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Abstract
The paper considers the problem of forming a feature space for data classification in the context of stream 
processing. It is shown that the quality of feature extraction directly affects the efficiency of classification  
algorithms,  especially  with  limited data  and high dimensionality  of  the  feature  space.  A method for 
forming  an  extended  feature  vector  based  on  recurrent  estimates  of  the  mean,  variance,  and 
autocorrelation of successive data points is proposed. This approach ensures adaptability to changing 
statistical properties of the stream and allows forming compact but informative feature vectors with low 
computational complexity. Experiments were conducted on the problem of classifying military objects  
based on images that included eight categories of equipment and personnel. Comparison of two series of 
experiments (using only pixels and using an extended feature vector) showed an increase in recognition 
accuracy by  1–3% when using  the  proposed  method,  which  is  most  noticeable  for  optimized  neural  
networks and decision trees. The optimized ensemble of classifiers demonstrated the highest accuracy 
(75.5%). It is noted that an extended set of features increases the resource intensity of the models, reducing 
the speed of predictions, which requires a compromise between quality and computational costs. The  
practical value of the method lies in the possibility of its application in automated monitoring systems,  
video analytics and decision support, including military intelligence and cybersecurity tasks.
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1. Introduction

Feature extraction is closely connected with a classification problem is one of the fundamental and 
most  important  stages  of  building  any intelligent  system that  works  with  data.  Regardless  of 
whether we are talking about medical diagnostics based on tests, automatic speech recognition, 
predicting customer creditworthiness,  or  classifying images,  it  is  the stage of  constructing the 
feature  space that  largely determines the ultimate success  of  the model  [1-3].  No matter  how 
powerful  a  classifier  is,  it  always  depends  on  how  informative  and  relevant  the  object's 
characteristics  were  extracted  and  passed  to  the  input.  The  most  modern  machine  learning 
methods,  such as deep neural  networks,  although they have the ability to independently form 
internal representations, essentially solve the same problem: they find such transformations of the  
original data that turn a set of signals into a feature space convenient for separating classes [4-6].

Classification is the task of finding a surface that separates the points of one class from the  
points of another. The shape and position of this boundary depend on how well the feature space 
itself is chosen. If the features poorly reflect the essence of the objects, the classes mix up and 
become indistinguishable. If the features are chosen well, the objects form separate clusters, and 
the separation task becomes much easier.

This idea is  especially important in situations where there are massive of  little  data.  Many 
modern  machine  learning  algorithms  require  large  samples  for  high-quality  training.  But  in 
medicine, finance, or other areas, you have to work with a limited number of examples. Here, good 
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features can compensate for the lack of data. For example, a patient's medical indicators themselves  
may  be  disparate,  but  correctly  constructed  combinations  of  these  indicators  provide  key 
information for making a diagnosis [7].

The  history  of  computer  vision  clearly  shows  the  importance  of  the  method  for  forming 
features.  Before the advent  of  neural  networks,  researchers  used image characteristics  such as 
gradients,  textures,  and  shape  moments  to  automatically  generate  a  description  of  properties. 
These features ensured resistance to changes in illumination or scale and allowed algorithms to 
distinguish objects.  Modern deep networks only automate this process, but their essence is the 
same - constructing a feature space where objects of different classes become distinguishable [4].

In text processing, the situation is similar: raw texts cannot be fed directly to the algorithm. 
Therefore, vector representations are created: from simple bags of words and TF-IDF to complex 
embeddings that reflect the meaning of words and their context [8, 9]. It was the emergence of  
various feature representations that became a breakthrough, allowing to significantly improve the 
quality of text classification.

In problems of  processing audio information, it  is  necessary to use characteristics based on 
spectral analysis methods [10], which are extracted using, for example, convolutional and recurrent 
deep networks [11].

Most  of  the  proposed methods  for  forming feature  vectors  in  multimedia  data  streams are  
focused on the offline mode of the model, on the presence of significant data sets for training.  
Accordingly, it  is assumed that in such problems it is possible to use complex architectures of  
models used for feature extraction, feature vectors can be quite large. However, in online streaming 
data processing problems, all this turns out to be unavailable or technically unrealizable. There is a  
need  to  create  small-dimensional  feature  vectors  using  fast  calculation  algorithms.  These 
requirements are met by statistical characteristics - average values, variance, covariance coefficient, 
which are calculated within a window sliding along the flow of constantly updated data.

It is this problem - the search for a compromise between the quality of the feature description 
and the efficiency of its calculation - that is actively addressed in modern literature. Thus, in [12], a  
hybrid model COCALITE is proposed that combines a compact architecture with a set of statistical  
features.  This  approach  combines  the  advantages  of  a  deep  model  capable  of  automatically 
extracting complex dependencies and a carefully selected set of interpretable features. The result is 
an increase in classification accuracy with a sharp reduction in the number of model parameters 
(only 4.7% of Inception), which is critically important in conditions of limited resources and when 
working with streaming data.

In  cybersecurity  tasks,  where  input  data  is  high-dimensional  and  contains  redundant 
information, the emphasis is on the systematic selection of the most significant characteristics. 
Logeswari  and  colleagues  [13]  proposed  the  Synergistic  Dual-Layer  Feature  Selection  (SDFC) 
algorithm,  which  combines  statistical  methods  (mutual  information,  variance  threshold)  and 
model-oriented  approaches  (SVM with  recursive  feature  elimination,  PSO).  Unlike  COCALITE, 
which focuses on combining manual and deep features, here we are talking about a multi-stage 
reduction of the feature space before feeding data to the LightGBM and XGBoost classifiers. This 
combination made it possible to achieve high accuracy of attack detection in the IoT environment  
with lower computational costs. However, both hybrid architectures and two-level selection more 
often involve working in offline processing conditions, when it is possible to calculate features in 
advance  and  train  complex  models.  In  streaming  scenarios  with  changing  data,  the  ability  to 
adaptively update the set of used features becomes key. This problem is devoted to the work [14],  
which proposes methods for online filtering of features for streaming data with conceptual drift. 
Their algorithms allow real-time revision of feature significance, while maintaining computational 
ease and without sacrificing accuracy. The authors have shown that online screening is capable of 
reproducing selection quality comparable to offline methods, while providing lower memory and 
time costs.  Most  importantly,  the  integration  of  model  adaptation  increases  the  probability  of 
correctly identifying “truly significant” features in the context of changing data statistics.



If we consider these trends as a whole, we can identify a key trend: methods for constructing a  
feature space tend to combine expressiveness (due to deep architectures or extended feature sets),  
compactness  (through  strict  selection  and  regularization),  and  adaptability  (through  online 
updating  of  feature  significance).  In  streaming  media  classification  problems,  it  is  the  latter  
characteristic that comes to the fore. This requires recurrent updating of statistics, such as mean 
values, variances, or covariances, which form compact but informative feature vectors.

2. Related works and problem statement

The  problem  of  covariance  estimation  occupies  a  central  place  in  modern  statistics,  machine 
learning, and engineering applications. The quality of signal filtering, the reliability of localization, 
the accuracy of forecasts, and the adequacy of statistical inference depend on the correctness of the  
covariance structure restoration. However, in real-world problems, researchers face a number of 
limitations: limited data volumes, high dimensionality of the feature space, the presence of noise  
and drift, as well as the need to work online when information is received continuously. These 
challenges  have  generated  interest  in  recurrent  (online)  methods  for  estimating  covariance 
matrices, which update estimates as data arrives, without requiring storage of the entire sample.

One of the illustrative examples of the application of such methods is localization systems in 
intelligent transport.  Traditional  odometry suffers from the accumulation of  bias errors,  which 
leads to  incorrect  uncertainty modeling.  In [15],  the Drift Covariance Estimation strategy was 
proposed,  which  allows  refining  the  covariance  of  odometrical  errors  using  readings  from 
additional sensors that are not subject to drift. Recursive updating of the covariance matrix makes 
it  possible  to  adapt  the  system  to  changes  in  external  conditions  and  gradually  reduces  the 
uncertainty in localization models. The advantage of the approach is integrability into standard 
filters (EKF,  UKF, H∞),  which significantly increases their stability.  However,  the disadvantage 
remains the dependence on the presence of auxiliary sensors and the risk of incorrect accounting 
for errors if their statistical nature changes significantly. The theoretical basis of the algorithm is 
based  on  the  approximation  of  drift  using  external  observations,  which  makes  the  method 
applicable in real-world conditions, although strict optimality guarantees are not always feasible.

Another set of problems is related to modeling, where it is necessary to estimate covariances in  
spaces of huge dimensions with extremely limited samples. Vishny and colleagues [16] emphasized 
that  classical  statistical  methods  lose  their  validity  in  such  a  situation,  since  the  number  of 
observations  is  smaller  than  the  problem  dimension.  To  overcome  this  problem,  they  have 
proposed  recurrent  procedures  in  which  covariances  between  variables  are  dynamically 
“discounted” depending on the noise level. This is actually a type of regularization built into the 
estimation process, which allows avoiding overfitting and maintaining stability. The advantage of 
the approach is that the algorithm has low computational complexity and can work in conditions 
of streaming data. The disadvantage is that the methods require knowledge or approximation of 
the noise level, which can be difficult in problems with a heterogeneous error structure. From a 
theoretical point of view, the authors ensure the preservation of key properties of the covariance 
matrix,  which  makes  the  method  statistically  correct  and  applicable  for  data  assimilation  in  
complex models. Significant progress has also been made in the field of stochastic optimization.  
Machine learning problems that use stochastic gradient descent methods require not only finding 
the optimal solution, but also the ability to estimate confidence intervals for the model parameters.  
Here,  recurrent covariance estimation allows us to embed statistical  inference directly into the 
learning process. Zhu et al. [17] have proposed an online estimator of the covariance matrix for  
averaged SGD iterates. The algorithm updates the estimate when new observations are received, 
without requiring storage of the entire iteration history. The advantages are obvious: efficiency in  
terms  of  memory  and  computational  costs,  the  ability  to  construct  asymptotically  correct 
confidence  intervals  on  the  fly.  Limitations  are  related  to  the  sensitivity  to  the  choice  of  the 
gradient  descent  step  and  the  need  to  accumulate  a  sufficient  number  of  iterations  for  the 
asymptotic properties to manifest. The theoretical justification of the method is based on classical  



results on the normality of averaged iterates, which guarantees the consistency and convergence of 
the proposed estimator. The development of this idea can be seen in a more recent paper [18], 
which  considered  much  more  complex  problems  of  non-smooth  and  non-convex  variational 
inclusions. Unlike smooth convex scenarios, where the theoretical analysis has long been worked 
out,  the situation here is  complicated by the lack of  monotonicity and regularity.  The authors 
proposed a  recursive method based on batch means,  which groups a  sequence of  iterates  and 
estimates the covariance over these groups. This approach eliminates the need to know the sample 
size  in  advance and allows for  online adaptation.  An important  advantage is  that  the method 
achieves a convergence rate comparable to the best known results in simpler scenarios, despite the 
complexity of the problem. A disadvantage is the need to carefully select the sequence of batch 
sizes,  otherwise  the  efficiency  drops  sharply.  From the  theoretical  point  of  view,  the  work  is 
significant in that it was the first to provide strict guarantees of the consistency of covariance 
estimates in non-smooth and non-convex conditions, which opens the way to correct statistical 
inference even in very complex optimization problems.

Engineering applications also demonstrate the importance of recursive covariance estimation. 
Kalman  filters  and  their  variants  are  traditionally  used  in  dynamic  structure  identification 
problems. However, the efficiency of these methods decreases sharply in the case of ill-conditioned 
systems caused by the sensor network architecture. Liu et al. [19] have proposed a new recursive 
smoothing  method  for  estimating  states  and  inputs  of  vibrating  structures.  Unlike  existing 
minimum-variance unbiased smoothers, their method is applicable to both feedforward and rank-
deficit systems. The key advantage is that the method does not require a priori information on the 
input statistics and adapts to observed data. The disadvantage is that the algorithm is essentially 
focused on linear systems, and the extension to nonlinear scenarios remains open. The theoretical 
basis  of  the  method  is  related  to  a  new  discrete-time  indexing,  which  allows  to  bypass  the 
limitations of classical MVU approaches. The authors confirmed the validity and efficiency of the 
method using numerical examples, comparing it with several versions of the Kalman filter.

If we consider all these studies together, we can notice a number of common patterns. Recursive 
estimation of covariances is primarily motivated by the need to work under conditions of limited 
resources: limited data volume, limited memory, or limited computation time. In many cases, it is  
not  just  about  approximating the  covariance structure,  but  about  constructing algorithms that 
ensure  asymptotic  normality  of  estimates  and  allow  statistical  inference.  The  advantages  of 
recurrent  methods  are  obvious:  they  are  adaptive,  allow  you  to  respond  to  changes  in  data  
properties, and often have low computational complexity. The disadvantages include sensitivity to 
algorithm parameters  (batch size,  learning step,  regularization structure)  and dependence on a 
priori assumptions, which are not always met in real applications.

From the point of view of theoretical foundations, three levels can be distinguished. In applied  
problems, as in [15] and [19], the correctness of the methods is confirmed primarily experimentally 
and through the stability of filters. In high-dimensional and small-sample problems, as in [16], the 
proposed procedures are justified by preserving the structural properties of covariance matrices, 
which guarantees their use in modeling. Finally, in stochastic optimization, as in [17] and [18], the 
emphasis  is  on rigorous  proofs  of  consistency and convergence rate,  which allows embedding 
covariance estimation in mathematically sound statistical inference procedures. That is why this 
paper focuses on the formation of a feature space based on online covariance estimation — as a  
natural development of the ideas embedded in hybrid and adaptive methods in modern literature, 
and  considers  the  problem of  creating  a  feature  vector  based  on  recurrent  online  covariance 
estimation for the problem of classifying streaming multimedia data.

3. Materials and methods

Recurrent calculation of mean,  variance and covariance for streaming data plays a key role in 
modern intelligent systems operating in real time. Unlike offline processing, where the entire array  
of information can be downloaded and analyzed in advance, in a streaming scenario, data arrives 



continuously  and  often  in  large  volumes.  It  is  impossible  to  store  the  entire  stream either  in 
memory or in processing time, so it is necessary to rely on recurrent formulas that allow updating 
statistics step by step. The formulas are derived based on the principle of optimal recursive Kalman 
estimation, which implements the process of parametric estimation based on the autoregressive 
model of the signal generation process (Fig. 1):

x̄k (k )= x̄k (k−1)+ 1
k
( x̄k (k )− x̄k (k−1)) ,

(1)

where x (τ ) , τ=1,2 , ... , k  is the sequence of input signals, k is the current discrete time.

Figure 1: Recurrent model for calculating the average value of consecutive discrete data.

The average value calculated recurrently provides quick control over the central tendency of the 
flow, and allows for timely recording of shifts or changes in the signal level.

The variance updated in the flow reflects the degree of variability of the data and helps to  
identify areas with abnormally high or low variability (Fig. 2):

σ x
2(k )=σ x

2(k−1)+ 1
k
(( x̄k (k )− x̄k (k−1))2−σ x

2(k−1)) ,
(2)

Figure 2: Recursive model for calculating the variance of sequential discrete data.

Covariance  calculated  recursively  is  especially  important  when it  is  necessary  to  track  the 
connections between features: their appearance, disappearance or change in the manifestation of 
connections. However, in this paper it is proposed to calculate the covariance not between features, 
but between several adjacent points of sequential data (Fig. 3):

r x(k ,d)=r x(k−1 , d)+ 1
k
(( x̄k (k )− x̄k (k−1))( x̄k (k )− x̄k (k−1))−r x(k−1 , d)) ,

(3)

where d=1,2,…,p is the number of data points taken into account by the recurrent covariance.



Figure 3: Recurrent model for calculating the covariance d of consecutive discrete data.

Each of the proposed recurrent models can be represented as a separate block, from which a 
module for forming a feature vector is formed (Fig. 4).

For the input sequence of discrete data, the module creates a feature vector

X (k )=( x̄k (k ) , σ x
2(k ) , r x(k ,2) , ... , r x(k ,d ))

T , (4)

of dimension (d+2)×1.            

a)  b)

Figure 4: Architecture of the feature vector generation module using recurrent mean, variance and 
covariance estimation blocks; a) individual blocks; b) module architecture.

The advantage of such methods is that each new observation can be taken into account in 
constant time, without recalculating the entire history. This makes the algorithms computationally 



efficient and robust to large amounts of data. Recurrent statistics allow streaming systems to adapt 
to changes in input data, which improves classification accuracy, forecast reliability, and anomaly 
detection timeliness.

4. Main results

The  effectiveness  of  the  proposed  approach  to  feature  vector  generation  was  experimentally 
evaluated  on  a  military  object  recognition  task.  The  dataset  [20]  comprises  3416  images  of 
personnel  and  equipment  across  eight  categories  (artillery,  infantry  fighting  vehicles,  UAVs, 
armored vehicles, armored personnel carriers, infantry, multiple rocket launchers, and tanks), with 
varying  viewpoints  and  conditions.  Bounding  box  annotations  enable  object  extraction  and 
classification,  though class  distribution is  imbalanced.  Images contain either  single  or  multiple 
objects from the same or different classes.

Device properties:

 processor: AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz;
 RAM: 16.0 GB;
 memory: 954 GB SSD WDC PC SN730 SDBPNTY-1T00-1101;
 video adapter: NVIDIA GeForce RTX 3060 Laptop GPU (6 GB);
 system type: 64-bit operating system, x64 processor.

Several different approaches were chosen for classification: Optimizable Tree; Weighted KNN; 
Optimizable  KNN;  Efficient  Logistic  Regression;  Efficient  Linear  SVM;  Optimizable  Neural 
Network; Optimizable Naïve Bayes; Optimizable Ensemble; LVQ network. 5-fold cross validation 
was used for every model.

The data is split into training and test sets (0.7:0.3). Thus, the size of the training sample is 2392 
images, the test sample is 1024 photos. Preprocessing included grayscale conversion and resizing to 
80 × 60 pixels and subsequent vectorization. Two series of experiments were conducted. In the first 

series,  the  input  feature  vector  included  only  image  pixels  X (k )=x (τ )T , τ=1,2 , ... , k .  In  the 
second series, the input feature vector was collected according to the proposed approach:

X (k )=( x̄k (k ) , σ x
2(k ) , r x(k ,2) , ... , r x(k ,d))

T , d=2 (5)

The results of image classification of the dataset are presented in Table 1 and Table 2.
The optimized ensemble demonstrated the highest accuracy of 75.5% in solving the problem 

using  the  expanded feature  vector.  Its  parameters  are:  Learner  type:  Decision  Tree;  Ensemble 
method:  Bag;  Number  of  splits:  2309;  Number  of  learners:  476;  Hyperparameter  Search  Range 
Ensemble  method:  Bag,  Boost,  RUSBoost;  Number  of  learners:  10-500;  Learning  rate:  0.001-1; 
Optimizer: Bayesian optimization.

Table 1
Results of training models when solving the problem of classification of military objects by photos,  
when the input feature vector contains only image pixels

Model Accuracy, %
Prediction 

speed, ob/sec
Training 
time, sec

Model size

Optimizable Tree 59.6 380 1436.5 743 kB

Weighted KNN 71.4 410 28.9 88 kB



Optimizable KNN 72.7 310 576.7 88 kB

Efficient Logistic Regression 20.2 820 30.4 20 MB

Еfficient Linear SVM 27.4 810 37.7 20 MB

Optimizable Neural Network 70.7 790 14052 5 MB

Optimizable Naïve Bayes 63.6 6.6 31794 432 MB

Optimizable Ensemble 75.7 410 27955 359 MB

Table 2
Results  of  training  models  when  solving  the  classification  problem  based  on  photographs  of 
military objects with an extended vector of input features, including mean, variance and covariance

Model Accuracy, %
Prediction 

speed, ob/sec
Training 
time, sec

Model size

Optimizable Tree 60,2 68 5281,9 3 МB

Weighted KNN 69,3 37 303 353 МB

Optimizable KNN 72.4 8,7 8790 353 МB

Efficient Logistic Regression 21,5 52 268,3 81 MB

Еfficient Linear SVM 28.4 52 292 81 MB

Optimizable Neural Network 73,3 54 1,28е+05 47 MB

Optimizable Naïve Bayes 63.6 2 1,15е+05 2 GB

Optimizable Ensemble 75.5 46 1,63е+05 1 GB

The AUC values for some classifiers are given in Table 3.

Table 3
AUC by classes for some models when solving the classification problem based on photographs 

of  military  objects  with  an  extended  vector  of  input  features,  including  mean,  variance  and 
covariance

Model
AUC by classes

1 2 3 4 5 6 7 8

Optimizable 
Tree

0.8421 0.8204 0.768 0.7983 0.809 0.7905 0.8039 0.8608

Weighted KNN 0.9473 0.9464 0.9205 0.9233 0.9246 0.9291 0.9422 0.9692



Optimizable 
KNN

0.9607 0.9568 0.9344 0.9374 0.9419 0.9395 0.9406 0.9595

Optimizable 
Neural 
Network

0.9494 0.9302 0.9177 0.9278 0.9283 0.9204 0.9281 0.9548

Optimizable 
Naïve Bayes

0.8944 0.8955 0.8981 0.8876 0.8989 0.8991 0.8957 0.9062

Optimizable 
Ensemble

0.9645 0.9604 0.9435 0.9513 0.9539 0.949 0.9443 0.9667

Confusion matrix, ROC and Minimum classification error plot for the optimized ensemble are 
shown in Figures 5-7.

The experiments confirmed the effectiveness of the proposed approach to forming a feature 
vector for the task of classifying military images. Comparison of two series of experiments showed 
that  using an extended vector,  including statistical  characteristics  and autocovariance features, 
provides  higher  recognition  quality  compared  to  the  option  where  the  vector  was  formed 
exclusively from pixel values. This indicates that additional information about the image structure 
and  the  relationships  between  elements  allows  classification  algorithms  to  more  effectively 
separate objects into classes.

Figure 5: Confusion matrix for the optimized ensemble when solving the classification problem 
based on photographs of military objects with an extended vector of input features, including 
mean, variance, and covariance.



Figure 6: ROC for the optimized ensemble when solving the classification problem of military 
objects from photographs with an extended vector of input features, including mean, variance and 
covariance.

The results of the experiments show that the proposed approach to forming a feature vector has  
practical value for the tasks of automatic recognition of military objects. Using an extended vector, 
including  statistical  and  covariance  characteristics  of  images,  made  it  possible  to  significantly 
increase  the  accuracy  of  classification  compared  to  simply  taking  into  account  the  brightness 
values  of pixels. This opens up opportunities for developing more reliable systems for analyzing 
visual  data  in  conditions  of  limited  image  quality,  different  shooting  angles,  and  a  complex 
background.

Figure 7: Minimum classification error plot for the optimized ensemble when solving the 
classification problem based on photographs of military objects with an extended vector of input 
features, including mean, variance, and covariance.



5. Conclusions

The paper considers the issue of forming a feature vector for solving classification problems based 
on streaming data, for which it is proposed to expand the vector by including recurrently estimated 
mean value, variance, and covariance. The calculation relationships are given and the architecture 
of the streaming data preprocessing module is proposed, which forms an extended feature vector 
using recurrent estimates.

Two series of experiments were conducted, during which the preprocessing module was used to 
solve the problem of classifying images of military objects.

A comparison of  the results  of  the two series of  experiments shows that  the choice of  the 
classification method and the formation of the feature vector have a significant impact on both the 
recognition accuracy and the computational characteristics of the models.

Firstly, one can note a general improvement in the quality of classification when moving from 
the first series to the second. For most algorithms, an increase in accuracy of 1–3% is observed,  
most noticeable for the optimized neural network (from 70.7% to 73.3%) and the optimized decision 
tree (from 59.6% to 60.2%). The optimized ensemble demonstrated the highest quality in both series,  
providing 75.7% and 75.5%, respectively. This confirms that ensemble methods remain the most 
effective for multi-class classification problems in the presence of data heterogeneity.

Secondly,  the  improvement  in  accuracy  is  accompanied  by  an  increase  in  resource 
requirements.  In  the  second  series,  the  models  became  noticeably  “heavier”:  the  size  of  the 
optimized ensemble increased from 359 MB to 1 GB, and the neural network — from 5 MB to 47  
MB. The training time also increased significantly: for the ensemble — from ~28 thousand seconds 
to more than 160 thousand seconds, for the neural network — from 14 thousand to 128 thousand 
seconds. This indicates that the inclusion of advanced features increases the load on the computing 
infrastructure.

Thirdly, the prediction speed decreased: for example, for KNN and the ensemble, the drop was 
almost an order of magnitude. This makes such models less suitable for real-time tasks. Thus, the 
use of an extended feature vector improves the quality of recognition, but requires a compromise  
between accuracy,  resources,  and prediction speed.  For practical  application in online systems, 
compromise  models  (for  example,  KNN or decision trees)  are  preferable,  while  ensembles  and 
neural networks are advisable to use in offline analytics.

Thus, it can be concluded that the proposed feature generation method is a promising direction 
for object recognition tasks in complex conditions. Its application allows increasing the efficiency 
of both traditional machine learning algorithms and ensemble models.

The  practical  significance  of  this  approach  lies  in  the  possibility  of  its  implementation  in  
automated  surveillance,  monitoring,  and  decision  support  systems.  Automatic  classification  of 
objects, such as enemy equipment or manpower, can improve reconnaissance efficiency and reduce 
the workload of operators. In the future, the method can be integrated into onboard systems of  
unmanned aerial vehicles, video analytics, or security systems, ensuring timely and accurate target 
identification.
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