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Abstract

The article is devoted to the development of Markov models for assessing the readiness of artificial
intelligence (Al) systems in critical areas, taking into account retraining procedures. A conceptual model
of an information and control system with AI (AI-ICS) is proposed, which includes a state space, failures,
and maintenance procedures, such as online verification and retraining. A feature of the developed single-
and multi-fragment Markov models is that they allow for the assessment of AI-ICS readiness, taking into
account various parameters, both traditional for software and hardware systems (failure and recovery
rates), and parameters of planned and reactive retraining processes and the resulting change in the
corresponding system indicators. It is shown that the multi-fragment model surpasses the single-fragment
one in accuracy, demonstrating the ability to account for adaptation through retraining. Prospects for
future research are discussed, including two-version structures that increase safety by reducing Common
Cause Failures Risks, and the development of diversification technologies in the creation of AL
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1. Introduction

1.1. Motivation and related works

Systems of artificial intelligence (AI) play a key role in critical areas, where they provide
automation of complex processes, real-time analysis of large volumes of data, and decision-making
under uncertainty. In medicine, Al is used for diagnosing diseases based on medical images and
predicting pandemics; in transport, for controlling autonomous vehicles; in the energy sector, for
optimizing resource distribution and conducting predictive maintenance; and in the defense and
security sectors, for threat analysis, risk prediction, decision-making support, and humanitarian
demining [1-3]. However, the dependability of these systems remains a serious challenge due to the
certain imperfection of Al tools, given the vulnerability of their components and insufficient
resilience to specific interferences, etc. Hardware may experience physical failures and degrade due
to equipment failures as a result of aging processes or external influences. Software can lead to Al
system failures due to design faults, and AI models can lose trustworthiness due to data drift,
incorrect training, the limitations of the datasets on which they are trained, and insufficient
resilience to cyberattacks, including so-called Al-powered attacks [4-6].

Errors in such systems can have catastrophic consequences, including loss of human lives,
power grid blackouts with significant economic losses, or security breaches in defense systems due
to erroneous decisions or cyberattacks [7, 8]. To address these problems, a modernization of the
von Neumann paradigm (VNP) and its components [9] has been proposed by creating trustworthy
Al systems from untrustworthy Al components through the use of the diversity principle (diverse

"ProfIT AI’25: 5" International Workshop of IT-professionals on Artificial Intelligence, October 1517, 2025, Liverpool, UK

" Corresponding author.

These authors contributed equally.

@ v.kharchenko@csn.khai.edu (V. Kharchenko); yuriy.ponch@gmail.com (Y. Ponochovnyi); g.zemlynko@csn.khai.edu
(H. Zemlianko)

© 0000-0001-5352-077X (V. Kharchenko); 0000-0002-6856-2013 (Y. Ponochovnyi); 0000-0003-4153-7608 (H. Zemlianko)

@ @ © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



mailto:v.kharchenko@csn.khai.edu
https://orcid.org/0000-0003-4153-7608
https://orcid.org/0000-0002-6856-2013
https://orcid.org/0000-0001-5352-077X
mailto:g.zemlynko@csn.khai.edu
mailto:yuriy.ponch@gmail.com

model and data architectures) and redundancy (component reservation) [10]. This approach,
historically developed for software and hardware systems, particularly safety-critical
instrumentation and control systems of NPPs (reactor trip systems), has evolved to modern Al
systems, where diversity and redundancy ensure dependability and resilience in conditions of
changing operating modes, and cyber and physical environment parameters.

Modern research is focused on increasing the protection of Al from attacks and model
anomalies. In [11], taxonomy of Al resilience factors is proposed, and in [12], aspects of protection
from cyberattacks in autonomous transport systems are investigated. The diversity of neural
architectures, as in hybrid neural networks [13], and bio-inspired approaches [14] contribute to Al
adaptability. Retraining and continuous learning, described in [15, 16], allow systems to adapt to
new conditions. At the same time, the ethical and legal aspects reviewed in [17, 18] emphasize the
need to provide a certain level of responsibility ensuring explainability and trustworthiness Al
safety in autonomous vehicles [19] and critical infrastructure [20] requires new methods for
penetration testing, demonstrative verification [21], and protection from attacks [22], which
provide objective quantitative and qualitative assessment.

In general, a certain deficit of mathematical models for Al systems can be concluded, which
allow the calculation of complex availability indicators that take into account various parameters of
the AI itself and training processes, as well as software and hardware platforms, enabling the
investigation of the dependencies of these indicators on parameter changes and the formation of
recommendations for ensuring compliance with the requirements for such systems.

1.2. Objectives and approach

The goal of the study is the development of Markov models for assessing the readiness of non-
redundant Al systems, taking into account changes in parameters due to retraining and the
formation of recommendations for increasing readiness and dependability.

Objectives are the following:

*  the development of a conceptual model of an information and control system with Al (Al-
ICS) (section 2), which takes into account the features of the failure and recovery processes
of its components and the system as a whole;

*  the development and study of Markov models of the AI-ICS (section 3);

* the analysis of the modeling results of the respective advantages and limitations in the use
of models, as well as the formulation of recommendations for the selection of system

parameters to increase readiness (section 4);

¢ the determination of the main contribution, results, and directions for further research
(section 5).

The research methodology is based on:

* the consideration of the AI-ICS as a set of the model part of artificial intelligence, its
software and hardware implementation, and the environment with cyber-physical effects
on different system components;

* the detailing of the AI-ICS failure and recovery model, taking into account the main factors
and types of faults;

* the use of single- and multi-fragment Markov models that allow for the consideration of
parameter changes during training and possible improvement of the model part of the Al
system due to online verification processes.



2. AI-ICS conceptual model

A conceptual model of an information and control system with AI (AI-ICS) is based on a software
and hardware platform and an AI model that performs control functions (Figure 1). It describes the
system's state space, which includes working states S., failure states S; and maintenance states S,.:

S=S,u S;u S, (1)

where S, {S S}S {SHW,SSW,SA]}:Sm:{SOV’SRL}'

Let's note that:

. Suw, Ssw, Sar — are the failure states of the hardware, software, and Al model;
. Sov — are the online verification states;

*  Sg — are the retraining states.
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Figure 1: AI-ICS state graph describing transitions between operational states (S,), failure states
(S2-S6), and maintenance (S;-S,)

Online verification (OV) checks the system's compliance with requirements in real-world
conditions, while Retraining (Re-Learning) adapts the Al model to new conditions or eliminates
errors. Transitions between states are modeled as a mapping T: S—S, where the failure rates (Auw,
Asw, Aap) and recovery rates (uw, Usw, [a7) determine the system's reliability dynamics.



3. Markov models AI-ICS

For the study of AI systems, the functioning of the so-called single-version architectures was
considered, which allows to simplify the models at the initial stage of the study and obtain
adequate values of the input parameters of the model from today's available sources. Markov
models have been developed to analyze the readiness of a single-version Al system, which take into
account planned and reactive additional training.

3.1. One-fragment model

The state space of a single-fragment model (Figure 2) includes the following states:
e Sp full operability;
*  S; partial performance (eg reduced accuracy);

*  S;incapacity (erroneous decisions);

* Sz pre-training.

Aot

Figure 2: State graph of a single-fragment model

Transitions between states are described by intensities:
* Ao (degradation);
* oz (critical rejection);
* A (deterioration);
. tos: (planned additional training);
* [, b3 (reactive retraining);
* [ (restoration).
The corresponding system of Kolmogorov-Chapman differential equations has the form:

dP,(t
c;t( ):_(}\°1+}\02+l’103)P0(t)+I~’30P3(t>,
dpc;t(t)_)‘01Po(t)_()\12+#13)P1( ),
dpét(t) )\ozpo(t)+ﬂlzpl(t) /,123P2(t), (2)
dP,(t)

T:F’mpo(t)+P13P1(t)+IJz3P2(t)_llaop3(t)’

with the conditions that Py(t = 0) = 1 and for any moment t:



Po(t)"'Pl(t)+P2(t)+P3(t):1’ 3)

Availability function can be presented by following formula:

A(t)=P,(t)+P,(t). 4)

The parameters for conducting the simulation are provided by Table 1.

Table 1
Parameters of a single-fragment model
Parameter Value (1/y) Description
Aot 0.01 Data drift
Aoz 0.005 Critical failures
Arz 0.02 Deterioration of the condition
Lo 0.033 Planned additional training (1 time/month)
L3 0.1 Reactive pre-training (10 hours)
L3 0.2 Reactive pre-training (5 hours)
Hso 0.5 Recovery (2 hours)

3.2.  Multi-fragment model

The multi-fragment model (Figure 3) expands the system's state space by adding a new post-
retraining fragment (Ss-Ss) and the probability D,=0.8 of successful scheduled retraining.
Parameters As’, A5/, A¢;” in the second fragment are reduced due to model updates (Table 2).
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Figure 3: Graph of a two-fragment model

Table 2
Parameters of a multi-fragment model
Parameter Value (1/y) Description
Aot [0.01, 0.007, 0.006] Data drift
Aoz [0.005, 0.005, 0.005] Critical failures
Aiz [0.02,0.017, 0.015] Deterioration of the condition
o3 0.033 Planned additional training (1 time/month)
hs 0.1 Reactive pre-training (10 hours)
Lo 0.2 Reactive pre-training (5 hours)
Mo, s, as 0.5 Recovery (2 hours)
D, 0.8 Success of planned pre-education

Thus, the multi-fragment model takes into account the separation of pre-learning states into for
scheduled pre-learning, S, for reactive pre-learning in Fragment 1 (analogously, Sz and S, in
Fragment 2). After reactive retraining (S,—S;), the system switches to Fragment 2, where the
parameters Ass’, As;’, Ae;” differ from Agi, Aoz, A1z due to model updates. After routine retraining With



S;, the system returns to S, with probability D, or moves to Ss with probability 1-D,. Fragment 2
follows the structure of Fragment 1, but with new parameter values reflecting the effect of pre-
learning.

4. Results of modeling and discussion

The single-fragment Markov model was implemented in MATLAB using the function fM1.m,
which constructs vertex matrix V (defining states S, to S; with coordinates and colors for
visualization) and edge matrix E (defining transitions with intensities Ao, Aoz, Aiz, flos, fhis, flos, fi30). The
script m_01.m sets global parameters (Table 1), builds the transition matrix A via matrixA.m, solves
the Kolmogorov differential equations using odel5s with the stiffness handler stiff.m over a 100-
hour interval, computes availability A(t) as (4), and plots A(t) along with individual state
probabilities.

As a result of the investigating the first model by Matlab, it was found that (Figure 4):

* the availability function A(t) drops rapidly from 1 to 0.919 in the first 5 hours due to high
frequencies of transitions to the pre-learning state (S;) and system degradation. In the
future, A(t) stabilizes at the level of 0.893, with the system spending 82.5% of the time in the
state of full working capacity (So), 6.9% — in partial working capacity (S:), 2.7% - in
incapacity (S.) and 7.9% - in additional training (S;);

* the relatively high probability of entering the S; state is due to planned additional training
(103=0.033), which significantly reduces availability. Reactive retraining (ju3=0.1, 13=0.2)
effectively reduces time in S; and S,, but does not compensate for losses from S;;

* to improve performance, it is recommended to reduce the frequency of scheduled retraining
or speed up the recovery process.

Thus, the Markov model for a retraining AI system provides a methodological basis for
analyzing its behavior, taking into account both planned and reactive adaptation strategies, but at
the same time does not allow to assess the reliability of the Al system under the conditions of
making changes to the system during the retraining process.

The multi-fragment model was implemented in MATLAB using the function fM2.m, which
extends the single-fragment approach to n fragments (determined by array sizes of Ao, Ao, Ar2),
constructing expanded V and E matrices with 5 states per intermediate fragment (S,-Ss or
equivalents) and 4 for the last, incorporating probability D, for branching in retraining transitions
(30, s, pas). The script m_02.m sets array-based parameters for 3 fragments, builds A via
matrixA.m, solves the ODE system using odel5s with stift.m over a 500-hour interval, computes
aggregated availability Ag(t) as the sum of probabilities for full/partial operability states, groups
probabilities into P,-Ps for state categories, and plots Ag(t) with these groups. For comparison,
m_02_1.m computes and plots the difference AA(t) between multi- and single-fragment
availabilities. As a result of modeling the multi-fragment model (Figure 4), it was found that:

* the availability factor gradually decreases to 0.916 for the first 5.56 hours of operation. The
rate of decrease of A(t) slows down with time, and then, at t = 500, it stabilizes at the level
of 0.899, which indicates the achievement of a stationary state of the system;

*  the sum of the probabilities of being in the states of full operability (S., S, S11) decreases to
0.855 at t = 500, which is 85.5% of the initial value. This indicates that the system retains its
initial operability for a significant part of the time, although it gradually loses it due to
transitions to other states;

*  the sum of the probabilities of being in the states of partial operability (S,, S;, Si2) increases
to 0.045 (4.5% of the maximum value) at t = 500, indicating a limited time of the system in
partially operable states. The system is completely inoperable for a small fraction of the
time (0.025, or 2.5%);

* the sum of the probabilities of being in the states of planned retraining (Ss So, Sis)
demonstrates a significant fraction of the time spent on retraining or adaptation processes
(0.075, or 7.5%). We note that the additional states that model the processes of reactive



retraining show an extremely low probability of the system being in these states (2.61x107%),
associated with rare events.
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Figure 4: Modeling results: (a) change of A(t) for single-fragment model; (b) change of A(t) for
multi-fragment model; (c) comparison of A(t) single- and multi-fragment models

In addition, we conclude that the high proportion of (Ss, Se, Sis) (7.53%) can be due to intensive
planned retraining processes with a frequency of p; = 0.033. This significantly affects the overall
availability of the modeled system, reducing A(t). The states that reflect partial operability and
inoperability remain at relatively low levels due to fast reactive processes (p; = 0.1 and 3 = 0.2),
which effectively reduce the time the system spends in these states.

Thus, retraining processes are the dominant factor limiting the system readiness. It is clear that
the single-fragment model is simpler and predicts the system behavior faster, but underestimates
the readiness in the long term due to the generalized approach.

The multi-fragment model, taking into account the dynamics of the parameters, provides higher
accuracy and better adaptation to real conditions, which is confirmed by the higher value of A(t) in
the steady state. For Al systems, where detail and long-term stability are important, the multi-
fragment model is a better choice, although it requires more complex tuning.

5. Conclusions

The main contribution of the research is suggested Markov’s models and results of their
investigation. These models allow describing processes of re-learning and changing AI-ICS
parameters that impact on system availability. Due to theses models can be improved accuracy of
availability assessment.

The proposed Markov models allow assessing the readiness of AI-ICS, taking into account
various parameters, both traditional for software-hardware systems, and parameters of re-learning
processes and the resulting change in the corresponding indicators.

The multi-fragment model exceeds the single-fragment model in accuracy (A(t)=0.89999 versus
0.893348), demonstrating the possibility of taking into account adaptation through re-learning.

Future research can be aimed at:

» first, detailing Markov models by taking into account more complex failure scenarios due to
cyberattacks or hardware degradation, which will increase the accuracy of predicting the
behavior of Al systems;

* second, developing requirements and substantiating quantitative values for Al
characteristics such as ethics and legality. These steps will contribute to the development of
Al Safe and Secure Systems Engineering as a separate discipline that meets the current
needs of critical industries;

*  third, researching two-version structures that increase safety by reducing Common Cause
Failures Risks, but their implementation is complicated by the need to develop
diversification technologies when creating AL
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