
Selecting a Simulation Runtime for Opinion Dynamics:
Evaluating Elixir for Agent-Based Models
Yurii Lytvynenko1,*,†, Grygoriy Zholtkevych1,2,†

1V.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine
2Ivan Franko National University of Lviv, 1 Universyteska Str., Lviv, 79007, Ukraine

Abstract
We evaluate Elixir as a simulation runtime for opinion dynamics by implementing the same extended pairwise
dialogue model in three engines with RNG parity: an Elixir actor engine, an Elixir task engine, and a Python
multiprocessing baseline, ensuring identical outputs given the same seed. On a dense all-pairs stress test (𝑁=300,
𝑇=100, ∼4.5M dialogues), the actor engine was fastest; under a sparse random-matching topology (𝑘=8; 120k
dialogues) the task engine outperformed actor by ≈18%. Both Elixir engines consistently exceeded Python. Ten
repeated trials produced tight 95% confidence intervals, confirming stability and efficient multicore utilization on
BEAM. We conclude that Elixir is a robust choice for high-concurrency agent-based simulations, with topology
guiding engine selection (actor for dense, task for sparse). This runtime decision provides the methodological
foundation for our subsequent modeling work.

Keywords
Opinion Dynamics, Agent-Based Simulation, Simulation Runtime Evaluation, Elixir Programming Language,
BEAM Virtual Machine, Computational Social Science, Methodological Foundations

1. Introduction

Simulation of opinion dynamics in networked communities is a computationally demanding task.
Modern models, such as the extended pairwise dialogue framework [1], represent social interactions as
repeated dialogues where agents retain, adopt, or reject opinions based on attributes like resistance and
persuasiveness. These models are mathematically rigorous and offer valuable insights into polarization,
consensus, and the emergence of alternative viewpoints. However, their computational cost increases
rapidly with network size and interaction density.

Selecting an appropriate programming language and runtime environment is therefore critical. The
requirements are precise: the simulation must support a large number of lightweight, independent
computations, manage concurrency efficiently, and scale across modern multicore processors without
significant programmer overhead. While Python is traditionally used in computational social science due
to its extensive ecosystem of scientific libraries, its concurrency limitations pose non-trivial challenges
for such workloads.

Other languages have also been employed for computational modeling. Julia [2] offers high numerical
performance and a growing ecosystem for scientific computing. However, its concurrency model is still
evolving and less mature for large-scale distributed workloads. C and C++ deliver raw performance but
require significant manual management of parallelism, memory, and fault tolerance, which increases
development complexity and reduces flexibility. In contrast, Elixir [3], built on the Erlang virtual
machine (BEAM) [4], provides a concurrency-first design. Its lightweight process model, supervision
trees, and fault-tolerant architecture were created for large-scale distributed systems and map naturally
onto multi-agent simulations where thousands of dialogues coincide.

ProfIT AI’25: 5th International Workshop of IT-professionals on Artificial Intelligence, October 15–17, 2025, Liverpool, UK
*Corresponding author.
†
These authors contributed equally.
$ inbox@yury-lytvynenko.com (Y. Lytvynenko); g.zholtkevych@karazin.ua,grygoriy.zholtkevych@lnu.edu.ua
(G. Zholtkevych)
� 0009-0004-0732-0602 (Y. Lytvynenko); 0000-0002-7515-2143 (G. Zholtkevych)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:inbox@yury-lytvynenko.com
mailto:g.zholtkevych@karazin.ua,grygoriy.zholtkevych@lnu.edu.ua
https://orcid.org/0009-0004-0732-0602
https://orcid.org/0000-0002-7515-2143
https://creativecommons.org/licenses/by/4.0/deed.en


In this paper, we argue that Elixir offers unique advantages as the core simulation engine for opinion
dynamics models. By evaluating the extended dialogue model in the challenging setting of 𝑁 = 300
agents under all pairs mode, we demonstrate that Elixir provides a scalable and robust foundation for
simulation backends in computational social science. Importantly, this evaluation is not an end in itself
but a methodological step: it was undertaken to identify the most suitable runtime for subsequent
research on the dynamics of community opinions, where the extended dialogue model will be developed
and applied at scale.

2. Background

2.1. Opinion Dynamics Model

The study of opinion dynamics seeks to understand how individual preferences evolve through repeated
interactions within a community. In the extended dialogue model [1], communication is represented as
a series of pairwise dialogues. Each dialogue is treated as an atomic operation, where two agents
exchange views and update their opinions probabilistically.

Unlike classical binary models, where agents either retain or adopt an interlocutor’s opinion, the
extended framework introduces a third possibility: selecting an alternative state. As a result, each
dialogue may lead to one of three outcomes:

1. An agent retains their current opinion.
2. An agent adopts the interlocutor’s opinion.
3. An agent rejects both options and transitions to a generalized alternative.

The likelihood of these outcomes is shaped by two independent attributes: resistance (the tendency to
keep one’s own opinion) and persuasiveness (the ability to influence others). By decoupling these
factors, the model captures more nuanced dynamics than deterministic consensus frameworks. For
instance, when both agents exhibit high resistance and high persuasiveness, they may fail to persuade
each other and instead converge on an alternative, reflecting real-world behaviors such as withdrawal
from mainstream positions.

By explicitly modeling resistance and persuasiveness as independent attributes, the framework
allows for richer dynamics than deterministic consensus models. For example, when both agents are
highly resistant and highly persuasive, they may converge not on each other’s opinions but on an
alternative, reflecting real-world behaviors such as rejection of mainstream narratives.

2.2. Markovian Transition Structure

The dialogue process is formalized as a Markov chain. Each pair of interacting agents constitutes a state,
defined by their current opinions. Transition probabilities between states are governed by the agents’
resistance (𝜌) and persuasiveness (𝜋) values. This leads to a stochastic transition matrix 𝑇 , where each
row sums to one and encodes the likelihood of moving from one dialogue outcome to another.

The Markovian structure ensures that opinion evolution is both mathematically tractable and com-
putationally efficient to implement, while still capturing non-trivial behaviors such as deadlocks,
polarization, or convergence to alternatives.

2.3. Computational Requirements

Although conceptually simple, the extended dialogue model, where opinion updates occur through
pairwise dialogues, becomes computationally demanding at scale. Suppose a network has 𝑁 agents
and, in each iteration, every agent engages in 𝑘 dialogues with distinct peers (assuming dialogues are
undirected):

𝐷(𝑁, 𝑘) =
𝑁 𝑘

2



Over 𝑇 iterations, the total number of dialogue computations is 𝑇 · 𝐷. Each dialogue triggers a
probabilistic state update governed by the model’s transition rules, so runtime scales with both 𝑁 and
𝑘, and 𝑇 .

To illustrate, consider a sizeable community with𝑁 = 100,000 agents where each agent interacts with
𝑘 = 20 distinct peers per iteration (e.g., a dense social platform cohort or an enterprise communication
snapshot). Then:

𝐷(100,000, 20) =
100,000× 20

2
= 1,000,000

dialogues per iteration. Across 𝑇 = 1,000 iterations, that yields

𝑇 ·𝐷 = 1,000× 1,000,000 = 109

dialogues — each an independent, lightweight computation whose outcomes must be aggregated
into consistent agent states for the next iteration. This profile highlights three practical demands:

• High volume of independent interactions (embarrassingly parallel within an iteration);
• Natural concurrency (amenable to multi-core and distributed execution);
• State management pressure (efficient aggregation and deterministic progression across itera-

tions).

This workload profile requires a runtime capable of handling massive concurrency with minimal
overhead while maintaining robustness over extended execution times.

3. Elixir as a Simulation Runtime

Elixir, a functional programming language built on the Erlang virtual machine (BEAM) [3], was
designed originally for distributed, fault-tolerant systems. Its lightweight process model, supervision
trees, and transparent scalability across multicore and distributed environments directly address the
requirements identified in Section 2. These features make Elixir a natural fit for implementing large-scale
opinion dynamics simulations in computational social science.

3.1. Concurrency Model

Elixir implements the actor model through lightweight processes that communicate via message passing.
These processes are inexpensive to create and schedule, enabling thousands to run simultaneously on a
single machine. In the context of opinion dynamics, this allows each agent or dialogue to be represented
as an isolated process, mirroring the independence of interactions in the model. The result is a natural
mapping between simulation logic and execution.

3.2. Fault Tolerance

Long-running simulations can be disrupted by runtime errors, leading to incomplete or inconsistent
results. Elixir addresses this with supervision trees, which monitor groups of processes and automatically
restart them in case of failure. This design provides resilience without requiring explicit error-handling
logic for every component, ensuring that simulations can run reliably over millions of dialogue steps.

3.3. Distribution

The BEAM runtime also supports transparent distribution, allowing processes to span multiple CPU
cores or even multiple machines with minimal configuration changes. Since dialogues are independent,
distributing them across cores or nodes is straightforward, enabling simulations to scale horizontally as
network size or iteration count increases.



3.4. Comparison to Python

Python remains the default language for computational modeling due to its extensive scientific libraries
and user-friendly syntax. However, its runtime is poorly suited for workloads dominated by massive
concurrency:

• The Global Interpreter Lock (GIL) prevents true parallel execution of threads on multiple cores. [5]
• Achieving parallelism typically requires additional frameworks such as multiprocessing [6],

Dask [7], or Ray [8], which add overhead and complexity.
• Fault tolerance and process supervision must be implemented manually, increasing the risk of

brittle long-running simulations.

Elixir integrates concurrency, fault tolerance, and distribution at both the language and runtime
level. These properties make it particularly well-suited for large-scale opinion dynamics simulations,
where each iteration involves thousands or even millions of independent dialogues across a network.
By reducing implementation complexity and minimizing runtime overhead, Elixir offers a compelling
alternative to Python for executing the simulation core, particularly in scenarios that require sustained
high concurrency and reliable long-running performance.

It is worth noting that recent developments in Python (PEP 703) [9] have introduced a no-GIL build,
which allows for true parallelism across threads. While promising, this feature is not yet the default in
production environments, lacks broad library support, and was therefore excluded from our evaluation.
We restrict our comparison to the widely used mainstream Python runtime, which remains the de facto
standard in computational social science.

4. Experimental Comparison of Elixir and Python

Based on the requirements and architectural considerations outlined in the previous sections, we did
an empirical comparison of Elixir and Python. The goal of these experiments was not to fine-tune
implementations, but rather to observe how the two runtimes handle workloads characterized by
large numbers of lightweight, independent interactions. Both languages were used to execute the
same extended dialogue model under identical simulation parameters, enabling a direct assessment of
concurrency handling, scalability, and robustness.

4.1. Simulation Parameters

• Interaction pattern: all pairs — every agent interacts with every other agent in each iteration.
Although this pattern may not be realistic, it is employed as a worst-case stress test to maximize
computational load while keeping the model simple. By adopting the all-pairs setup, we avoid
additional complexity related to dynamically selecting subsets of peers and ensure that differences
in runtime performance can be attributed directly to the efficiency of the execution environment.

• Total dialogues per iteration: 𝐷(𝑁) =
(︀
𝑁
2

)︀
= 𝑁(𝑁−1)

2 For 𝑁 = 300, this results in 44,850
dialogues per iteration.

• Iterations (T): 100.
• Attributes: Each agent is initialized with random values of resistance (𝜌 ∈ [0, 1]) and persuasive-

ness (𝜋 ∈ [0, 1]) drawn from a uniform distribution.
• Outcome aggregation: Dialogue outcomes are accumulated per agent and averaged at the end

of each iteration to update preferences.

4.2. Experimental Environment

All experiments were conducted on a dedicated Amazon EC2 instance of type c8g.2xlarge [10], equipped
with 8 vCPUs and 16 GiB RAM, based on the AWS Graviton3 (ARM64) architecture. The instance



was located in the us-east-1 region. CPU frequency scaling was left at the AWS defaults (no explicit
pinning to performance mode).

The operating system was Ubuntu 24.04 LTS with kernel version 6.14.0-1011-aws.
The software stack included:

• Elixir 1.14.0 (compiled with Erlang/OTP 24), running on Erlang/OTP 25 [erts-13.2.2.5] with
JIT enabled.

• Python 3.12.3, installed via the system package manager (apt).
• No external Python packages were required beyond the standard library.

Both implementations were installed from Ubuntu’s package repositories (apt) to ensure a consistent
and reproducible setup.

The benchmarks were run on a dedicated instance without competing workloads.

4.3. Implementations

To run the experiments, we developed three independent implementations of the extended dialogue
model: two in Elixir and one in Python. Although they differ in architecture and concurrency approach,
they all adhere to the same specification to guarantee deterministic parity of results. Shared design
choices include:

• All-pairs interaction at each iteration, with agent indices ordered (𝑖 < 𝑗) to enforce consistency
in dialogue roles.

• Random number generation (RNG) parity through a shared 64-bit Linear Congruential
Generator (LCG) [11], seeded identically and consumed in the same order across engines.

• Aggregation by summing contributions per agent and dividing by 𝑁 − 1.
• Rounding to three decimals at fixed stages, ensuring identical numeric results across languages.

It was explicitly validated that all three implementations return identical results given the same
parameters and seed, confirming that observed differences in performance are due solely to runtime
characteristics rather than algorithmic divergence. Validation was performed by cross-checking outputs
across engines, including per-agent preference vectors, average preferences, and vote distributions,
ensuring complete agreement within rounding precision.

4.3.1. Elixir Task Engine

Uses Task.async_stream to parallelize batches of pairwise dialogues. Each iteration generates all
pairs, divides them into chunks, processes them concurrently, and then reduces the results to update
agents’ states.

4.3.2. Elixir Actor Engine

Implements an actor-based design, with one process per agent and a central Coordinator. Each iteration
begins with a snapshot of agent states stored in ETS.Agent processes compute contributions against
their peers and send results back to the Coordinator, which merges them and updates agent states.

4.3.3. Python Multiprocessing Engine

Mirrors the Elixir Task Engine design, utilizing the multiprocessing module. Pairs are generated with
𝑖 < 𝑗, partitioned into chunks, and distributed to worker processes. Results are collected, reduced per
agent, and averaged.



Community size

E
xe

cu
tio

n 
tim

e 
(m

s)

0

10000

20000

30000

100 150 200 250 300

Elixir Task Engine Elixir Actor Engine Python Multiprocessing

Figure 1: Execution time (ms) for 100 iterations of the all-pairs interaction model as a function of community
size N

4.4. Execution Time and Community Size

To assess scalability, we measured execution time as the simulated community size increased, using the
all pairs interaction pattern for 100 iterations.

We report results starting from 𝑁 = 100. Below this threshold, the number of dialogues per iteration
is too small to produce meaningful performance comparisons, as runtimes are dominated by fixed
overhead. At 𝑁 = 100, however, each iteration already requires 4,950 dialogues, yielding nearly half a
million dialogues across the experiment, which is a substantial computational load.

Execution time grows in line with the quadratic complexity of the all-pairs configuration (
(︀
𝑁
2

)︀
), but

the rate and pattern of growth differ across implementations:

• Elixir Actor Engine consistently delivers the best results across all tested community sizes.
Despite the coordination overhead of its GenServer design, it handles scaling more efficiently,
leading to lower execution times throughout.

• Elixir Task Engine performs well but is outpaced by the Actor engine even at small sizes,
suggesting that its task scheduling overhead accumulates less favorably.

• Python multiprocessing lags significantly behind both Elixir implementations. The gap widens
with larger N, reflecting the steep cost of inter-process communication and serialization.

4.4.1. Throughput Analysis

In addition to raw execution time, it is instructive to examine throughput, measured as the number of
dialogues processed per second. Throughput was computed as:

Throughput = Total dialogues
Execution time (s)

where the total dialogues equal the number of iterations (T = 100) multiplied by
(︀
𝑁
2

)︀
, and execution

time was measured in milliseconds and converted to seconds.
Across all tested community sizes, Elixir Actor Engine consistently achieves the highest throughput,

surpassing both Elixir Task Engine and Python. While Elixir Task Engine performs well, it is outpaced
by the Actor engine, indicating that the GenServer-based design not only scales better but also processes



Community size

D
ia

lo
gu

es
 / 

se
c

0

100000

200000

300000

100 150 200 250 300

Elixir Task Engine Elixir Actor Engine Python Multiprocessing

Figure 2: Throughput (dialogues/sec) for 100 iterations under all-pairs interaction, as a function of community
size N

dialogues faster in absolute terms. Python multiprocessing lags substantially behind, reflecting the cost
of inter-process communication and serialization overhead.

It should be noted that these measurements are based on single runs per configuration. While
absolute values may vary across repeated executions, the observed ordering of performance and relative
scaling trends provide clear evidence of Elixir’s advantage as a simulation runtime.

4.5. Repeated Trials at Fixed Parameters

Having established how execution time scales with community size, we next examine performance
under fixed parameters by conducting repeated trials. This setting provides a complementary view,
focusing on the stability and relative efficiency of the three implementations when the workload is held
constant.

4.5.1. Benchmarking Methodology

To ensure reliable and reproducible performance measurements, we developed a systematic benchmark-
ing infrastructure. The methodology consists of three components:

Resource Monitoring. Each simulation run is monitored using the Python psutil library [12],
which tracks the entire process tree (parent and all child processes). Three metrics are collected:

• Wall-clock time (ms): total elapsed time from process start to completion;
• Peak memory usage (KB): maximum resident set size (RSS) across the process tree;
• Average CPU utilization (%): mean CPU usage measured as system-wide CPU percentage

scaled by core count, representing the effective parallelization (e.g., 800% indicates full utilization
of 8 cores).

Metrics are sampled at 100ms intervals throughout execution. Memory is tracked per-process and
summed across all descendants to capture the full resource footprint of concurrent implementations.

Statistical Analysis. Raw benchmark data from multiple trials are aggregated using a bootstrap
method [13] to compute robust confidence intervals. For each metric and configuration, we calculate:

• Median: the central tendency, robust to outliers;
• 95% confidence interval: derived from 10,000 bootstrap samples with replacement, providing

upper and lower bounds on the median estimate.



This approach avoids distributional assumptions and provides reliable interval estimates even with
small sample sizes (n=10 trials).

Execution Control. Benchmarks are orchestrated by shell scripts that execute each configuration
multiple times with identical parameters (agents, iterations, seed, chunk size). Results are recorded
in CSV format with one row per trial, enabling reproducibility and subsequent statistical analysis.
All benchmarks were run on an isolated AWS EC2 instance (c8g.2xlarge, ARM64) without competing
workloads to minimize measurement noise.

4.5.2. All-Pairs Topology Results

The configuration for the all-pairs topology was:

• Agents: 300
• Iterations: 100
• Interaction pattern: all pairs
• Random seed: identical across engines and fixed across runs

The choice of 300 agents was deliberate. At this scale, each iteration requires
(︀
300
2

)︀
= 44,850

dialogues, and with 100 iterations, the run produces roughly 4.5 million dialogue computations. This
ensures that runtimes are dominated by dialogue processing rather than initialization or warm-up
overhead, which plays only a minor role at this load. At the same time, the workload remains tractable
on the evaluation hardware (8 vCPUs, 16 GiB RAM) without exhausting memory, and lies within the
range commonly used in opinion dynamics studies, where hundreds of agents are sufficient to exhibit
realistic aggregate behaviors without entering the territory of very large-scale distributed simulations.

Each implementation was executed ten times under these parameters. Table 1 reports the median
runtime and 95% confidence intervals for each engine.

Table 1
Performance metrics across ten repeated trials with 300 agents and 100 iterations. Values are reported as median
with 95% confidence intervals.

Metric Elixir Task Elixir Actor Python Multi

Walltime (ms) 21,520 18,895 29,521
95% CI [21,450, 21,567] [18,828, 18,941] [29,429, 29,614]
Memory (KB) 290,948 225,986 184,104
95% CI [289,206, 298,916] [217,496, 229,036] [183,934, 184,456]
CPU (%) 629.3 731.9 593.0
95% CI [627.4, 630.6] [730.2, 733.7] [592.2, 594.6]
Throughput
(dialogues/s) ≈ 208𝑘 ≈ 237𝑘 ≈ 152𝑘

The repeated trials confirm several points:

• Elixir Actor Engine is consistently the most efficient, completing runs in ~18.9 seconds on
average, with the highest CPU utilization (731.9%) indicating effective use of all 8 cores.

• Elixir Task Engine averages ~21.5 seconds, about 14% slower than Actor but still faster than
Python, with lower CPU utilization (629.3%) suggesting less efficient parallelization.

• Python multiprocessing requires ~29.5 seconds, 56% more than Elixir Actor Engine, with CPU
utilization (593.0%).

• Stability: All implementations show very small confidence intervals (CI widths under 1% of
median for walltime), indicating that runtimes are stable and reproducible.

• Memory usage: Elixir implementations consume more memory than Python, with Task Engine
using the most (291 MB) due to concurrent task overhead, while Actor Engine (226 MB) is
more efficient. Python’s lower memory footprint (184 MB) reflects sequential processing within
workers.



These results reinforce the conclusion that Elixir offers clear performance advantages for highly con-
current workloads. Moreover, the stability across trials demonstrates that the observed differences are
not due to random noise but reflect genuine runtime characteristics.

4.5.3. Random Matching Topology

To assess how interaction topology affects performance, we repeated the experiment using a random
matching pattern instead of all-pairs. Under random matching, each agent is paired with 𝑘 = 8
randomly selected distinct peers per iteration, reducing the number of dialogues from

(︀
𝑁
2

)︀
to 𝑁 ·𝑘

2 .
With 300 agents, 𝑘 = 8 peers, and 100 iterations, random matching produces 120,000 total dialogues

— a 97.3% reduction compared to the 4.5 million dialogues in the all-pairs configuration. This sparser
interaction pattern more closely resembles realistic social network dynamics where agents engage in
limited interactions per time step.

All other experimental parameters remained identical:

• Agents: 300
• Iterations: 100
• Random seed: identical across engines and fixed across runs
• Trials: 10 repeated runs per engine

Table 2 presents the performance metrics for random matching topology.

Table 2
Performance metrics across ten repeated trials with 300 agents, 100 iterations, and random matching topology.
Values are reported as median with 95% confidence intervals.

Metric Elixir Task Elixir Actor Python Multi

Walltime (ms) 2,278 2,693 6,900
95% CI [2,276, 2,327] [2,691, 2,694] [6,887, 6,946]
Memory (KB) 149,316 135,402 155,318
95% CI [145,388, 155,492] [134,004, 138,166] [155,280, 155,424]
CPU (%) 357.5 432.0 660.5
95% CI [355.0, 360.8] [428.6, 435.7] [655.2, 661.2]
Throughput
(dialogues/s) ≈ 52.7𝑘 ≈ 44.6𝑘 ≈ 17.4𝑘

The results reveal several noteworthy patterns:

• Performance reversal: Unlike the all-pairs configuration, Elixir Task Engine (2.3s) now
outperforms Elixir Actor Engine (2.7s) by approximately 18%. This suggests that the Actor
engine’s coordination overhead becomes proportionally more expensive when dialogue volume
is low, while Task’s simpler scheduling model is more efficient for sparse workloads.

• Python still lags: Python multiprocessing requires 6.9 seconds, still 3× slower than Elixir Task
and 2.6× slower than Elixir Actor, though the absolute gap narrows due to reduced computational
load.

• CPU utilization varies by topology: Both Elixir implementations show lower CPU usage (357%
and 432%) compared to all-pairs, reflecting the reduced parallelism available when only 1,200
dialogues occur per iteration (vs. 44,850 in all-pairs). Notably, Python’s CPU usage is substantially
higher in this sparse topology (660%) than in all-pairs (593%), suggesting different parallelization
behavior at varying workload scales.

• Memory efficiency: Memory consumption decreased across all engines, with Elixir Actor using
the least (135 MB), followed by Task (149 MB) and Python (155 MB). The reduced dialogue volume
eliminates the memory pressure observed in all-pairs.



• Stability varies: The Actor engine exhibits exceptional precision (CI width of only 3ms), while
Task and Python show slightly wider but still tight intervals (51ms and 59ms respectively), all
demonstrating consistent performance across trials.

These findings highlight that topology matters for runtime selection. While the Actor engine excels at
dense all-pairs interactions where massive concurrency is available, the Task engine becomes more effi-
cient for sparse topologies where coordination overhead dominates. Python remains consistently slower
regardless of topology, though the performance gap narrows as computational intensity decreases.

5. Conclusions

This work examined the suitability of Elixir as a runtime environment for large-scale simulations of
opinion dynamics. Using the extended dialogue model under two distinct interaction topologies — dense
all-pairs and sparse random matching — we compared three implementations: an actor-based Elixir
engine, a task-based Elixir engine, and a Python multiprocessing baseline. The purpose of this evaluation
was not to establish a general benchmarking framework, but to support the authors’ ongoing research
on community opinion dynamics by identifying a runtime environment that balances correctness,
reproducibility, and performance.

The experiments demonstrated that Elixir provides clear advantages for highly concurrent workloads,
though the optimal implementation varies with topology. For dense all-pairs interactions (4.5 million
dialogues), the Actor engine excelled with superior parallelization and throughput. For sparse random
matching (120,000 dialogues with 𝑘 = 8 peers per agent), the Task engine proved more efficient, as
coordination overhead became proportionally more significant than raw dialogue processing. Python
multiprocessing consistently lagged behind both Elixir implementations regardless of topology, showing
56–200% longer runtimes and varying CPU utilization patterns (593% for all-pairs, 660% for random
matching vs. 629–732% for Elixir). The results confirm that the concurrency-first design of the BEAM
runtime offers tangible benefits for agent-based simulations that require millions of independent,
lightweight interactions to be executed and aggregated deterministically.

At the same time, several limitations must be acknowledged.

1. The current implementations were evaluated on a single 8-core instance, and while they scaled
well up to a few thousand agents, attempts to simulate 10,000 agents failed due to memory
limitations. This highlights the need for further optimization and, potentially, distributed
execution to extend the approach to larger communities.

2. While we evaluated two topologies (all-pairs and random matching with 𝑘 = 8), exploring
additional realistic network structures such as scale-free networks, small-world topologies, or
dynamic community detection remains an important direction for future work.

3. Emerging Python runtimes with no-GIL support (PEP 703) may alter the performance landscape.
A systematic evaluation of these builds is left for future work, as they are not yet mainstream
and their ecosystem support remains limited.

5.1. Future Research Directions

Having established Elixir as a suitable choice, the next steps of the work will focus not on further
runtime benchmarking, but on advancing the modeling itself: exploring richer agent attributes, network
topologies, and empirical calibration. The following directions, therefore, outline the substantive
research agenda beyond the technical runtime decision.

• Overcoming the 10k-agent barrier: optimize memory usage and explore distributed execution
strategies across multiple nodes.

• Alternative interaction topologies: extend experiments to include scale-free networks, small-
world structures, and community-based topologies with varying density patterns.



• Distributed scalability: test Elixir’s native distribution capabilities in larger clusters to evaluate
horizontal scaling.

• Dynamic agent attributes: allow resistance and persuasiveness to evolve with interaction
history, making simulations more realistic.

• Empirical calibration: integrate data from surveys or social media to validate and tune model
parameters.

• Hybrid workflow: employ Elixir for running large-scale simulations while using Python’s
mature ecosystem for post-simulation data analysis and visualization.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT and Grammarly to: Grammar and
spelling check, Paraphrase and reword. After using this tool/service, the authors reviewed and edited
the content as needed and take full responsibility for the publication’s content.

References

[1] Y. Lytvynenko, G. Zholtkevych, Simulating Pairwise Communication to Study Opinion Dynamics
in Networked Communities, 2025. doi:10.13140/RG.2.2.29044.82566.

[2] JuliaLang Community, The Julia Programming Language, 2025. URL: https://julialang.org/, ac-
cessed: 2025-08-20.

[3] Elixir Core Team, The Elixir Programming Language, 2025. URL: https://elixir-lang.org/, accessed:
2025-08-20.

[4] Erlang/OTP Team, The Erlang Programming Language and OTP, 2025. URL: https://www.erlang.
org/, accessed: 2025-08-20.

[5] Python Software Foundation, threading — thread-based parallelism, https://docs.python.org/3/
library/threading.html, 2025. Accessed: 2025-08-21.

[6] Multiprocessing — Process-based parallelism, 2025. URL: https://docs.python.org/3/library/
multiprocessing.html, accessed: 2025-08-20.

[7] Dask | Scale the Python tools you love, 2025. URL: https://www.dask.org/, accessed: 2025-08-20.
[8] Scale Machine Learning & AI Computing | Ray by Anyscale, 2025. URL: https://ray.io, accessed:

2025-08-20.
[9] PEP 703 – Making the Global Interpreter Lock Optional in CPython | peps.python.org,

https://peps.python.org/pep-0703/, 2025. Accessed: 2025-08-25.
[10] Cloud Compute Instances – Amazon EC2 Instance Types – AWS, 2025. URL: https://aws.amazon.

com/ec2/instance-types/, accessed: 2025-08-25.
[11] W. E. Thomson, A Modified Congruence Method of Generating Pseudo-random Numbers, The

Computer Journal 1 (1958) 83. doi:10.1093/comjnl/1.2.83.
[12] G. Rodola, psutil: Cross-platform lib for process and system monitoring in Python, 2025. URL:

https://github.com/giampaolo/psutil, accessed: 2025-10-09.
[13] B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics 7 (1979)

1–26. doi:10.1214/aos/1176344552.

A. Online Resources

The source code for the simulation is available https://github.com/yurylyt/netcomm_elixir_vs_python
on GitHub.

http://dx.doi.org/10.13140/RG.2.2.29044.82566
https://julialang.org/
https://elixir-lang.org/
https://www.erlang.org/
https://www.erlang.org/
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://www.dask.org/
https://ray.io
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://dx.doi.org/10.1093/comjnl/1.2.83
https://github.com/giampaolo/psutil
http://dx.doi.org/10.1214/aos/1176344552
https://github.com/yurylyt/netcomm_elixir_vs_python

	1 Introduction
	2 Background
	2.1 Opinion Dynamics Model
	2.2 Markovian Transition Structure
	2.3 Computational Requirements

	3 Elixir as a Simulation Runtime
	3.1 Concurrency Model
	3.2 Fault Tolerance
	3.3 Distribution
	3.4 Comparison to Python

	4 Experimental Comparison of Elixir and Python
	4.1 Simulation Parameters
	4.2 Experimental Environment
	4.3 Implementations
	4.3.1 Elixir Task Engine
	4.3.2 Elixir Actor Engine
	4.3.3 Python Multiprocessing Engine

	4.4 Execution Time and Community Size
	4.4.1 Throughput Analysis

	4.5 Repeated Trials at Fixed Parameters
	4.5.1 Benchmarking Methodology
	4.5.2 All-Pairs Topology Results
	4.5.3 Random Matching Topology


	5 Conclusions
	5.1 Future Research Directions

	A Online Resources

