
Markov’s Models of AI Systems Availability Considering 
Re-learning Processes⋆

Vyacheslav Kharchenko1,*,†, Yuriy Ponochovnyi2,† and Heorhii Zemlianko1,†

1 National Aerospace University KhAI, Kharkiv, Ukraine
2 Poltava State Agrarian University, Poltava, Ukraine

Abstract
The article  is  devoted to  the development  of  Markov models  for  assessing the readiness  of  artificial 
intelligence (AI) systems in critical areas, taking into account retraining procedures. A conceptual model 
of an information and control system with AI (AI-ICS) is proposed, which includes a state space, failures, 
and maintenance procedures, such as online verification and retraining. A feature of the developed single-  
and multi-fragment Markov models is that they allow for the assessment of AI-ICS readiness, taking into  
account various parameters, both traditional for software and hardware systems (failure and recovery 
rates),  and  parameters  of  planned and reactive  retraining  processes  and the  resulting  change in  the 
corresponding system indicators. It is shown that the multi-fragment model surpasses the single-fragment 
one in accuracy, demonstrating the ability to account for adaptation through retraining. Prospects for 
future research are discussed, including two-version structures that increase safety by reducing Common 
Cause Failures Risks, and the development of diversification technologies in the creation of AI.
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1. Introduction

1.1. Motivation and related works

Systems  of  artificial  intelligence  (AI)  play  a  key  role  in  critical  areas,  where  they  provide 
automation of complex processes, real-time analysis of large volumes of data, and decision-making 
under uncertainty. In medicine, AI is used for diagnosing diseases based on medical images and 
predicting pandemics; in transport, for controlling autonomous vehicles; in the energy sector, for 
optimizing resource distribution and conducting predictive maintenance; and in the defense and 
security sectors, for threat analysis, risk prediction, decision-making support, and humanitarian 
demining [1-3]. However, the dependability of these systems remains a serious challenge due to the 
certain  imperfection  of  AI  tools,  given  the  vulnerability  of  their  components  and  insufficient 
resilience to specific interferences, etc. Hardware may experience physical failures and degrade due 
to equipment failures as a result of aging processes or external influences. Software can lead to AI 
system failures due to design faults,  and AI models can lose trustworthiness due to data drift,  
incorrect  training,  the  limitations  of  the  datasets  on  which  they  are  trained,  and  insufficient  
resilience to cyberattacks, including so-called AI-powered attacks [4-6].

Errors  in  such systems can have  catastrophic  consequences,  including loss  of  human lives, 
power grid blackouts with significant economic losses, or security breaches in defense systems due 
to erroneous decisions or cyberattacks [7, 8]. To address these problems, a modernization of the 
von Neumann paradigm (VNP) and its components [9] has been proposed by creating trustworthy 
AI systems from untrustworthy AI components through the use of the diversity principle (diverse 

⋆ProfIT AI’25: 5th International Workshop of IT-professionals on Artificial Intelligence, October 15–17, 2025, Liverpool, UK
1∗ Corresponding author.
† These authors contributed equally.

 v.kharchenko@csn.khai.edu (V. Kharchenko); yuriy.ponch@gmail.com (Y. Ponochovnyi); g.zemlynko@csn.khai.edu 
(H. Zemlianko)

 0000-0001-5352-077X (V. Kharchenko); 0000-0002-6856-2013 (Y. Ponochovnyi); 0000-0003-4153-7608 (H. Zemlianko)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:v.kharchenko@csn.khai.edu
https://orcid.org/0000-0003-4153-7608
https://orcid.org/0000-0002-6856-2013
https://orcid.org/0000-0001-5352-077X
mailto:g.zemlynko@csn.khai.edu
mailto:yuriy.ponch@gmail.com


model  and  data  architectures)  and  redundancy  (component  reservation)  [10].  This  approach, 
historically  developed  for  software  and  hardware  systems,  particularly  safety-critical 
instrumentation and control systems of NPPs (reactor trip systems),  has evolved to modern AI 
systems,  where  diversity  and  redundancy ensure  dependability  and  resilience  in  conditions  of 
changing operating modes, and cyber and physical environment parameters.

Modern  research  is  focused  on  increasing  the  protection  of  AI  from  attacks  and  model 
anomalies. In [11], taxonomy of AI resilience factors is proposed, and in [12], aspects of protection 
from  cyberattacks  in  autonomous  transport  systems  are  investigated.  The  diversity  of  neural 
architectures, as in hybrid neural networks [13], and bio-inspired approaches [14] contribute to AI 
adaptability. Retraining and continuous learning, described in [15, 16], allow systems to adapt to 
new conditions. At the same time, the ethical and legal aspects reviewed in [17, 18] emphasize the 
need to provide a certain level of responsibility ensuring explainability and trustworthiness AI 
safety  in  autonomous  vehicles  [19]  and  critical  infrastructure  [20]  requires  new  methods  for 
penetration  testing,  demonstrative  verification  [21],  and  protection  from  attacks  [22],  which 
provide objective quantitative and qualitative assessment.

In general, a certain deficit of mathematical models for AI systems can be concluded, which 
allow the calculation of complex availability indicators that take into account various parameters of 
the AI itself  and training processes,  as  well  as  software and hardware platforms,  enabling the 
investigation of the dependencies of these indicators on parameter changes and the formation of 
recommendations for ensuring compliance with the requirements for such systems.

1.2. Objectives and approach

The goal of the study is the development of Markov models for assessing the readiness of non-
redundant  AI  systems,  taking  into  account  changes  in  parameters  due  to  retraining  and  the 
formation of recommendations for increasing readiness and dependability.

Objectives are the following:
• the development of a conceptual model of an information and control system with AI (AI-

ICS) (section 2), which takes into account the features of the failure and recovery processes 
of its components and the system as a whole;

• the development and study of Markov models of the AI-ICS (section 3);
• the analysis of the modeling results of the respective advantages and limitations in the use 

of  models,  as  well  as  the  formulation  of  recommendations  for  the  selection  of  system 
parameters to increase readiness (section 4);

• the  determination of  the main contribution,  results,  and directions  for  further  research 
(section 5).

The research methodology is based on:
• the  consideration of  the  AI-ICS as  a  set  of  the  model  part  of  artificial  intelligence,  its  

software and hardware implementation, and the environment with cyber-physical effects 
on different system components;

• the detailing of the AI-ICS failure and recovery model, taking into account the main factors 
and types of faults;

• the use of single- and multi-fragment Markov models that allow for the consideration of 
parameter changes during training and possible improvement of the model part of the AI  
system due to online verification processes.



2. AI-ICS conceptual model

A conceptual model of an information and control system with AI (AI-ICS) is based on a software  
and hardware platform and an AI model that performs control functions (Figure 1). It describes the 
system's state space, which includes working states Sw, failure states Sf, and maintenance states Sm:

S=Sw∪ S f ∪ Sm , (1)

where Sw={Sq , S1
' }, S f={SHW , SSW , SAI }, Sm={SOV , SRL }.

Let's note that:
• SHW, SSW, SAI – are the failure states of the hardware, software, and AI model;
• SOV – are the online verification states;

• SRL – are the retraining states.

Figure 1: AI-ICS state graph describing transitions between operational states (S1), failure states 
(S2-S6), and maintenance (S7-S9)

Online  verification  (OV)  checks  the  system's  compliance  with  requirements  in  real-world 
conditions, while Retraining (Re-Learning) adapts the AI model to new conditions or eliminates 
errors. Transitions between states are modeled as a mapping T: S→S, where the failure rates (λHW, 
λSW, λAI) and recovery rates (μHW, μSW, μAI) determine the system's reliability dynamics.



3. Markov models AI-ICS

For  the  study of  AI  systems,  the  functioning of  the  so-called  single-version architectures  was 
considered,  which  allows  to  simplify  the  models  at  the  initial  stage  of  the  study  and  obtain 
adequate  values  of  the  input  parameters  of  the  model  from today's  available  sources.  Markov 
models have been developed to analyze the readiness of a single-version AI system, which take into 
account planned and reactive additional training.

3.1. One-fragment model

The state space of a single-fragment model (Figure 2) includes the following states:
• S0: full operability;
• S1: partial performance (eg reduced accuracy);

• S2: incapacity (erroneous decisions);

• S3: pre-training.

Figure 2: State graph of a single-fragment model

Transitions between states are described by intensities:
• λ01: (degradation);
• λ02: (critical rejection);
• λ12: (deterioration);
• μ03: (planned additional training);
• μ13, μ23: (reactive retraining);
• μ30: (restoration).

The corresponding system of Kolmogorov-Chapman differential equations has the form:
dP0( t )
dt

=−( λ01+ λ02+μ03 )P0( t )+μ30P3( t ) ,

dP1( t )
dt

=λ01P0( t )−( λ12+μ13 )P1( t ) ,

dP2( t )
dt

=λ02P0( t )+ λ12P1( t )−μ23P2( t ) ,

dP3( t )
dt

=μ03P0( t )+μ13P1( t )+μ23P2( t )−μ30P3( t ) ,

(2)

with the conditions that P0 (t = 0) = 1 and for any moment t:



P0( t )+P1( t )+P2( t )+P3( t )=1 , (3)

Availability function can be presented by following formula:

A ( t )=P0( t )+P1( t ) . (4)

The parameters for conducting the simulation are provided by Table 1.

Table 1
Parameters of a single-fragment model

Parameter Value (1/y) Description

λ01 0.01 Data drift

λ02 0.005 Critical failures

λ12 0.02 Deterioration of the condition

μ03 0.033 Planned additional training (1 time/month)

μ13 0.1 Reactive pre-training (10 hours)

μ23 0.2 Reactive pre-training (5 hours)

μ30 0.5 Recovery (2 hours)

3.2. Multi-fragment model

The multi-fragment model  (Figure  3)  expands the  system's  state  space by adding a  new post-
retraining  fragment  (S5-S9)  and  the  probability  Dp=0.8  of  successful  scheduled  retraining. 
Parameters λ56′, λ57′, λ67′ in the second fragment are reduced due to model updates (Table 2).

Figures should be centered, and their captions should be placed below them.



Figure 3: Graph of a two-fragment model

Table 2
Parameters of a multi-fragment model

Parameter Value (1/y) Description

λ01 [0.01, 0.007, 0.006] Data drift

λ02 [0.005, 0.005, 0.005] Critical failures

λ12 [0.02, 0.017, 0.015] Deterioration of the condition

μ03 0.033 Planned additional training (1 time/month)

μ14 0.1 Reactive pre-training (10 hours)

μ24 0.2 Reactive pre-training (5 hours)

μ30, μ35, μ45 0.5 Recovery (2 hours)

Dp 0.8 Success of planned pre-education

Thus, the multi-fragment model takes into account the separation of pre-learning states into for 
scheduled  pre-learning,  S4 for  reactive  pre-learning  in  Fragment  1  (analogously,  S8 and  S9 in 
Fragment 2).  After  reactive  retraining (S4→S5),  the  system switches  to  Fragment  2,  where the 
parameters λ56′, λ57′, λ67′ differ from λ01, λ02, λ12 due to model updates. After routine retraining With 



S3, the system returns to S0 with probability Dp or moves to S5 with probability 1−Dp. Fragment 2 
follows the structure of Fragment 1, but with new parameter values reflecting the effect of pre-
learning.

4. Results of modeling and discussion

The  single-fragment  Markov  model  was  implemented  in  MATLAB using  the  function  fM1.m, 
which  constructs  vertex  matrix  V  (defining  states  S₀  to  S₃  with  coordinates  and  colors  for 
visualization) and edge matrix E (defining transitions with intensities λ01, λ02, λ12, μ03, μ13, μ23, μ30). The 
script m_01.m sets global parameters (Table 1), builds the transition matrix A via matrixA.m, solves 
the Kolmogorov differential equations using ode15s with the stiffness handler stiff.m over a 100-
hour  interval,  computes  availability  A(t)  as  (4),  and  plots  A(t)  along  with  individual  state  
probabilities.

As a result of the investigating the first model by Matlab, it was found that (Figure 4):
• the availability function A(t) drops rapidly from 1 to 0.919 in the first 5 hours due to high 

frequencies  of  transitions  to  the  pre-learning state  (S3)  and  system degradation.  In  the 
future, A(t) stabilizes at the level of 0.893, with the system spending 82.5% of the time in the 
state  of  full  working  capacity  (S0),  6.9%  –  in  partial  working  capacity  (S1),  2.7%  –  in 
incapacity (S2) and 7.9% – in additional training (S3);

• the relatively high probability of entering the S3 state is due to planned additional training 
(μ03=0.033),  which  significantly  reduces  availability.  Reactive  retraining  (μ13=0.1,  μ23=0.2) 
effectively reduces time in S1 and S2, but does not compensate for losses from S3;

• to improve performance, it is recommended to reduce the frequency of scheduled retraining 
or speed up the recovery process.

Thus,  the  Markov  model  for  a  retraining  AI  system  provides  a  methodological  basis  for 
analyzing its behavior, taking into account both planned and reactive adaptation strategies, but at 
the same time does not allow to assess the reliability of the AI system under the conditions of 
making changes to the system during the retraining process.

The multi-fragment model  was implemented in  MATLAB using the  function fM2.m,  which 
extends the single-fragment approach to n fragments (determined by array sizes of  λ01,  λ02,  λ12), 
constructing  expanded  V  and  E  matrices  with  5  states  per  intermediate  fragment  (S0-S4 or 
equivalents) and 4 for the last, incorporating probability Dp for branching in retraining transitions 
(μ30,  μ35,  μ45).  The  script  m_02.m  sets  array-based  parameters  for  3  fragments,  builds  A  via 
matrixA.m, solves the ODE system using ode15s with stiff.m over a 500-hour interval, computes 
aggregated availability Ag(t) as the sum of probabilities for full/partial operability states, groups 
probabilities into P1-P5 for state categories,  and plots Ag(t)  with these groups.  For comparison, 
m_02_1.m  computes  and  plots  the  difference  ΔA(t)  between  multi-  and  single-fragment 
availabilities. As a result of modeling the multi-fragment model (Figure 4), it was found that:

• the availability factor gradually decreases to 0.916 for the first 5.56 hours of operation. The 
rate of decrease of A(t) slows down with time, and then, at t = 500, it stabilizes at the level  
of 0.899, which indicates the achievement of a stationary state of the system;

• the sum of the probabilities of being in the states of full operability (S1, S6, S11) decreases to 
0.855 at t = 500, which is 85.5% of the initial value. This indicates that the system retains its  
initial operability for a significant part of the time, although it gradually loses it due to 
transitions to other states;

• the sum of the probabilities of being in the states of partial operability (S2, S7, S12) increases 
to 0.045 (4.5% of the maximum value) at t = 500, indicating a limited time of the system in  
partially operable states. The system is completely inoperable for a small fraction of the 
time (0.025, or 2.5%);

• the  sum  of  the  probabilities  of  being  in  the  states  of  planned  retraining  (S4,  S9,  S14) 
demonstrates a significant fraction of the time spent on retraining or adaptation processes 
(0.075, or 7.5%).  We note that the additional states that model the processes of reactive 



retraining show an extremely low probability of the system being in these states (2.61×10⁻⁵), 
associated with rare events.

a) b) c)

Figure 4: Modeling results: (a) change of A(t) for single-fragment model; (b) change of A(t) for 
multi-fragment model; (c) comparison of A(t) single- and multi-fragment models

In addition, we conclude that the high proportion of (S4, S9, S14) (7.53%) can be due to intensive 
planned retraining processes with a frequency of μ03 = 0.033. This significantly affects the overall 
availability of the modeled system, reducing A(t).  The states that reflect partial operability and 
inoperability remain at relatively low levels due to fast reactive processes (μ13 = 0.1 and μ23 = 0.2), 
which effectively reduce the time the system spends in these states.

Thus, retraining processes are the dominant factor limiting the system readiness. It is clear that 
the single-fragment model is simpler and predicts the system behavior faster, but underestimates 
the readiness in the long term due to the generalized approach.

The multi-fragment model, taking into account the dynamics of the parameters, provides higher 
accuracy and better adaptation to real conditions, which is confirmed by the higher value of A(t) in  
the steady state. For AI systems, where detail and long-term stability are important, the multi-
fragment model is a better choice, although it requires more complex tuning.

5. Conclusions

The  main  contribution  of  the  research  is  suggested  Markov’s  models  and  results  of  their  
investigation.  These  models  allow  describing  processes  of  re-learning  and  changing  AI-ICS 
parameters that impact on system availability. Due to theses models can be improved accuracy of 
availability assessment.

The  proposed Markov models  allow assessing  the  readiness  of  AI-ICS,  taking into  account 
various parameters, both traditional for software-hardware systems, and parameters of re-learning 
processes and the resulting change in the corresponding indicators.

The multi-fragment model exceeds the single-fragment model in accuracy (A(t)=0.89999 versus 
0.893348), demonstrating the possibility of taking into account adaptation through re-learning.

Future research can be aimed at:
• first, detailing Markov models by taking into account more complex failure scenarios due to 

cyberattacks or hardware degradation, which will increase the accuracy of predicting the 
behavior of AI systems;

• second,  developing  requirements  and  substantiating  quantitative  values  for  AI 
characteristics such as ethics and legality. These steps will contribute to the development of 
AI Safe and Secure Systems Engineering as a separate discipline that meets the current 
needs of critical industries;

• third, researching two-version structures that increase safety by reducing Common Cause 
Failures  Risks,  but  their  implementation  is  complicated  by  the  need  to  develop 
diversification technologies when creating AI.
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