based on the metadata and returns a structured 
list  with  brief  textual  justifications,  providing  transparency  about  why  particular  assets  were 
chosen.

For  example,  given  the  project  description  “a  secure,  modern  login  service  for  customer 
accounts,” the system first narrows candidates by language and company_id. The LLM then favors 
an authentication snippet whose metadata shows support for modern login flows (e.g.,  OIDC), 
MFA, token-based sessions, and the company’s encryption and logging standards. In its rationale, it 
notes that these features directly address authentication and data security for the stated use case,  
while excluding look-alike snippets that lack required compliance or use a different tech stack. 

The  final  output  consists  of  the  most  relevant  snippets  accompanied  by  concise  model 
rationales.  This  hybrid  workflow—combining  deterministic  filtering  with  semantic  reasoning—
yields  selections  that  are  both  technically  sound  and  contextually  appropriate,  increasing 
transparency and developer trust. After retrieval, the proposed snippets are confirmed with the 
developer, then a starter project is generated and compiled to validate correctness.

3.2. Model selection

Several  LLMs were evaluated for  the task of  selecting relevant code snippets  given a  natural-
language project description. The goal of this study was not end-to-end project generation, but to 
determine which model most reliably identifies the correct subset of pre-stored, curated snippets.  
To ensure fair comparison, all models received the same project description, the same filtered pool  
of candidate snippets (after language/company constraints),  and the same prompt format.  Each 
model returned the snippets it deemed relevant along with a short justification. A benchmark of 
100 synthetic project descriptions was constructed to mirror concise enterprise requirements (e.g., 
authentication, logging/auditing, API scaffolding, messaging, batch processing). Descriptions vary 
in wording and specificity to test whether models map intent — not just keywords — to appropriate 
building blocks. The candidate pool contains 100 curated, company-scoped code snippets from the 
CosmosDB repository, each tagged with language and companyId and accompanied by a short  
functional  description  (e.g.,  "JWT  auth  middleware,"  "transactional  outbox  publisher,"  "service 
template with health checks," "centralized logging adapter," "base CI pipeline"). 

Ground-truth sets  were defined manually  by selecting the minimal  snippet  set  that  would 
plausibly satisfy each description in a starter-project context.  During scoring, only snippet IDs 
present  in  the  provided  candidate  list  were  considered  valid;  references  to  out-of-scope  or 
nonexistent snippets were treated as errors.

Commonly available  models  spanning a  wide cost/quality  range were tested:  gpt-4.1-nano, 
gpt-4o-mini, o3-mini, gpt-4o, o1, and gpt-4.5. To account for deployment constraints in enterprise 
settings, both selection quality (distribution across the five outcome categories) and cost efficiency 
(published price per 1M in + 1M out tokens) were considered, as well as qualitative factors such as  
stability across prompts.

The stacked bar chart in Fig. 2 summarizes outcome distributions per model. Higher bars in 
“Exact  match”  and  lower  bars  in  “Mismatch”  indicate  better  performance.  Mid-tier  models 
demonstrated  strong  accuracy  without  incurring  the  steep  costs  of  frontier  models,  while  the 
smallest  model  showed more  frequent  “Partial—Mixed”  and “Mismatch”  outcomes.  In  practice, 
“Partial—Extra”  is  often  acceptable,  whereas  “Partial—Missing”  and  “Mismatch”  impose  higher 
developer overhead.

Balancing  selection  quality  with  cost  and  latency,  gpt-4o-mini  was  adopted  as  the  default 
model. On the 100-case benchmark it delivered competitive Exact rates with acceptable Partial—
Extra at a fraction of the cost of larger models, satisfying enterprise constraints. It also responds 
well to prompt design, yielding further gains under guided reasoning prompts. By contrast, auto-



reasoning models such as o3-mini perform better with broad, high-level prompts but lose accuracy 
when  given  more  detailed,  constrained  instructions.  Accordingly,  gpt-4o-mini  is  used  as  the 
backbone for the remainder of the study with its prompt engineering explored in the next section, 
with o3-mini as a comparative baseline.

Figure 2: Model evaluation results [created by the authors].

3.3. Prompt engineering

Three  prompting styles  are  compared for  the  snippet-selection task under  identical  conditions 
(same description, same candidate list filtered by language and company ID). Each prompt enforces 
an output schema with valid snippet IDs only and requests a brief rationale. Datasets, prompts,  
ground  truth,  and  evaluation  scripts  are  available  at  https://github.com/Shchoholiev/assets-
manager-start-projects-evaluation.

3.3.1. Zero-Shot

A single instruction without exemplars that specifies the task and output schema. It is the lowest-
cost,  lowest-latency  configuration  and  serves  as  the  baseline.  Zero-shot  performs  well  when 
snippet names/descriptions are clear and the schema is explicit, but it is sensitive to phrasing and 
more prone to over- or under-selection if constraints are not enforced strictly (Fig. 3 for example) 

[7].
Figure 3: Zero-shot prompt example [created by the authors].



3.3.2. Few-Shot

The instruction is preceded by one compact worked example that demonstrates the mapping from 
a  description  to  a  set  of  snippet  IDs.  The  exemplar  improves  schema  adherence  and  reduces 
spurious selections by giving the model a concrete pattern to imitate while keeping token overhead 
modest. Care is taken to keep the exemplar short, stylistically consistent with the evaluation items, 
and  different  from the  current  query  to  avoid  leakage  or  superficial  cue  matching  (Fig.  4  for 
example) [8].

Figure 4: Few-shot prompt example [created by the authors].

3.3.3. Chain-of-thought (CoT)

The instruction asks the model to articulate a brief reasoning step before emitting the final JSON 
answer.  This  encourages  the  model  to  align  functions  mentioned  in  the  description  with 
capabilities in the candidate list (e.g., security, auditing, messaging) and helps disambiguate near-
miss snippets. CoT typically increases exact selections and reduces mixed/mismatch outcomes at 
the cost of additional tokens; reasoning length is capped and the final answer is still required in a  
fenced, machine-parseable schema to preserve determinism (Fig. 5 for instance) [9].

Figure 5: Chain-of-thought (CoT) prompt example [created by the authors].



3.4. Prompt engineering — evaluation and results

The three prompting styles were assessed on the same 100-case benchmark described in Section III-
B, utilizing the same model (gpt-4o-mini), identical decoding settings, and the same candidate list  
per case (filtered by language and companyId).  Outputs were scored using the categories from 
Section  III-C:  Exact,  Partial—Extra,  Partial—Missing,  Partial—Mixed,  and  Mismatch.  The 
distribution of outcomes per style is reported as percentages over the 100 cases.

Exact matches increased with prompt guidance:  16% (zero-shot) → 22% (few-shot) → 34% 
(CoT).  Zero-shot  produced  the  highest  rate  of  Partial—Extra  (tending  to  include  superfluous 
snippets),  while  few-shot  reduced this  by  anchoring the  format  and selection behavior  to  the 
exemplar.  CoT further  improved precision and lowered Mixed/Mismatch cases  by encouraging 
brief reasoning against the candidate list; it showed a modest rise in Partial—Missing (the model  
occasionally  chose  a  minimal,  defensible  set)  that  is  considered  acceptable  in  practice.  Fig.  6 
summarizes these distributions.

Figure 6: Prompting technique comparison [created by the authors].

4. Results

A single weighted accuracy is reported that emphasizes exact matches and normalizes to a 0–100 
scale:

A c cur ac y (% )=15E+3 X+1M+2D
15* 100

(1)

where E is the share (%) of Exact matches, X is Partial–Extra, M is Partial–Missing, and D is 
Partial–Mixed; W (Mismatch) has weight 0 and is omitted. 

The coefficients  encode “developer  effort”:  Exact  gets  the dominant  weight  (15)  because  it 
requires no rework; Extra earns partial credit (3) since the solution is functionally complete with 
minor cleanup; Mixed (2) is valued above Missing (1) because it typically contains more of the 
needed functionality; and Mismatch contributes nothing. The normalization by 15 makes A=100 
when E=100%, keeping the metric interpretable and comparable across experiments.



Table 1
Model Evaluation Results

Model Price per 1M input + 1M output tokens (USD) Accuracy (%)

gpt-4.1-nano 0.50 14.6

gpt-4o-mini 0.75 34.3

o3-mini 5.50 42.7

gpt-4o 12.50 38.9

o1 75.00 33.5

gpt-4.5 225.00 13.3

On  a  100-case  benchmark  against  100  curated,  company-scoped  snippets,  mid-tier  models 
offered the best practicality–accuracy balance. With the metric above, gpt-4o-mini reached 34.3%,  
which is ≈80% of o3-mini (42.7%) and below gpt-4o (38.9%); the smallest model lagged (gpt-4.1-
nano:  14.6%),  and  the  most  expensive  frontier  model  underperformed (gpt-4.5:  13.3%).  Despite 
scoring  below  o3-mini,  gpt-4o-mini’s  cost  and  latency  profile  makes  it  the  preferable  default 
backbone for frequent, large-scale runs for enterprise use case.

Prompting materially shifts outcomes for gpt-4o-mini: 30.3% (zero-shot) → 34.3% (few-shot) → 
43.1%  (CoT)  on  the  same  cases.  Few-shot  raises  Exact  from  16%→22%  and  cuts  Extra  from 
52%→36%,  which  means  fewer  superfluous  snippets  to  clean  up,  though  Partial–Mixed  rises 
(27%→36%) as the model hews more tightly to the exemplar. CoT then delivers the biggest jump 
by pushing Exact to 34% and lowering Partial–Mixed to 26%, while Partial–Extra drops to 22%;  
Partial– Missing increases (5%→18%), but the metric’s heavy weight on Exact dominates, yielding 
the best overall score. In practice, CoT’s short, constrained rationales help the model rule out look-
alike snippets (e.g., logging vs auditing adapters) and align selections to compliance cues in the 
metadata,  reducing  triage  despite  the  uptick  in  minimal  sets.  Mismatch  stays  ~0–1%  across 
prompts, indicating stable schema adherence. 

On cost, $0.75 (gpt-4o-mini) vs $5.50 (o3-mini) is ~7.33× cheaper per token. Normalized by the 
new accuracy metric, gpt-4o-mini delivers ~5.9× more accuracy per dollar than o3-mini (≈45.7 vs  
7.8 percentage-points per $1 per 1M tokens). This comfortably funds CoT prompting by default  
while staying within enterprise constraints. Moreover, o3-mini (an auto-reasoning model) shows 
low upside from prompt engineering in this setting because it favors broad, high-level prompts; 
tighter,  schema-constrained  instructions  do  not  yield  proportional  gains.  Hence  gpt-4o-mini 
remains the best balance of accuracy, predictability, and cost for snippet selection at scale.

5. Limitations and future directions

The benchmark relies on synthetic, enterprise-style descriptions and a single-organization snippet 
corpus.  While  this  design  controls  variability  and  protects  proprietary  code,  it  limits  external  
validity.  Real  specifications  are  longer,  noisier,  and  interleave  functional  and  non-functional 
requirements; future studies should replicate these experiments on multi-org, real-world backlogs 
to assess generalization.

To better approximate developer effort and risk, weighted metric should be replaced — or at  
least  calibrated — using an LLM-as-judge protocol  rather  than fixed coefficients.  Concretely,  a  
judge model would receive the project description, the selected snippet set, and concise metadata 
(and, when feasible, quick static checks or minimal tests), then score the outcome on a rubric that  



distinguishes  critical  vs.  benign  deviations  (e.g.,  missing  an  authentication  dependency  vs.  
including a harmless utility). The rubric would be anchored with labeled exemplars, using pairwise 
comparisons  for  robustness,  and  scores  would  be  calibrated  via  scale-anchoring  and  isotonic 
regression. To ensure reliability, agreement against human ratings would be measured. This judge-
based metric is task-aware, explainable, and better aligned with practitioner costs than plain, static  
weights.

To strengthen external validity, future evaluations should include models from other vendors,  
including closed source and open source models, acknowledging that they are trained on different 
corpora, supervision mixes, architectural choices, alignment procedures, tokenizers,  and context 
limits — all of which can materially affect retrieval and selection behavior. Comparisons should use 
a standardized protocol (same prompts,  decoding settings, candidate pools,  and scoring),  report 
both aggregate accuracy and error profiles, and stratify by domain and prompt style. 

Beyond the methodological constraints discussed above, an important practical limitation lies 
in maintaining and scaling snippet databases in industrial settings. As repositories grow, ensuring 
snippet  freshness,  dependency  compatibility,  and  security  compliance  becomes  nontrivial.  In 
production  environments,  versioning,  deduplication,  and  quality  auditing  must  be  automated 
through  integration  with  existing  CI/CD  and  Git  workflows.  Enterprise  deployment  further 
requires strict access controls, metadata refresh pipelines, and continuous retraining of embeddings 
to reflect code evolution. From a scalability standpoint, large-scale snippet retrieval may require 
distributed vector databases or hybrid search architectures to sustain low-latency, high-throughput 
selection under enterprise workloads. Addressing these challenges will be key to operationalizing 
the proposed system in real-world development ecosystems.

Additionally, while the current benchmark uses synthetic, well-controlled project descriptions 
to  isolate  model  behavior,  future research should incorporate diverse,  real-world project  briefs 
from open-source and industrial backlogs. Such inputs would introduce realistic noise, ambiguity, 
and interleaved functional/non-functional requirements, offering a more rigorous test of snippet 
relevance prediction under production conditions.

6. Conclusion

This study demonstrates the potential of integrating AI-powered generative models to automate 
software project generation from natural-language inputs. By grounding assembly in curated code 
snippets, the approach cuts setup time, standardizes scaffolds, and lets developers focus on higher-
value design work. Importantly, this should not replace unconstrained code synthesis but extend it:  
use free-form generation for genuinely novel logic and “glue” while anchoring core functionality in 
vetted  components.  This  hybrid  reduces  the  variability  of  “vibe  coding,”  improving reliability, 
security, and compliance without sacrificing speed—turning AI from a code copier into a quality-
aware accelerator of real-world development.

From a deployment standpoint, the selection algorithm is a strong candidate for packaging as a 
Model  Context  Protocol  (MCP)  service,  exposing  endpoints  for  deterministic  filtering,  snippet 
metadata retrieval, relevance selection, and starter assembly. Such an MCP tool can be plugged into 
Cursor,  Windsurf,  or  other  code-generation  environments  so  developers  can  invoke  snippet-
augmented  generation  directly  from  the  editor,  receive  concise  rationales,  and  enforce 
organizational  policies—making  the  hybrid  retrieval  plus  generation  workflow  immediately 
actionable in day-to-day practice.
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