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Abstract

The paper considers the problem of forming a feature space for data classification in the context of stream
processing. It is shown that the quality of feature extraction directly affects the efficiency of classification
algorithms, especially with limited data and high dimensionality of the feature space. A method for
forming an extended feature vector based on recurrent estimates of the mean, variance, and
autocorrelation of successive data points is proposed. This approach ensures adaptability to changing
statistical properties of the stream and allows forming compact but informative feature vectors with low
computational complexity. Experiments were conducted on the problem of classifying military objects
based on images that included eight categories of equipment and personnel. Comparison of two series of
experiments (using only pixels and using an extended feature vector) showed an increase in recognition
accuracy by 1-3% when using the proposed method, which is most noticeable for optimized neural
networks and decision trees. The optimized ensemble of classifiers demonstrated the highest accuracy
(75.5%). It is noted that an extended set of features increases the resource intensity of the models, reducing
the speed of predictions, which requires a compromise between quality and computational costs. The
practical value of the method lies in the possibility of its application in automated monitoring systems,
video analytics and decision support, including military intelligence and cybersecurity tasks.
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1. Introduction

Feature extraction is closely connected with a classification problem is one of the fundamental and
most important stages of building any intelligent system that works with data. Regardless of
whether we are talking about medical diagnostics based on tests, automatic speech recognition,
predicting customer creditworthiness, or classifying images, it is the stage of constructing the
feature space that largely determines the ultimate success of the model [1-3]. No matter how
powerful a classifier is, it always depends on how informative and relevant the object's
characteristics were extracted and passed to the input. The most modern machine learning
methods, such as deep neural networks, although they have the ability to independently form
internal representations, essentially solve the same problem: they find such transformations of the
original data that turn a set of signals into a feature space convenient for separating classes [4-6].

Classification is the task of finding a surface that separates the points of one class from the
points of another. The shape and position of this boundary depend on how well the feature space
itself is chosen. If the features poorly reflect the essence of the objects, the classes mix up and
become indistinguishable. If the features are chosen well, the objects form separate clusters, and
the separation task becomes much easier.

This idea is especially important in situations where there are massive of little data. Many
modern machine learning algorithms require large samples for high-quality training. But in
medicine, finance, or other areas, you have to work with a limited number of examples. Here, good
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features can compensate for the lack of data. For example, a patient's medical indicators themselves
may be disparate, but correctly constructed combinations of these indicators provide key
information for making a diagnosis [7].

The history of computer vision clearly shows the importance of the method for forming
features. Before the advent of neural networks, researchers used image characteristics such as
gradients, textures, and shape moments to automatically generate a description of properties.
These features ensured resistance to changes in illumination or scale and allowed algorithms to
distinguish objects. Modern deep networks only automate this process, but their essence is the
same - constructing a feature space where objects of different classes become distinguishable [4].

In text processing, the situation is similar: raw texts cannot be fed directly to the algorithm.
Therefore, vector representations are created: from simple bags of words and TF-IDF to complex
embeddings that reflect the meaning of words and their context [8, 9]. It was the emergence of
various feature representations that became a breakthrough, allowing to significantly improve the
quality of text classification.

In problems of processing audio information, it is necessary to use characteristics based on
spectral analysis methods [10], which are extracted using, for example, convolutional and recurrent
deep networks [11].

Most of the proposed methods for forming feature vectors in multimedia data streams are
focused on the offline mode of the model, on the presence of significant data sets for training.
Accordingly, it is assumed that in such problems it is possible to use complex architectures of
models used for feature extraction, feature vectors can be quite large. However, in online streaming
data processing problems, all this turns out to be unavailable or technically unrealizable. There is a
need to create small-dimensional feature vectors using fast calculation algorithms. These
requirements are met by statistical characteristics - average values, variance, covariance coeflicient,
which are calculated within a window sliding along the flow of constantly updated data.

It is this problem - the search for a compromise between the quality of the feature description
and the efficiency of its calculation - that is actively addressed in modern literature. Thus, in [12], a
hybrid model COCALITE is proposed that combines a compact architecture with a set of statistical
features. This approach combines the advantages of a deep model capable of automatically
extracting complex dependencies and a carefully selected set of interpretable features. The result is
an increase in classification accuracy with a sharp reduction in the number of model parameters
(only 4.7% of Inception), which is critically important in conditions of limited resources and when
working with streaming data.

In cybersecurity tasks, where input data is high-dimensional and contains redundant
information, the emphasis is on the systematic selection of the most significant characteristics.
Logeswari and colleagues [13] proposed the Synergistic Dual-Layer Feature Selection (SDFC)
algorithm, which combines statistical methods (mutual information, variance threshold) and
model-oriented approaches (SVM with recursive feature elimination, PSO). Unlike COCALITE,
which focuses on combining manual and deep features, here we are talking about a multi-stage
reduction of the feature space before feeding data to the LightGBM and XGBoost classifiers. This
combination made it possible to achieve high accuracy of attack detection in the IoT environment
with lower computational costs. However, both hybrid architectures and two-level selection more
often involve working in offline processing conditions, when it is possible to calculate features in
advance and train complex models. In streaming scenarios with changing data, the ability to
adaptively update the set of used features becomes key. This problem is devoted to the work [14],
which proposes methods for online filtering of features for streaming data with conceptual drift.
Their algorithms allow real-time revision of feature significance, while maintaining computational
ease and without sacrificing accuracy. The authors have shown that online screening is capable of
reproducing selection quality comparable to offline methods, while providing lower memory and
time costs. Most importantly, the integration of model adaptation increases the probability of
correctly identifying “truly significant” features in the context of changing data statistics.



If we consider these trends as a whole, we can identify a key trend: methods for constructing a
feature space tend to combine expressiveness (due to deep architectures or extended feature sets),
compactness (through strict selection and regularization), and adaptability (through online
updating of feature significance). In streaming media classification problems, it is the latter
characteristic that comes to the fore. This requires recurrent updating of statistics, such as mean
values, variances, or covariances, which form compact but informative feature vectors.

2. Related works and problem statement

The problem of covariance estimation occupies a central place in modern statistics, machine
learning, and engineering applications. The quality of signal filtering, the reliability of localization,
the accuracy of forecasts, and the adequacy of statistical inference depend on the correctness of the
covariance structure restoration. However, in real-world problems, researchers face a number of
limitations: limited data volumes, high dimensionality of the feature space, the presence of noise
and drift, as well as the need to work online when information is received continuously. These
challenges have generated interest in recurrent (online) methods for estimating covariance
matrices, which update estimates as data arrives, without requiring storage of the entire sample.
One of the illustrative examples of the application of such methods is localization systems in
intelligent transport. Traditional odometry suffers from the accumulation of bias errors, which
leads to incorrect uncertainty modeling. In [15], the Drift Covariance Estimation strategy was
proposed, which allows refining the covariance of odometrical errors using readings from
additional sensors that are not subject to drift. Recursive updating of the covariance matrix makes
it possible to adapt the system to changes in external conditions and gradually reduces the
uncertainty in localization models. The advantage of the approach is integrability into standard
filters (EKF, UKF, Hoo), which significantly increases their stability. However, the disadvantage
remains the dependence on the presence of auxiliary sensors and the risk of incorrect accounting
for errors if their statistical nature changes significantly. The theoretical basis of the algorithm is
based on the approximation of drift using external observations, which makes the method
applicable in real-world conditions, although strict optimality guarantees are not always feasible.
Another set of problems is related to modeling, where it is necessary to estimate covariances in
spaces of huge dimensions with extremely limited samples. Vishny and colleagues [16] emphasized
that classical statistical methods lose their validity in such a situation, since the number of
observations is smaller than the problem dimension. To overcome this problem, they have
proposed recurrent procedures in which covariances between variables are dynamically
“discounted” depending on the noise level. This is actually a type of regularization built into the
estimation process, which allows avoiding overfitting and maintaining stability. The advantage of
the approach is that the algorithm has low computational complexity and can work in conditions
of streaming data. The disadvantage is that the methods require knowledge or approximation of
the noise level, which can be difficult in problems with a heterogeneous error structure. From a
theoretical point of view, the authors ensure the preservation of key properties of the covariance
matrix, which makes the method statistically correct and applicable for data assimilation in
complex models. Significant progress has also been made in the field of stochastic optimization.
Machine learning problems that use stochastic gradient descent methods require not only finding
the optimal solution, but also the ability to estimate confidence intervals for the model parameters.
Here, recurrent covariance estimation allows us to embed statistical inference directly into the
learning process. Zhu et al. [17] have proposed an online estimator of the covariance matrix for
averaged SGD iterates. The algorithm updates the estimate when new observations are received,
without requiring storage of the entire iteration history. The advantages are obvious: efficiency in
terms of memory and computational costs, the ability to construct asymptotically correct
confidence intervals on the fly. Limitations are related to the sensitivity to the choice of the
gradient descent step and the need to accumulate a sufficient number of iterations for the
asymptotic properties to manifest. The theoretical justification of the method is based on classical



results on the normality of averaged iterates, which guarantees the consistency and convergence of
the proposed estimator. The development of this idea can be seen in a more recent paper [18],
which considered much more complex problems of non-smooth and non-convex variational
inclusions. Unlike smooth convex scenarios, where the theoretical analysis has long been worked
out, the situation here is complicated by the lack of monotonicity and regularity. The authors
proposed a recursive method based on batch means, which groups a sequence of iterates and
estimates the covariance over these groups. This approach eliminates the need to know the sample
size in advance and allows for online adaptation. An important advantage is that the method
achieves a convergence rate comparable to the best known results in simpler scenarios, despite the
complexity of the problem. A disadvantage is the need to carefully select the sequence of batch
sizes, otherwise the efficiency drops sharply. From the theoretical point of view, the work is
significant in that it was the first to provide strict guarantees of the consistency of covariance
estimates in non-smooth and non-convex conditions, which opens the way to correct statistical
inference even in very complex optimization problems.

Engineering applications also demonstrate the importance of recursive covariance estimation.
Kalman filters and their variants are traditionally used in dynamic structure identification
problems. However, the efficiency of these methods decreases sharply in the case of ill-conditioned
systems caused by the sensor network architecture. Liu et al. [19] have proposed a new recursive
smoothing method for estimating states and inputs of vibrating structures. Unlike existing
minimum-variance unbiased smoothers, their method is applicable to both feedforward and rank-
deficit systems. The key advantage is that the method does not require a priori information on the
input statistics and adapts to observed data. The disadvantage is that the algorithm is essentially
focused on linear systems, and the extension to nonlinear scenarios remains open. The theoretical
basis of the method is related to a new discrete-time indexing, which allows to bypass the
limitations of classical MVU approaches. The authors confirmed the validity and efficiency of the
method using numerical examples, comparing it with several versions of the Kalman filter.

If we consider all these studies together, we can notice a number of common patterns. Recursive
estimation of covariances is primarily motivated by the need to work under conditions of limited
resources: limited data volume, limited memory, or limited computation time. In many cases, it is
not just about approximating the covariance structure, but about constructing algorithms that
ensure asymptotic normality of estimates and allow statistical inference. The advantages of
recurrent methods are obvious: they are adaptive, allow you to respond to changes in data
properties, and often have low computational complexity. The disadvantages include sensitivity to
algorithm parameters (batch size, learning step, regularization structure) and dependence on a
priori assumptions, which are not always met in real applications.

From the point of view of theoretical foundations, three levels can be distinguished. In applied
problems, as in [15] and [19], the correctness of the methods is confirmed primarily experimentally
and through the stability of filters. In high-dimensional and small-sample problems, as in [16], the
proposed procedures are justified by preserving the structural properties of covariance matrices,
which guarantees their use in modeling. Finally, in stochastic optimization, as in [17] and [18], the
emphasis is on rigorous proofs of consistency and convergence rate, which allows embedding
covariance estimation in mathematically sound statistical inference procedures. That is why this
paper focuses on the formation of a feature space based on online covariance estimation — as a
natural development of the ideas embedded in hybrid and adaptive methods in modern literature,
and considers the problem of creating a feature vector based on recurrent online covariance
estimation for the problem of classifying streaming multimedia data.

3. Materials and methods

Recurrent calculation of mean, variance and covariance for streaming data plays a key role in
modern intelligent systems operating in real time. Unlike offline processing, where the entire array
of information can be downloaded and analyzed in advance, in a streaming scenario, data arrives



continuously and often in large volumes. It is impossible to store the entire stream either in
memory or in processing time, so it is necessary to rely on recurrent formulas that allow updating
statistics step by step. The formulas are derived based on the principle of optimal recursive Kalman
estimation, which implements the process of parametric estimation based on the autoregressive
model of the signal generation process (Fig. 1):
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where x (T) ,T=1,2,...,k is the sequence of input signals, k is the current discrete time.
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Figure 1: Recurrent model for calculating the average value of consecutive discrete data.

The average value calculated recurrently provides quick control over the central tendency of the
flow, and allows for timely recording of shifts or changes in the signal level.

The variance updated in the flow reflects the degree of variability of the data and helps to
identify areas with abnormally high or low variability (Fig. 2):
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Figure 2: Recursive model for calculating the variance of sequential discrete data.

Covariance calculated recursively is especially important when it is necessary to track the
connections between features: their appearance, disappearance or change in the manifestation of
connections. However, in this paper it is proposed to calculate the covariance not between features,
but between several adjacent points of sequential data (Fig. 3):

r(kod)=r (k=1,d+ (%K) =R (k=1)) (7 (k) =5, (= 1) =r, (k=1,d)),

where d=1,2,...,p is the number of data points taken into account by the recurrent covariance.
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Figure 3: Recurrent model for calculating the covariance d of consecutive discrete data.

Each of the proposed recurrent models can be represented as a separate block, from which a
module for forming a feature vector is formed (Fig. 4).
For the input sequence of discrete data, the module creates a feature vector

X(k)=(x(k),0(k),r (k,2),..,r (k,d))", (4)

of dimension (d+2)x1.
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Figure 4: Architecture of the feature vector generation module using recurrent mean, variance and
covariance estimation blocks; a) individual blocks; b) module architecture.

The advantage of such methods is that each new observation can be taken into account in
constant time, without recalculating the entire history. This makes the algorithms computationally



efficient and robust to large amounts of data. Recurrent statistics allow streaming systems to adapt
to changes in input data, which improves classification accuracy, forecast reliability, and anomaly
detection timeliness.

4. Main results

The effectiveness of the proposed approach to feature vector generation was experimentally
evaluated on a military object recognition task. The dataset [20] comprises 3416 images of
personnel and equipment across eight categories (artillery, infantry fighting vehicles, UAVs,
armored vehicles, armored personnel carriers, infantry, multiple rocket launchers, and tanks), with
varying viewpoints and conditions. Bounding box annotations enable object extraction and
classification, though class distribution is imbalanced. Images contain either single or multiple
objects from the same or different classes.
Device properties:

*  processor: AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz;
¢ RAM: 16.0 GB;

¢ memory: 954 GB SSD WDC PC SN730 SDBPNTY-1T00-1101;

¢ video adapter: NVIDIA GeForce RTX 3060 Laptop GPU (6 GB);

* system type: 64-bit operating system, x64 processor.

Several different approaches were chosen for classification: Optimizable Tree; Weighted KNN;
Optimizable KNN; Efficient Logistic Regression; Efficient Linear SVM; Optimizable Neural
Network; Optimizable Naive Bayes; Optimizable Ensemble; LVQ network. 5-fold cross validation
was used for every model.

The data is split into training and test sets (0.7:0.3). Thus, the size of the training sample is 2392
images, the test sample is 1024 photos. Preprocessing included grayscale conversion and resizing to
80 x 60 pixels and subsequent vectorization. Two series of experiments were conducted. In the first

series, the input feature vector included only image pixels X (k)=x(t )T ,7=1,2,...,k. In the
second series, the input feature vector was collected according to the proposed approach:

X(k)=(x(k),0%(k),r (k,2),..,r (k,d))",d=2 (5)

The results of image classification of the dataset are presented in Table 1 and Table 2.

The optimized ensemble demonstrated the highest accuracy of 75.5% in solving the problem
using the expanded feature vector. Its parameters are: Learner type: Decision Tree; Ensemble
method: Bag; Number of splits: 2309; Number of learners: 476; Hyperparameter Search Range
Ensemble method: Bag, Boost, RUSBoost; Number of learners: 10-500; Learning rate: 0.001-1;
Optimizer: Bayesian optimization.

Table 1
Results of training models when solving the problem of classification of military objects by photos,
when the input feature vector contains only image pixels

Predict: "
Model Accuracy, % rediction 'ralnlng Model size
speed, ob/sec time, sec
Optimizable Tree 59.6 380 1436.5 743 kB

Weighted KNN 71.4 410 28.9 88 kB




Optimizable KNN 72.7 310 576.7 88 kB

Efficient Logistic Regression 20.2 820 30.4 20 MB

Efficient Linear SVM 27.4 810 37.7 20 MB

Optimizable Neural Network 70.7 790 14052 5 MB

Optimizable Naive Bayes 63.6 6.6 31794 432 MB

Optimizable Ensemble 75.7 410 27955 359 MB
Table 2

Results of training models when solving the classification problem based on photographs of
military objects with an extended vector of input features, including mean, variance and covariance

Model Accuracy, % slf);:ii(;ﬁ?srlec Ei::;% Model size
Optimizable Tree 60,2 68 5281,9 3 MB
Weighted KNN 69,3 37 303 353 MB
Optimizable KNN 72.4 8,7 8790 353 MB
Efficient Logistic Regression 21,5 52 268,3 81 MB
Efficient Linear SVM 284 52 292 81 MB
Optimizable Neural Network 73,3 54 1,28e+05 47 MB
Optimizable Naive Bayes 63.6 2 1,15e+05 2GB
Optimizable Ensemble 75.5 46 1,63e+05 1GB

The AUC values for some classifiers are given in Table 3.

Table 3

AUC by classes for some models when solving the classification problem based on photographs
of military objects with an extended vector of input features, including mean, variance and
covariance

AUC by classes
Model

Optimizable

Tree 0.8421  0.8204 0.768 0.7983 0.809 0.7905  0.8039  0.8608

Weighted KNN  0.9473  0.9464  0.9205  0.9233  0.9246  0.9291  0.9422  0.9692




Optimizable

KNN 0.9607 09568 0.9344 09374 0.9419 09395 0.9406  0.9595

Optimizable
Neural 0.9494 09302 09177 09278 0.9283 0.9204 0.9281  0.9548
Network

N
Optimizable 0.8944  0.8955 0.8981 0.8876 0.8989 0.8991 08957  0.9062
Naive Bayes
Optimizable

0.9645 0.9604 0.9435 0.9513 0.9539 0.949 0.9443 0.9667
Ensemble

Confusion matrix, ROC and Minimum classification error plot for the optimized ensemble are
shown in Figures 5-7.

The experiments confirmed the effectiveness of the proposed approach to forming a feature
vector for the task of classifying military images. Comparison of two series of experiments showed
that using an extended vector, including statistical characteristics and autocovariance features,
provides higher recognition quality compared to the option where the vector was formed
exclusively from pixel values. This indicates that additional information about the image structure
and the relationships between elements allows classification algorithms to more effectively
separate objects into classes.

Optimizable Ensemble Confusion Matrix

1 4 17 12 7 1 2 12

True Class

Fal 3 7 T 1 2 212

1 2 3 4 5 3
Predicted Class

Figure 5: Confusion matrix for the optimized ensemble when solving the classification problem
based on photographs of military objects with an extended vector of input features, including
mean, variance, and covariance.



Optimizable Ensemble ROC
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Figure 6: ROC for the optimized ensemble when solving the classification problem of military
objects from photographs with an extended vector of input features, including mean, variance and
covariance.

The results of the experiments show that the proposed approach to forming a feature vector has
practical value for the tasks of automatic recognition of military objects. Using an extended vector,
including statistical and covariance characteristics of images, made it possible to significantly
increase the accuracy of classification compared to simply taking into account the brightness
values of pixels. This opens up opportunities for developing more reliable systems for analyzing
visual data in conditions of limited image quality, different shooting angles, and a complex
background.

Optimizable Ensemble Minimum Error Plot
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Figure 7: Minimum classification error plot for the optimized ensemble when solving the
classification problem based on photographs of military objects with an extended vector of input
features, including mean, variance, and covariance.



5. Conclusions

The paper considers the issue of forming a feature vector for solving classification problems based
on streaming data, for which it is proposed to expand the vector by including recurrently estimated
mean value, variance, and covariance. The calculation relationships are given and the architecture
of the streaming data preprocessing module is proposed, which forms an extended feature vector
using recurrent estimates.

Two series of experiments were conducted, during which the preprocessing module was used to
solve the problem of classifying images of military objects.

A comparison of the results of the two series of experiments shows that the choice of the
classification method and the formation of the feature vector have a significant impact on both the
recognition accuracy and the computational characteristics of the models.

Firstly, one can note a general improvement in the quality of classification when moving from
the first series to the second. For most algorithms, an increase in accuracy of 1-3% is observed,
most noticeable for the optimized neural network (from 70.7% to 73.3%) and the optimized decision
tree (from 59.6% to 60.2%). The optimized ensemble demonstrated the highest quality in both series,
providing 75.7% and 75.5%, respectively. This confirms that ensemble methods remain the most
effective for multi-class classification problems in the presence of data heterogeneity.

Secondly, the improvement in accuracy is accompanied by an increase in resource
requirements. In the second series, the models became noticeably “heavier”: the size of the
optimized ensemble increased from 359 MB to 1 GB, and the neural network — from 5 MB to 47
MB. The training time also increased significantly: for the ensemble — from ~28 thousand seconds
to more than 160 thousand seconds, for the neural network — from 14 thousand to 128 thousand
seconds. This indicates that the inclusion of advanced features increases the load on the computing
infrastructure.

Thirdly, the prediction speed decreased: for example, for KNN and the ensemble, the drop was
almost an order of magnitude. This makes such models less suitable for real-time tasks. Thus, the
use of an extended feature vector improves the quality of recognition, but requires a compromise
between accuracy, resources, and prediction speed. For practical application in online systems,
compromise models (for example, KNN or decision trees) are preferable, while ensembles and
neural networks are advisable to use in offline analytics.

Thus, it can be concluded that the proposed feature generation method is a promising direction
for object recognition tasks in complex conditions. Its application allows increasing the efficiency
of both traditional machine learning algorithms and ensemble models.

The practical significance of this approach lies in the possibility of its implementation in
automated surveillance, monitoring, and decision support systems. Automatic classification of
objects, such as enemy equipment or manpower, can improve reconnaissance efficiency and reduce
the workload of operators. In the future, the method can be integrated into onboard systems of
unmanned aerial vehicles, video analytics, or security systems, ensuring timely and accurate target
identification.
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