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Abstract
Mathematical modeling and computer experiments are fundamental approaches for investigating complex 
processes in science, engineering, and other domains. In our earlier work, we introduced the concept and 
architecture  of  the  AIMM  (Artificial  Intelligence  for  Mathematical  Modeling)  system,  designed  to 
integrate a web-based modeling interface, large language models (LLMs), and high-performance hybrid 
computing resources on the SKIT supercomputer. That study established the theoretical foundation and 
modular microservice architecture of AIMM. The paper continues this research by detailing the design  
and implementation of the Model Generation Web Application (MGWA), a key subsystem within AIMM. 
The  MGWA provides  a  prompt-based pipeline  workflow for  stepwise  construction  of  computational 
models, guiding users from informal problem statements to solver-ready representations. Furthermore, 
the developed prototype of MGWA has been validated through preliminary testing, demonstrating its 
applicability for real-world problem settings. 
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1. Introduction

Mathematical modeling and the related computer experiment are among the primary means of  
studying objects, processes, and phenomena of various natures—in science, engineering, econom-
ics, society, and beyond. Mathematical modeling, in particular, involves substituting a real-world 
system or phenomenon with its abstract mathematical representation, thereby enabling computa-
tional experiments to be carried out on a computer. Such an approach allows the exploration of in-
tricate processes that would be otherwise impractical or prohibitively expensive to study in real-
world settings, leveraging modern computational technologies and numerical methods [1]. 

The vast majority of such studies require solving systems of linear algebraic equations (SLAEs) 
with matrices of arbitrary structure and extremely large orders. The properties of a computational  
problem may differ from those of the original mathematical problem, since the input data in a com-
puter are represented approximately [2-9]. This increases the need to ensure the reliability of solu-
tions, especially when modeling complex physical and mechanical processes. Here, a key factor be-
comes the use of Artificial Intelligence (AI), capable of automating critically important stages—from 
problem formulation to mathematical  model construction and the selection of optimal solution 
methods and algorithms. Powerful parallel computers and the rapid development of AI make it  
possible to automate all stages of model building and analysis [1]. 
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In practice, the advancement of high-performance computing is closely tied to the development 
of user-oriented software—intelligent systems that facilitate interaction in the language of a spe-
cific domain and automate the entire workflow of obtaining computational solutions. A powerful 
framework for this lies in knowledge-based technologies that integrate hybrid artificial intelligence 
techniques, including machine learning. Addressing these challenges in the core areas of computa-
tional mathematics (systems of linear algebraic equations, algebraic eigenvalue problems, systems 
of ordinary differential equations, and nonlinear equations) can be framed within a paradigm that 
unites  three  pillars:  high-performance  computing,  computer  mathematics,  and  artificial  intelli-
gence.

Publications [10]–[14] represent landmark studies that have shaped the development of artificial 
intelligence and GPT models. At present, the field of artificial intelligence is undergoing rapid and 
multifaceted development. Among the most widely known advancements are the products of Ope-
nAI [15], including the GPT family of models. GPT represents a natural language processing tech-
nology built on a transformer architecture, trained on extensive collections of textual data. This en-
ables the generation of coherent and high-quality texts. Through training on massive datasets, such 
models acquire the ability to capture both syntactic and semantic structures of language, which 
makes them particularly effective tools for constructing semantic networks and domain-specific 
models. The ChatGPT system [16] is based on the GPT-3 [17], GPT-3.5 [18], GPT-4 [19] and GPT-5 
[20] large language models developed by OpenAI. Its fine-tuning has been achieved using a combi-
nation of supervised learning techniques and reinforcement learning approaches.

The development and implementation of artificial intelligence (AI) methods and technologies 
open up new opportunities, while simultaneously giving rise to a range of critically important chal-
lenges. Among the most vulnerable aspects are the risks associated with the unreliability and un-
safe operation of AI systems (AIS). Such threats are caused by the unpredictable behavior of sys-
tems in situations that go beyond the data used for training or testing, limited input sequences, as  
well as possible failures due to imperfect hardware and software implementations, physical defects, 
or cyberattacks [21]. In addition, an important task is the formulation and enforcement of clear re-
quirements for key AI characteristics, such as ethics, explainability, trustworthiness, and others, 
which have been defined and systematized in [22, 23]. In [24], the concept of guarantee-capable AI 
systems is proposed, based on the development of the von Neumann paradigm (VNP), presented 
through a set-theoretic description that takes into account various components—AI and AIS quality 
characteristics.

In our earlier work [25], we introduced a new approach to solving applied problems that in-
volves using AI at all stages—from problem formulation to obtaining a reliable solution. AIMM (Ar-
tificial Intelligence for Mathematical Modelling) is an Intelligent System for research and solving 
applied problems, designed for the automatic investigation and solution of mathematical modeling 
tasks on multi-core computers with MIMD architecture and graphics processing units (GPUs). The 
system is developed on the basis of the Intelligent System of Computer Mathematics (ISCM) [26].  
Special attention is paid to applying AI in the process of mathematical model construction, auto-
matic  selection  of  numerical  methods,  and  implementation  on  hybrid  computing  architectures 
(CPU+GPU). Such an approach significantly enhances the efficiency and reliability of modeling, en-
abling a broader range of users to work with high-performance computing systems without deep 
expertise in applied mathematics or programming. Ultimately, this opens up new opportunities for 
research in fields where accuracy, adaptability, and speed of obtaining results are crucial—from en-
gineering and medicine to economics and environmental science.

The system is aimed at the complete automation and optimization of all stages of solving com-
plex applied problems—from formulating the problem in the language of the subject area, to build-
ing a mathematical model,  adaptively selecting numerical methods, and obtaining reliable solu-
tions. The proposed system is designed to support automated modeling and numerical solution of 
computational problems by integrating a modeling web interface, a large language model (LLM), 
and a high-performance computing backend deployed on the SKIT supercomputer [27]. The system 



architecture builds on previous research on implementing computational solutions through the in-
teraction of modules for formalization, processing, generation, and solving of mathematical prob-
lems [28]. 
Building upon the theoretical foundations and modular microservice architecture of AIMM, this 
study presents the design and implementation of the Model Generation Web Application (MGWA), 
a pivotal subsystem within the broader framework. MGWA implements a prompt-based pipeline 
modelling  workflow,  which  systematically  guides  users  from  informal  problem  statements  to 
solver-compatible  representations  through  a  series  of  semantically  linked  prompt  stages.  The 
current  prototype  has  undergone  initial  validation,  demonstrating  its  feasibility  for  practical 
modelling tasks. While the system has shown promising results, testing and iterative refinement 
remain in progress to ensure robustness and adaptability across a range of problem domains.

2. Prompt-Based Pipeline Architecture

In our earlier work [25], authors introduced the concept and architecture of the AIMM system, 
designed to automate mathematical modeling and the numerical solution of computational prob-
lems by integrating a web-based modeling interface, a large language model (LLM), and a high-per-
formance computing backend deployed on the SKIT supercomputer. The architecture follows a 
modular microservice paradigm, combining three main subsystems: the web application for prob-
lem formalization, the LLM-assisted modeling module, and the SKIT-based computational backend. 
The concept of generating problem statements using large language models has already been suc-
cessfully implemented in the GrantsForScience project [29].  Each stage of the modeling process is 
implemented as a distinct interaction with the LLM, guided by a specifically designed prompt con-
structed in line with prompt engineering principles [30]. This design enables flexible model con-
struction, automatic selection of numerical methods, and efficient execution on hybrid CPU/GPU 
architectures. 
This paper focuses on the architectural and implementation aspects of the Model Generation Web 
Application (MGWA), which serves as the entry point to the computational workflow within the 
AIMM system (Fig. 1).



Figure 1: AIMM Architecture.

The MGWA provides a structured environment for the incremental construction of computa-
tional models from a formalized problem description. The modeling process is organized into se-
quential stages, where the user can examine, edit, and validate intermediate outcomes. These stages 
cover the formulation of the physical model (identifying processes and assumptions), the develop-
ment of the mathematical description (differential equations and boundary conditions), discretiza-
tion into a  numerical  scheme,  synthesis  of  the computational  model  (choosing algorithms and 
methods), and finally, configuration of execution parameters such as solvers and data formats. At  
the final stage, the system generates a draft computational solution schema that encapsulates key 
properties of the intended numerical implementation—such as data structures, precision, and solver 
characteristics. This schema serves as a foundational interface for injecting problem-specific input 
data into AIMM and informs the subsequent selection of a suitable algorithmic implementation 
from the SKIT backend.

Consider the Prompt-Based Pipeline Architecture. Each task proceeds through a predefined se-
quence of transformation steps. These steps are selectively enabled for each pipeline, depending on 
the nature of the problem area. The default logical structure, based on the concept proposed in [31], 
follows four key stages: 

1. Formalized Description.  The user provides  a  natural  language description of  the 
problem. The system uses a structured prompt to extract entities such as inputs, outputs,  
goals, knowns, and constraints. The result is a logically organized representation suitable 
for further abstraction.

2. Mathematical  Model.  The  physical  model  is  reformulated  into  a  mathematical 
abstraction,  typically  consisting  of  systems  of  equations,  variational  formulations,  or 
operator-based representations. This step bridges physical reasoning with computational 
methods,  ensuring that  governing equations,  boundary conditions,  and assumptions are 
explicitly captured in formal mathematical notation. It plays a critical role in enabling the 
transition  toward  discretization,  especially  in  continuum  mechanics,  field  theories,  or 
control systems. This stage may involve defining PDEs, ODEs, algebraic systems, or integral 
formulations.

3. Discrete Model.  This step discretizes the conceptual model into algebraic forms—
often sparse matrices, vectors, and systems of equations. It specifies the problem space in 
terms  suitable  for  numerical  manipulation.  Sparse  matrix  formulations  are  especially 
prevalent in engineering and physical modeling. The system supports the description of  
matrix topology, dimensions, symbolic constraints, and storage formats. 

4. Computer  Solution Draft.  The final  stage generates  a  preliminary computational 
skeleton  that  will  serve  as  input  to  downstream modules  of  ISCM [26].  This  includes: 
expected data structures (e.g., sparse matrices, load vectors), orientation of data (e.g., row-
wise vs column-wise formulation),  precision constraints,  accepted numerical methods or 
solver classes. 

This representation is not a finalized codebase, but rather a structured blueprint for automated 
solution orchestration on HPC infrastructure.

2.1. MGWA Prototype

The MGWA prototype (AISolver) was implemented using Python Flask [32] and Jinja2 [33], with a 
lightweight HTML/CSS frontend and minimal UI dependencies (Fig. 2). The architecture is modular 
and extensible, comprising several key components:

 Prompt Engine – Responsible for dynamically executing configured prompt instructions 
using OpenAI-family large language models (LLMs). Each prompt defines its own model 
selection  (e.g.,  GPT-4.1),  temperature,  token  limits,  and  other  parameters.  Prompts  are 



designed to transform input models from the previous stage into structured representations 
for the next.

 Workflow Engine – Orchestrates the step-by-step generation of models in accordance with 
the  structure  of  a  selected  pipeline.  Each  transition  between steps  is  governed  by  the 
pipeline logic and proceeds automatically unless explicitly modified by the user.

 Admin Interface – Enables system developers to define and configure modeling pipelines, 
including prompt content, LLM parameters, and activation settings for each step. Prompt 
development follows modern prompt engineering practices and is debugged in a dedicated 
testing environment before deployment.

 User Interface – Supports the complete modeling workflow from task creation to 
results review. It guides users through step-by-step generation of models based on 
the pipeline configuration. Each model is displayed and edited on a dedicated page.

Figure 2: Model Generation Web Application (MGWA) Architecture.

The system’s core data entities include:
 Task (Problem) – Represents a user-defined modeling problem. A task is associated with a 

specific pipeline that defines the modeling stages required for that problem type.
 Pipeline –  A  sequence  of  prompts  representing  distinct  model  abstraction  levels  (e.g., 

formalized, physical, mathematical, discrete, computational). The structure is configurable 
and may include optional steps depending on the domain.

 Prompt –  A configurable  wrapper  around a  call  to  an  LLM.  In  system terminology,  a 
prompt is  not  merely a textual  instruction but  a  complete  specification including LLM 
selection, prompt body, execution parameters, and its position in the pipeline.

 Model – The output of a single prompt execution. Models are stored as text-based 
content, which may include plain text, HTML, or JSON structures. The interface 
integrates an interactive CKEditor [34] for user interaction with models, supporting 
equations, images, and rich formatting.

System administrators (who are also developers)  design and configure pipelines by defining 
prompt sequences. Each prompt step is bound to a specific transformation stage in the modeling 
process.  Prompts  can be  enabled  or  disabled  per  pipeline  to  suit  different  types  of  tasks.  The 
developer  uses  prompt  engineering  technics  [35]. Once  developed  and  tested  on  a  testing 
environment, pipelines are deployed to the main application.

Domain  experts,  acting  as  end-users,  create  tasks  by  selecting  an  available  pipeline  and 
providing an initial formal description of the problem. The system then automatically generates 
models step-by-step using the configured prompts, following the chosen pipeline workflow, where 
the output of one step serves as the input to the next. Each result is presented on a dedicated page,  
with options for regeneration or manual refinement.



The  modeling  flow follows  a  fixed  sequence:  Formalized  Description,  Mathematical  Model, 
Discrete Model, Computer Solution Draft.

All  outputs can be edited and revisited.  Users may also return to previous steps,  adjust the 
input, and re-trigger generation from any point in the pipeline.

Upon completion,  the user obtains a complete chain of  model  representations,  each 
reflecting  a  distinct  abstraction  level  [Fig.  3].  A  dedicated  summary  view presents  all  
generated content across the pipeline steps. Previously created tasks remain editable and 
can be iteratively improved. 

Figure 3: AIMM Prototype workflow.

By exposing prompt engineering and template control to the administrator, the system supports 
the  creation  of  highly  customized  pipelines  tailored  to  the  specific  requirements  of  different 
scientific and engineering domains.

Future  extensions  of  the  system are  planned to  enhance  usability  and collaboration.  These 
include PDF export of results, tools for collaborative editing, integrated evaluation metrics, and 
activity logging. Following extended testing and debugging of the MGWA prototype, the system is 



scheduled for integration with other AIMM components to support end-to-end problem-solving 
workflows.  This  will  include  automated  task  execution,  input  management,  and  solution 
orchestration  within  the  AIMM  infrastructure.  Additionally,  domain-specific  pipelines  will  be 
developed  to  support  modeling  scenarios  in  fields  such  as  computational  mechanics,  process 
engineering, and scientific computing.

Future  extensions  of  the  system are  planned to  enhance  usability  and collaboration.  These 
include PDF export of results, tools for collaborative editing, integrated evaluation metrics, and 
activity logging. Following extended testing and debugging of the MGWA prototype, the system is 
scheduled for integration with other AIMM components to support end-to-end problem-solving 
workflows.  This  will  include  automated  task  execution,  input  management,  and  solution 
orchestration  within  the  AIMM  infrastructure.  Additionally,  domain-specific  pipelines  will  be 
developed  to  support  modeling  scenarios  in  fields  such  as  computational  mechanics,  process 
engineering, and scientific computing.

2.2. Prototype approbation

The  AISolver  prototype  was  tested  on  a  real-world  engineering  problem “Cantilever  beam 
subjected to a concentrated load at its free end”.  A developer-level user can manage modeling 
pipelines (Fig. 4). Prompts are configured within pipelines according to the modeling domain and 
the specifics of the application area. 

Figure 4: Prompt pipelines.

Figure 5 illustrates the editing of pipeline settings, including the prompt body, LLM type, and 
parameters used to configure the generation of a specific model within the pipeline workflow. The  
parameter configuration in AI Solver was designed to ensure a stable and reproducible modeling 
process. For all stages the GPT-4o model was used, providing an optimal balance between accuracy 
and flexibility for scientific tasks. The Temperature parameter was set to 0.6, maintaining a balance 
between diversity and logical consistency of results. For the physical model, the output size was 
limited  to  Max  tokens  =  1024,  while  for  the  mathematical  model  it  was  increased  to  2048  to 
accommodate more complex systems of equations. The Top-P parameter remained at 1.0, ensuring 
full coverage of generation variants. This configuration ensures consistency between stages, clear 
structuring  of  generated  outputs,  and  suitability  for  further  automation  of  the  model-building 
process within the AIMM system.

Figures  6–9  present  the  consecutive  modeling  stages:  formalized  problem  description, 
Mathematical Model, Discrete Model, and Computer Solution Draft. Each stage is supported by 
LLM-powered transformations and allows interactive refinement of intermediate results.

A distinctive feature of the MGWA is its high configurability: expert users can define domain-
specific  prompt  pipelines,  while  end-users  are  guided  through  a  transparent  and  reproducible 
modeling process. 



Figure 5: AISolver configuration.

Figure 6: Formalized description entered by user.



Figure 7: Mathematical Model

Figure 8: Discrete Model



Figure 9: Generated Сomputer Solution Draft.

Each model is persistently stored in the database as structured text data (e.g., HTML, JSON),  
allowing end users to revisit, review, and refine them at any stage of the workflow. In particular,  
the Computer  Solution Draft serves  a  dual  role.  On one hand,  it  provides  a  machine-readable 
schema  that  enables  automated  generation  of  the  user  interface  for  task-specific  input 
configuration and integration with the AIMM solution workflow. On the other hand, it acts as a  
user-facing  guide,  informing  the  domain  expert  about  the  expected  structure,  semantics,  and 
parameters of the input data required to proceed with problem resolution. The LLM demonstrates 
rapid execution (usually within seconds),  while  its  effective performance is  directly contingent 
upon user actions, such as input formulation and interaction timing 

3. Conclusions

This  paper  introduces  a  prompt-driven  web  application  that  streamlines  the  early  stages  of 
scientific problem modeling. It supports modular configuration, domain-specific adaptation, and 
LLM-guided transformation of problem formulations. As part of the larger AIMM ecosystem, it 
plays a foundational role in transforming verbal task descriptions into computationally tractable 
formats.

A key innovation of MGWA is the use of prompt chaining,  which structures the modeling 
workflow into a configurable pipeline and enables modular application of language-model-driven 
transformations at different levels of abstraction. The design of the system emphasizes flexibility: 
expert  users  or  administrators  can  tailor  domain-specific  pipelines  by  adjusting  prompts  and 
parameters of the language model. At the same time, the tool is reusable, since defined pipelines  
can be applied to a variety of tasks and fine-tuned to match the specifics of particular problem 
categories.  For  end-users,  the  application  offers  a  guided  process,  leading  them  step  by  step 
through model creation while preserving the possibility to regenerate or refine results at any stage. 



Finally,  the  system  is  domain-independent,  ensuring  applicability  across  a  wide  spectrum  of 
scientific and engineering disciplines.

This work extends the AIMM concept toward practical applicability, bridging the gap between 
natural-language  task  formulation  and  solver-ready  computational  structures.  By  enabling 
transparent,  adaptive,  and  domain-agnostic  modeling  workflows,  the  MGWA  strengthens  the 
AIMM ecosystem as a foundation for intelligent numerical software. Future research will focus on 
expanding the configurability of prompt pipelines, enhancing collaborative modeling features, and 
applying the system to real-world domains.

The  results  confirm the  feasibility  of  extending AIMM from conceptual  architecture  toward  a 
working  intelligent  modeling  environment.  Future  research  will  focus  on  expanding  pipeline 
configurability,  collaborative  modeling  features,  and  applying  the  system  in  domains  such  as 
navigation  and  motion  control,  where  accuracy,  adaptability,  and  real-time  performance  are 
essential.

Declaration on Generative AI

During the  preparation of  this  work,  the authors  used ChatGPT-4o for  grammar and spelling 
checks. After using this service, the authors reviewed and edited the content as needed and take  
full responsibility for the publication’s content.
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