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Abstract
This paper attacks the problem of optimal module selection and program layout in intelligent information systems
through Euclidean combinatorial optimization. Two mathematical models are introduced: module selection under
execution time and memory constraints (Model 1), and distribution of data arrays across memory (Model 2). Both
are formulated as linear multi-objective Euclidean combinatorial optimization problems (LMOCOP).

The study proposes a two-stage solution method for LMOCOP, which is based on utilizing Euclidean com-
binatorial configurations (e-configurations). In the first stage, linear convolution reduces the multiobjective
optimization problem to a single-objective one. In the first stage, polyhedral a spherical relaxation and cutting
planes are applied to obtain an optimal multipermutation configuration.

A numerical example illustrates the ability to generate Pareto-optimal solutions by the proposed approach to
solving LMOCOP.
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1. Introduction

Mathematical modeling methods are widely used for mathematical representation of real systems
[1, 2, 3]. These methods facilitate the analysis of complex systems, enable the prediction of their
behavior, and assist in finding optimal solutions [4, 5, 6]. There are various methods of mathematical
modeling, each of which is adapted to a specific area of application [7, 8, 9].

The main approaches to mathematical modeling are analytical methods, numerical methods, statistical
approaches, and optimization methods. In particular, optimization methods are used to determine
the best solutions from a certain point of view among those that satisfy predefined constraints. This
category includes integer, discrete and combinatorial optimization methods used to solve problems
whose models contain one or more objective functions and additional constraints. The most studied
class of problems is linear programming, in which the objective function and constraints are linear. If
combinatorial conditions are present in the constraints, optimization problems fall into the combinatorial
class. Accordingly, combinatorial optimization methods become applicable to them [10, 11, 12, 13, 14].
Combinatorial optimization models and methods are widely used in various practical areas, including
finance, economics, and logistics [15, 16, 17].

There is a deep and close connection between mathematical modeling methods and combinatorial
optimization methods, as both approaches are often used to solve complex problems arising in various
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scientific and practical fields. Mathematical modeling provides tools for formalizing real problems,
while combinatorial optimization helps to find the best solutions in such models.

After constructing a mathematical model, it is often necessary to find an optimal solution. If the
model has a discrete nature (for example, the task of choosing the best combinations from a set of
possible options), then combinatorial optimization methods are used. Combinatorial problems that arise
in mathematical modeling can be so complex that exact methods cannot solve them in an acceptable
time. That is, they belong to NP-complex problems. In such cases, mathematical models use heuristic
methods of combinatorial optimization, such as genetic algorithms, the ant colony method, the tabu
search method, and the branch and bound method. These methods make it possible to find close
to optimal solutions for complex combinatorial problems that arise in the modeling of real systems
described in works [18, 19, 20].

Mathematical modeling of complex systems, such as transport networks, information systems, energy
systems, and logistics, often involves considering a large number of variables and options, making them
natural candidates for combinatorial optimization.

Hence, mathematical modeling and combinatorial optimization complement each other: mathematical
modeling provides tools for accurately describing real-world problems. In contrast, combinatorial
optimization provides methods for finding optimal solutions in discrete option spaces. This combination
is key to solving many practical problems in economics, engineering, logistics, information technologies,
and complex systems [6, 21].

There is a deep and close connection between mathematical modeling methods and combinatorial
optimization methods, since both approaches are often used sequentially when solving complex problems
arising in various scientific and practical fields. Mathematical modeling provides tools for formalizing
real-world problems, while combinatorial optimization helps find optimal solutions in such models.
Many practical problems allow the construction of multiple mathematical models, each of which can
be solved using specific methods. Accordingly, expanding the set of approaches to modeling a certain
problem increases the chance of finding an effective solution by choosing from a wider set of methods.

After constructing a mathematical model, the optimal solution to the corresponding optimization
problem is sought. If the model is discrete in nature (for example, the task of selecting the best
combinations from a set of possible options), then combinatorial optimization methods are used.
Combinatorial optimization models that arise in the mathematical modeling of complex practical
problems usually have exponential computational complexity. Accordingly, exact methods cannot
solve such problems of sufficiently large dimension within an acceptable time. In such cases, heuristic
combinatorial optimization methods are widely applied to the models, such as genetic algorithms, the
ant colony method, the tabu search method, and the branch and bound method etc. These methods
allow finding solutions to complex combinatorial problems that are close enough to the optimal ones.

Mathematical modeling of complex systems such as transportation networks, information systems,
energy systems, and logistics often involves choosing from a large but finite number of options, making
such models natural candidates for attacking by combinatorial optimization approaches.

Thus, mathematical modeling and combinatorial optimization complement each other: mathematical
modeling provides tools for adequately describing real-world problems. In turn, combinatorial opti-
mization provides methods for finding optimal solutions in discrete spaces of options. This combination
is key to solving many practical problems in economics, engineering, logistics, information technology,
and complex systems [6, 21].

This paper examines the real-world problem of optimal selection of information system software
parameters. To solve this problem, a multi-objective combinatorial optimization model on permutation
configurations is proposed, along with a two-stage solution method that combines two well-known
methods: linear convolution and combinatorial clipping. The study is structured as follows: the
introduction is dedicated to an overview of the paper topic, while the second chapter presents the
basic concepts and definitions used to construct two mathematical models of applied problems and
the proposed method of their solving. The third and fourth sections are devoted to the formulation
of these applied problems and their formalization as combinatorial optimization problems. The last
sections provide an outline of the proposed method for solving the problem and an illustrative numerical



example.

2. Prerequisites

The concept of configuration was introduced by C.Berge [22] with the aim of creating a formal and
rigorous structure for defining combinatorial objects, as well as for solving problems associated with
the accumulation of verbal descriptions as the complexity of these objects increases. Such formalization
helps to simplify the study of combinatorial structures by reducing ambiguity in their definitions.
The properties of Euclidean combinatorial configurations (e-configurations) as a separate subclass
of configurations and the sets they form are discussed in detail in many works, such as [13, 20, 23].
e-configurations play an important role in combinatorial geometry and optimization.

Let the set 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑚} be given, 𝐴 = {𝑎1, 𝑎2, .., 𝑎𝑛} be a finite set, and 𝜒 : 𝐵 → 𝐴 be the
mapping associating a single element 𝑎 ∈ 𝐴 with each element 𝑏 ∈ 𝐵, i.e. 𝑎 = 𝜒(𝑏). According to [22],
a configuration is a mapping 𝜒 : 𝐵 → 𝐴 that satisfies certain constraints Λ.

Given the finiteness of sets 𝐴 and 𝐵, a configuration is called combinatorial configuration
(c-configuration). As a result of mapping 𝜒 : 𝐵 → 𝐴 we get an ordered sequence 𝜋 of 𝐴-elements:

𝜋 =

(︂
𝑏1 𝑏2 ... 𝑏𝑚
𝑎𝑗1 𝑎𝑗2 ... 𝑎𝑗𝑚

)︂
= [𝑎𝑗1 , 𝑎𝑗2 , ..., 𝑎𝑗𝑚 ] ,

where 𝑗𝑖 ∈ 𝐽𝑛, 𝑖 ∈ 𝐽𝑚 (𝐽𝑚 = {1, 2, ...,𝑚}). Further, we will use the later notation
𝜋 = [𝑎𝑗1 , 𝑎𝑗2 , ..., 𝑎𝑗𝑚 ].

In most cases, the set 𝐵 can be unified, meaning that the elements of the set can be replaced by their
ordinal numbers. By setting the bijective mapping between 𝐵 and 𝐽𝑚, we obtain the transformation of
the mapping into

𝜑 : 𝐽𝑚 → 𝐴, (1)

where 𝐽𝑚 is called a numbering set. Note that the configuration elements 𝜋 do not change, i.e.

𝜋 =

(︂
𝑏1 𝑏2 ... 𝑏𝑚
𝑎𝑗1 𝑎𝑗2 ... 𝑎𝑗𝑚

)︂
=

(︂
1 2 ... 𝑚
𝑎𝑗1 𝑎𝑗2 ... 𝑎𝑗𝑚

)︂
= [𝑎𝑗1 , 𝑎𝑗2 , ..., 𝑎𝑗𝑚 ] (2)

Suppose, elements in 𝐴 are strictly ordered, namely, 𝑎𝑖 ≺ 𝑎𝑖+1, 𝑖 ∈ 𝐽𝑛−1. A combinatorial configura-
tion can be represented by a tuple [13]:

⟨𝜑,𝐴, Λ⟩ , (3)

where 𝜑 is the mapping (1), which satisfies a set of constraints Λ, 𝐴 is a resulting set with strictly
ordered elements.

This transformation redefines elements in terms of their ordinal positions, allowing for a more
structured and systematic analysis of combinatorial configurations. Specifically, this approach simplifies
the representation of configurations by using a standard numerical indexation instead of arbitrary
elements.

Let 𝐴* = {𝛼1, 𝛼2, .., 𝛼𝑛} be a resulting set in the formation of the configuration (3) set consisting of
real vectors of the same dimension 𝑘, i.e.

𝛼𝑗 = (𝑎1𝑗 , 𝑎2𝑗 , ..., 𝑎𝑘𝑗)
⊤ ∈ R𝑘, 𝑗 ∈ 𝐽𝑛,

while Λ be a set of constraints allowing singling out the required configuration. Then, according to (2),
𝜋 = [𝛼𝑗1 , 𝛼𝑗2 , ..., 𝛼𝑗𝑚 ].

We will assign a vector to each configuration in a one-to-one correspondence 𝜋 = [𝛼𝑗1 , 𝛼𝑗2 , ..., 𝛼𝑗𝑚 ]

𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑁 ) ∈ R𝑁 , 𝑁 = 𝑘 ·𝑚 (4)

whose components are an ordered set of elements of a multiset

̃︀𝐴(𝑥) = {︁
𝑎1𝑗1 , 𝑎1𝑗2 , ..., 𝑎1𝑗𝑚 , 𝑎2𝑗1 , 𝑎2𝑗2 , ..., 𝑎2𝑗𝑚 , 𝑎𝑘𝑗1 , 𝑎𝑘𝑗2 , ..., 𝑎𝑘𝑗𝑚

}︁



thus establishing a bijective mapping such that

𝑥 = 𝜓 (𝜋) , 𝜋 = 𝜓−1(𝑥). (5)

An Euclidean combinatorial configuration (e-configuration) is called mapping 𝜓 : (𝜑, 𝐴*, Θ) → R𝑁 ,
where 𝜑 : 𝐽𝑚 → 𝐴*,𝐴* is a resulting set of the form (3), Θ is a collection of constraints on the mappings
𝜑 and 𝜓.

Thus, an e-configuration is defined as a mapping of a combinatorial configuration (2) into the
Euclidean space R𝑁 . This mapping 𝜑, 𝜓 assigns specific positions to elements of the configuration
in the Euclidean space, producing a vector 𝑥 ∈ R𝑁 that represents the configuration geometrically.
The vector 𝑥 given by formula (4). The set ̃︀𝐴 of vectors induced by this mapping is referred to as the
inducing multiset of the Euclidean combinatorial configuration 𝑥. This concept allows combinatorial
structures to be studied using the tools of Euclidean geometry, which facilitates a more accurate analysis
of their properties and interrelationships.

Let
𝐸 =

{︀
𝑥 ∈ R𝑁 : 𝑥 satisfies (5)

}︀
. (6)

A set 𝑋 = 𝐸𝑚𝑘(𝐴̃) ⊆ R𝑛 of the form (6) is called a set of e-configurations of multipermutations
(permutations) if an inducing multiset of each its elements coinsides with 𝐴̃, the multiset inducing the
set 𝑋 , i.e. ∀𝑥 ∈ 𝑋 𝐴 (𝑥) = 𝐴̃. Here and further, 𝑘 is the number of different elements in 𝐴̃.

A set𝑋 = 𝐸𝑚
𝑙𝑘 (𝐴̃) ⊆ R𝑛 of the form (6) is called a set of e-configurations of partial multipermutations

(partial permutations) if an inducing multiset of each its elements is a proper subset of the multiset 𝐴̃
inducing the set 𝑋 , i.e. ∀𝑥 ∈ 𝑋 𝐴̃ (𝑥) ⊂ 𝐴̃. Here, 𝑙 > 𝑛.

Without loss of generality, we can assume that 𝐴̃ is ordered, i.e.

𝐴̃ = {𝑎̃1, ..., 𝑎̃𝑛} : 𝑎̃1 ≤ ... ≤ 𝑎̃𝑛.

In [13], it is shown that the convex hull of a set 𝐸𝑛𝑘 of e-configurations of multipermutations
(multipermutation e-configurations) is a multipermutohedron Π𝑛𝑘(𝐴̃) = 𝑐𝑜𝑛𝑣𝐸𝑛𝑘(𝐴̃), whose vertex
set coincides with the set of permutations, i.e. 𝑣𝑒𝑟𝑡Π𝑛𝑘(𝐴̃) = 𝐸𝑛𝑘(𝐴̃).

Theorem 1. [24] The multipermutohedron Π𝑛𝑘(𝐴̃) is given by linear constraints:∑︀
𝑖∈𝐼 𝑥𝑖 ≤ 𝑆|𝐼|, 𝐼 ⊂ 𝐽𝑛, (7)∑︀𝑛

𝑖=1 𝑥𝑖 = 𝑆𝑛, (8)

where

𝑆𝑗 =

𝑗∑︁
𝑖=1

𝑎̃𝑛−𝑖+1, 𝑗 ∈ 𝐽𝑛.

Theorem 2. [25] If the point 𝑥 ∈ R𝑛 satisfies the constraints (8),

𝑥1 ≤ . . . ≤ 𝑥𝑛; (9)∑︀𝑗
𝑖=1 𝑥𝑛−𝑖+1 ≤ 𝑆𝑗 , 𝑗 ∈ 𝐽𝑛−1, (10)

then 𝑥 ∈ Π𝑛𝑘

(︁
𝐴̃
)︁

.

Theorem states that to check the condition 𝑥 ∈ Π𝑛𝑘

(︁
𝐴̃
)︁

for an arbitrary point in Euclidean space, it
is sufficient to check just 𝑛 constraints of the polytope out of 2𝑛 − 1.

Other properties of the polytopeΠ𝑛𝑘(𝐴̃) and its generalization, called the generalized permutohedron,
can be found in the works [26, 27, 28] and a compact analytic description of a multipermutohedron is
presented in [29].



Suppose that functions 𝑓𝑖 : 𝑋 → R1, 𝑖 ∈ 𝐽𝑙 are components of the optimality criterion 𝐹 (𝑥) =
(𝑓1 (𝑥) , ..., 𝑓𝑙 (𝑥)) in the following multi-criteria optimization problem: find a vector 𝑥 such that

𝐹 (𝑥) = (𝑓1 (𝑥) , ..., 𝑓𝑙 (𝑥)) → 𝑒𝑥𝑡𝑟, (11)

𝑥 ∈ 𝐷 ⊆ 𝑋,

where 𝑋 is the domain of objective functions, while 𝐷 ⊆ 𝑋 is the feasible domain singled out from 𝑋
by the constraints Λ.

Problem (11) is a problem of multiobjective Euclidean combinatorial optimization (multicriteria Eu-
clidean combinatorial optimization problem, MOCOP). If 𝐷 = 𝑋 , this is an unconstrained optimization
problem over 𝑋 , otherwise it is constraint ones.

Let all components of the vector criterion be linear functions, i.e.

𝑓𝑖 (𝑥) = 𝑐⊤𝑖 𝑥, 𝑖 ∈ 𝐽𝑙, (12)

and 𝐷 is singled out from 𝑋 by linear constraints 𝐴𝑥 ≤ 𝑏, i.e.

𝐷 = {𝑥 ∈ 𝑋 : 𝐴𝑥 ≤ 𝑏}. (13)

Now, the MOCOP becomes: find a vector 𝑥 such that

𝑓𝑖 (𝑥) = 𝑐⊤𝑖 𝑥→ 𝑒𝑥𝑡𝑟, 𝑖 ∈ 𝐽𝑙, (14)

subject to constraints:

𝐴𝑥 ≤ 𝑏, (15)

𝑥 ∈ 𝑋. (16)

Problem (11), (14)-(16) is a linear MOCOP (LMOCOP). Note that without limiting accuracy, it can be
assumed that all LMOCOP criteria are maximization criteria.

If 𝑙 = 1, LMOCOP is degenerates into a linear single-objective Euclidean combinatorial optimization
problem LCOP:

𝑓1 (𝑥) = 𝑐⊤1 𝑥→ 𝑒𝑥𝑡𝑟,

subject to constraints (15), (16).
Among LMOCOP, we will focus on problems, where

extr=max, 𝑋 = 𝐸𝑛𝑘(𝐴̃) (17)

i.e. on linear multiobjective permutation-based optimization problems further referred to as 𝑍 (𝐹,𝐷),
where 𝑋 satisfies (17) and 𝐷 is given by (13). A single-objective analogue of LMOCOP is denoted as
𝑍 ′ (𝑓,𝐷).

An unconstrained problem 𝑍 ′ (𝑓,𝐷) can be solved easily in polynomial time [30], whereas the
presence of additional constraints, i.e., the transition to a constrained optimization problem, significantly
complicates its solution.

In the next section, we present a formulation of an applied problem enabling a formalization as
𝑍 (𝐹,𝐷), where 𝐷 ⊂ 𝑋 .

3. Problem statement

One of the fundamental principles of modern intelligent information system design is modularity.
Modularity significantly improves the efficiency of managing various stages of the software life cycle, in-
cluding the development, implementation, maintenance, and advancement of software and mathematical
components for computer systems.



The modular approach involves creating software in the form of a set of separate interacting compo-
nents called modules. Each module is designed to perform a specific function and can be developed,
tested, and updated independently of the others. This architectural strategy facilitates parallel develop-
ment and simplifies future modifications and updates to the system, ensuring its scalability and ease of
maintenance.

A critical issue arises in modular software development, which is the selection and optimal config-
uration of modules at the design stage. In particular, this concerns the problem of optimal program
composition when the overall software system consists of several modules, while several software
implementation options are available for some modules. These options may differ in functionality,
computational efficiency, memory consumption, or compatibility with hardware resources.

Formally, the problem of module selection can be viewed as a combinatorial optimization problem,
the goal of which is to select the optimal subset and configuration of modules to optimize certain criteria,
such as minimizing execution time, minimizing memory usage, maximizing reliability, or achieving a
given level of economic efficiency, taking into account technical constraints.

3.1. Problem 1 statement and model

Let us consider the problem of ordering modules and selecting a way of their implementation when
developing software. Specifically, this is the task of optimally assembling a program consisting of
several modules, some of which can be implemented on a computer in different ways.

At the software development stage, the program can be represented as 𝑛 separate interconnected
blocks (modules, procedures, programs, segments). For each block 𝑗, there are 𝑎𝑗 possible imple-
mentation options. Then a vector of variables 𝑥 = (𝑥1, ..., 𝑥𝑛) representing a plan for implemented
options will be an element of a set 𝐸𝑛𝑘(𝒜) of multipermutation e-configurations induced by a multiset
𝒜 = {𝑎1, ..., 𝑎𝑛} having 𝑘 distinct elements. Each block is characterized by the execution time 𝑡𝑗(𝑥𝑗),
the amount of memory occupied 𝑚𝑗(𝑥𝑗), and the required total memory 𝑤𝑗(𝑥𝑗). The required total
memory includes the total memory for the executable code, constants, arrays, and additional overhead.
The goal is to select a variant for each program block such that the program terminates in a minimum
time 𝑇 , while not exceeding the allocated resources.

Let us formulate the problem as a mathematical model of combinatorial optimization with two
minimization criteria.

Mathematical formulation of the problem: find a vector 𝑥 = (𝑥1, ..., 𝑥𝑛) such that

𝑇 =
𝑛∑︁

𝑗=1

𝑡𝑗(𝑥𝑗) → min,𝑀 =
𝑛∑︁

𝑗=1

𝑚𝑗(𝑥𝑗) → min,

subject to the constraint
∑︀𝑛

𝑗=1 𝑣𝑗(𝑥𝑗)+ max
1≤𝑗≤𝑛

𝑤𝑗(𝑥𝑗) ≤ 𝑉 , where 𝑉 is the amount of memory allocated

for the optimizing program.
As can be seen in this problem, the search domain is a set, and the problem contains two objective

functions and one constraint, i.e., overall it belongs to class MOCOP.
A linear version of it is formed if

∃𝑡𝑗 , 𝑣𝑗 , 𝑤𝑗 > 0 : 𝑡𝑗(𝑥𝑗) = 𝑡𝑗𝑥𝑗 , 𝑣𝑗(𝑥𝑗) = 𝑣𝑗𝑥𝑗 , 𝑤𝑗(𝑥𝑗) = 𝑤𝑗𝑥𝑗 , 𝑗 ∈ 𝐽𝑛.

Then the objective and constraints becomes

𝑇 =
∑︀𝑛

𝑗=1 𝑡𝑗𝑥𝑗 → min,

𝑀 =
∑︀𝑛

𝑗=1 𝑣𝑗𝑥𝑗 → min,∑︀𝑛
𝑗=1 𝑣𝑗𝑥𝑗 + max

1≤𝑗≤𝑛
𝑤𝑗𝑥𝑗 ≤ 𝑉. (18)

𝑥 ∈ 𝐸𝑛𝑘(𝒜).



The constraint is still nonlinear but it is transformed into a linear one after introducing additional
variables 𝑦 for representing max

1≤𝑗≤𝑛
𝑤𝑗𝑥𝑗 . Respectively, denoting 𝑦 = max

1≤𝑗≤𝑛
𝑤𝑗𝑥𝑗 , we can rewrite (18) as

a collection of linear constraints: ∑︀𝑛
𝑗=1 𝑣𝑗𝑥𝑗 + 𝑦 ≤ 𝑉,

𝑤𝑗𝑥𝑗 ≤ 𝑦, 𝑗 ∈ 𝐽𝑛.

Now, we came to a MOCOP with combinatorial variable vector 𝑥 and discrete variable 𝑦.

3.1.1. Example

Let us consider a program consisting of three modules that can be implemented in different ways. Let
us denote these modules as 𝐴, 𝐵, and 𝐶 . Module 𝐴 allows two possible implementations, which are
represented as permutations over the set 𝐴′ = {0, 1}. Module 𝐵 allows three possible implementations,
described by permutations from the set 𝐵′ = {0, 0, 1}. Similarly, module 𝐶 allows two possible
implementations, represented as permutations over the set 𝐴′. Thus, the overall configuration of the
program can be described by a set of polypermutations, i.e., the Cartesian product of several sets of
permutations.

For convenience, we represent the solution variables as a vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7),
which uniquely encodes the selected procedures for all modules. For each 𝑥𝑗 , the execution time 𝑡𝑗 ,
memory usage, constants and arrays 𝑣𝑗 , and the required total memory 𝑤𝑗 are determined. Thus, this
formulation corresponds to the mathematical model described above.

3.2. Problem 2 statement and model

Arrays of information in computer memory can be allocated across different levels of hierarchy, each
containing one or more memory devices (MDs) of similar or distinct types with comparable speeds.
The key parameters of each MD are its capacity and transfer speed. Typically, higher-level devices offer
greater speed but smaller capacity than lower-level ones. The following model describes the optimal
allocation of data arrays across memory devices to balance these characteristics effectively.

We have 𝑛 memory devices (𝑀𝐷1,𝑀𝐷2, . . . ,𝑀𝐷𝑛) each characterized by its capacity 𝐶𝑖 (MB),
transfer speed 𝑣𝑖 (MB/s), and user activity weight per MB 𝑟𝑖. There are 𝑛 data arrays with sizes
𝑎1, 𝑎2, . . . , 𝑎𝑛 (MB). Each array must be placed on exactly one memory device without splitting. The
goal is to design an assignment plan minimizing total processing time and maximizing total user activity,
subject to per-device capacity constraints.

Let us introduce necessary notations:

• 𝒜 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} is a multiset of array sizes;
• 𝑘 is number of distinct elements in 𝒜;
• 𝐸𝑛,𝑘(𝒜) is a set of all multi)permutation e-configurations induced by 𝒜;
• 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐸𝑛,𝑘(𝒜) is a variable vector of sizes of assigned arrays, where 𝑥𝑖 is size of

array placed on 𝑀𝐷𝑖;
• 𝑇 is total processing time (seconds);
• 𝑅 is total activity (activity units).

Since 1/𝑣𝑖 (s/MB) is a transfer time per unit of data on 𝑀𝐷𝑖, Model 2 has the form of:

𝑇 =
∑︀𝑛

𝑖=1
𝑥𝑖
𝑣𝑖

→ min

𝑅 =
∑︀𝑛

𝑖=1 𝑟𝑖𝑥𝑖 → max

subject to:

𝑥𝑖 ≤ 𝐶𝑖, 𝑖 ∈ 𝐽𝑛,



𝑥 ∈ 𝐸𝑛𝑘(𝒜).

This model is a linear bi-objective constrained Euclidean combinatorial optimization problem over
the multipermutation set 𝐸𝑛𝑘(𝒜), i.e. it is a LMOCOP.

Model 2 reflects practical IT planning trade-offs in hierarchical or distributed storage: reducing
input/output latency while increasing activity-based performance within strict capacity limits. It
applies to caching, in-memory databases, edge computing, and hybrid storage systems, providing a
rigorous mathematical basis for forming Pareto-efficient data placement under constraints having wide
applications in intelligent information systems.

4. Solution Techniques

For solving an LMOCOP, we propose first to apply methods of multi-criteria optimization, reducing it to
a standard single-objective optimization and then solve the resulting problem using the combinatorial
optimization method. Thus, we divide the solving process into two stages and propose a two-stage
approach to solving LMOCOP.

Since Problem 1 and Problem 2 are problems of multi-objective optimization on e-configuration sets,
when they are solved, it makes sense combining multi-criteria methods with combinatorial optimization
approaches. Such a combination makes it possible obtaining a feasible e-configuration as a solution
while ensuring effectiveness of this solution for each of multiple criteria.

Multi-criteria (multi-objective) optimization problems aims to simultaneously optimize several objec-
tives that may be in conflict. There are several quite different approaches to solving such problemss
[31, 32, 33].

The main multi-criteria optimization approaches can be divided into the following groups:

1. Methods of reduction to a single-criterion problem (convolution methods): all criteria are com-
bined into one function by their linear weighting. Determining weighting coefficients for each
criterion and reflecting their relative importance are necessary. The result is a one-criteria
optimization problem.

2. The approximation method of all partial criteria to the ideal point. This method searches for
solutions, each of which cannot be improved by one criterion without worsening another. Such
a set of solutions is called Pareto-efficient. It allows you to explore all the compromise options
between the criteria.

3. Heuristic and metaheuristic methods: these algorithms are used for the evolutionary search of
optimal solutions. They search for several solutions simultaneously, making it possible to find a
set of Pareto-optimal solutions efficiently.

4. Hierarchical optimization methods.
a) Analytic Hierarchy Process (AHP): involves decomposition of the problem into hierarchical

levels (goal, criteria, alternatives). The criteria are compared in pairs; based on this, a priority
matrix is built to determine the best solution.

b) Analytic Network Method (ANP): This is a generalization of the AHP method that considers
the relationships between criteria at different levels of the hierarchy.

Since the introduced models include combinatorial constraints, in combination with a vector op-
timization method, it is necessary to apply a combinatorial optimization approach to find a feasible
solution.

Therefore, below most common methods of combinatorial optimization are outlined:

1. Branch and Bound method involves dividing the problem into sub-problems (branches) and
cutting off those that cannot lead to an optimal solution.

2. Dynamic programming is suitable for solving problems that can be broken down into interdepen-
dent, repeating subproblems.



3. Genetic algorithms are used to find a "good enough" solution in large search spaces where an
exact search is too computationally complex. At the same time, such algorithms can also be
useful for problems where it is necessary to optimize several criteria simultaneously or where
the search space is very large.

4. Simulated Annealing is commonly applied to problems where the search space is large, while the
method allows avoiding getting stuck in local minima.

5. Greedy Algorithms is based on achieving locally optimal solution at each step, while hoping
hoping that, expectedly, these solution sequence converges to a globally optimal solution.

Based on the analysis of methods and properties of combinatorial configurations, and continuing
research and developing the results of works [13, 16, 19], we will formulate a two-stage approach to
solving LMOCOP, which is the formulated above practical problem of software design for information
systems.

The proposed approach to solving the problem is based on the linear convolution (aggregation) of
the partial criteria and further reduction of it’s solution search to solving a series of single-objective
combinatorial optimization problems. We present an approach to method for solving the single-objective
problems, which is based on two continuous relaxation and cutting planes.

4.1. Combinatorial Optimization Algorithm

Input: a constraint linear permutation-based problem𝑍 (𝐹,𝐺) for a certain𝐺 = 𝐸𝑛𝑘(𝐴̃) and additional
linear constraints are given by (15) (see (17)).

4.1.1. Multiobjective problem transformation

Let us reduce the multi-objective combinatorial optimization problem 𝑍 (𝐹,𝐷) to a single-objective
LCOP using linear convolution. For that, we set weighting coefficients 𝜆𝑗 ∈ R1

>0, 𝑗 ∈ 𝐽𝑙,
∑︀𝑙

𝑖=1 𝜆𝑖 = 1,
that express the degree of importance of each criterion and move to maximizing the linear combination
of the objective functions. That is, we come to the problem:

𝑍 (𝐹,𝐷) → 𝑍 ′ (𝑓,𝐷) = {𝑓 (𝑥) =
𝑙∑︁

𝑖=1

𝜆𝑖𝑐
⊤
𝑖 𝑥→ max, 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑋}.

4.1.2. Linear permutation-based optimization

Next, we solve the single-objective optimization problem 𝑍 ′ (𝑓,𝐷).
First, we solve a continuous relaxation of the problem on the polytope 𝑃 = 𝑐𝑜𝑛𝑣𝐷. An issue with

its solution by conventional linear programming methods is that the system of constraints (7), (8),
generally, contains an exponential on 𝑛 number of constraints, so all of them cannot be involved in the
solving problem if 𝑛 is quite large. Therefore, it is necessary to develop specific methods that use the
specifics of the problem and properties of the objective function domain 𝑋 and feasible domain 𝐷.

This paper proposes an iterative approach to solving 𝑍 ′ (𝑓,𝐷) by solving a series of relaxation linear
optimization problems on nested polyhedra. The approach is essentially a cutting-plain method utilizing
the fact that the set 𝑋 = 𝐸𝑛𝑘(𝐴̃) is vertex-located (VLS), i.e. 𝑋 = 𝑣𝑒𝑟𝑡(𝑐𝑜𝑛𝑣𝑋) and is inscribed into a
hypersphere 𝑆 centered at a = (𝑎, ..., 𝑎), where 𝑎 = 1

𝑛

∑︀𝑛
𝑖=1 𝑎̃𝑖. Polyhedral relaxation of 𝑍 ′ (𝑓,𝐷) is

the problem 𝑍 ′ (𝑓, 𝑃 ), where 𝑃 = 𝑐𝑜𝑛𝑣𝐷 = {𝑥 ∈ Π𝑛𝑘(𝐴̃) : 𝐴𝑥 ≤ 𝑏}.
Theorem 2 underlies the Sequential Constraint Connection Method (SCCM) [25] of constrained linear

optimization on the multipermutohedron, i.e. for solving 𝑍 ′ (𝑓, 𝑃 ). Briefly, at the initial iteration, the
relaxed problem is solved on the superset of the feasible domain (7), (8), (15), 𝑥 ∈ [𝑎̃1, 𝑎̃𝑛]

𝑛. Then the
constraints (9) of Theorem 2 are checked for the obtained point 𝑥. If they hold, the process terminates
with the conclusion 𝑥 ∈ Π𝑛𝑘

(︁
𝐴̃
)︁

, respectively, 𝑥 is an optimal solution. If (9) holds, while (10) violates,

the conclusion 𝑥 /∈ Π𝑛𝑘

(︁
𝐴̃
)︁

is made. If (9) violates, the transition from 𝑥 to a point 𝑦 is made by



rearranging 𝑥-coordinates such that 𝑦1 ≤ . . . ≤ 𝑦𝑛. If 𝑦 satisfies (10), i.e.,
∑︀𝑗

𝑖=1 𝑦𝑛−𝑖+1 ≤ 𝑆𝑗 , 𝑗 ∈ 𝐽𝑛−1,

then the conclusion 𝑥, 𝑦 ∈ Π𝑛𝑘

(︁
𝐴̃
)︁

is made. Otherwise, the process continues iteratively by adding to
the previous constraints one or all of the detected constraints that are violated at 𝑥 (𝑦) and solving the
obtained linear optimization problem until conclusion 𝑥, 𝑦 /∈ Π𝑛𝑘

(︁
𝐴̃
)︁

or 𝑥, 𝑦 ∈ Π𝑛𝑘

(︁
𝐴̃
)︁

according
to Theorem 2.

Let 𝑥* and 𝑦* be the optimal solutions to the problems 𝑍 ′ (𝑓,𝐷) and 𝑍 ′ (𝑓,𝐷),respectively. The
result of applying SCCM is 𝑦*. If 𝑦* ∈ 𝑋 , then the problem 𝑍 ′ (𝑓,𝐷) has been solved, namely, 𝑦*.
Otherwise, the cutting-plain method (CPM) is applied, aiming to cut 𝑦* while leaving all points of 𝐷
feasible. SCCM and CPM iteratively until we get a point of 𝐷 as an output of SCCM.

The paper [34] proposes the Polyhedral-Surface Cutting Plane Method (PSCPM) of linear optimization
over a vertex-located set. PSCPM is based on representing a VLS as an intersection of its convex hull
and a strictly convex surface. Adapting PSCPM to 𝑍 ′ (𝑓,𝐷), a VLS is 𝐷, its convex hull is a polytope
𝑃 , while the hypersphere 𝑆 is the strictly convex surface. Let us outline PSCPM:

• First, a polyhedral relaxation is solved on 𝑃 that is 𝑍 ′ (𝑓, 𝑃 ), and its solution 𝑥 is verified on
belongingness to 𝑆.

• If it holds, the original problem 𝑍 ′ (𝑓,𝐷) has been solved, and 𝑥 is its optimal solution.
• Otherwise, a spherical relaxation 𝑍 ′ (𝑓,𝐷) is considered, and a cut of 𝑥 is formed utilizing a

polyhedral cone with apex at 𝑥 given by active 𝑃 -constraints at the point and an intersection of
its extreme rays with the hypersphere 𝑆.

This process continues iteratively until the termination condition is met.
Thus, this section presents a two-stage approach to solving the problem 𝑍 (𝐹,𝐷) that combines the

linear convolution method (stage 1) with PSCPM and SCCM.

5. Numerical example

An illustrative example of solving the following problem using the algorithm proposed above is pre-
sented.
Problem statement. Determine 𝑥 ∈ 𝑋 , where 𝑋 is a set of permutations induced by a set

𝐴̃ = 𝐽8 = {1, 2, 3, 4, 5, 6, 7, 8}, such that:

𝑓1 (𝑥) = 6𝑥1 + 13𝑥2 + 15𝑥3 + 3𝑥4 + 10𝑥5 + 26𝑥6 + 29𝑥7 + 30𝑥8 → max,

𝑓2 (𝑥) = 25𝑥1 + 13𝑥2 + 11𝑥3 + 6𝑥4 + 15𝑥5 + 31𝑥6 + 13𝑥7 + 32𝑥8 → max,

𝑓3 (𝑥) = 10𝑥1 + 4𝑥2 + 19𝑥3 + 17𝑥4 + 11𝑥5 + 17𝑥6 + 12𝑥7 + 8𝑥8 → max,

subject to constraints:

5𝑥1 + 6𝑥2 + 8𝑥3 + 𝑥4 + 16𝑥5 + 9𝑥6 + 7𝑥7 + 11𝑥8 ≤ 225,

𝑥1 + 12𝑥2 + 11𝑥3 + 17𝑥4 + 3𝑥5 + 19𝑥6 + 45𝑥7 + 45𝑥8 ≤ 487.
(19)

Clearly, this problem is LMOCOP since several objectives are present, and both objective and con-
straints are linear, while the objective function domain is a permutation configuration set. Let us first
represent this problem as 𝑍 (𝐹,𝐷):

• the number of objectives is 𝑙 = 3;
• 𝑛 = 𝐴̃,
• no repetitions in 𝐴̃, hence 𝑘 = 𝑛 = 8,
• 𝑋 = 𝐸88(𝐴̃),
• the constraint matrix and free terms vector:

𝐴 =

(︂
5 6 8 1 16 9 7 11
1 12 11 17 3 19 45 45

)︂
, 𝑏 =

(︂
225
487

)︂
.



Table 1
The optimal values of the individual objective functions

Function Maximum Value

𝑓1 507
𝑓2 659
𝑓3 480

Table 2
Computational results

Weighting coefficients Values 𝑥𝑠𝑜𝑙 Values (𝑓1, 𝑓2, 𝑓3) Values (Δ𝑓1,Δ𝑓2,Δ𝑓3)

𝜆1 = 0, 35; 𝜆2 = 0, 3; 𝜆3 = 0, 35 (7, 4, 6, 8, 1, 5, 2, 3) (491,633,480) (16,26,0)
𝜆1 = 0, 2; 𝜆2 = 0, 2; 𝜆3 = 0, 6 (7, 6, 3, 8, 1, 4, 2, 5) (507,695,430) (0,0,50)
𝜆1 = 0, 4; 𝜆2 = 0, 3; 𝜆3 = 0, 3 (7, 6, 4, 8, 1, 3, 2, 5) (497,639,432) (10,20,48)

• the feasible domain 𝐷 = {𝑥 ∈ 𝑋 : 𝑥 satisfies (19)}.

Solving process outline At initial step, the vector of the ideal solution is constructed. For this purpose,
the values of the functions 𝑓1, 𝑓2 and 𝑓3 are maximized over the feasible set 𝐷. For that, we applied
the algorithm given in Sec. 4.1 and solve the problems 𝑍 ′ (𝑓1, 𝐷)− 𝑍 ′ (𝑓3, 𝐷). In order to solve these
scalar optimization problems, the simplex method is employed. Consequently, the following optimal
solutions are obtained Table 1.

Thus, we have the vector of the ideal solution 𝑓* = (507, 659, 480). To solve the posed problem,
it is necessary to perform a search for the Pareto-optimal solution. For this purpose, the aggregation
method is employed, using different weighting coefficients for the objective functions and comparing
the resulting outcomes.

Thus, we reduce the problem to a scalar combinatorial optimization problem. Weighting coefficients
𝜆1, 𝜆2, 𝜆3 were applied. A scalar function𝐹 = 𝜆1𝑓1+𝜆2𝑓2+𝜆3𝑓3 was obtained. For the computations,
the simplex method is employed. The results of the calculations are presented in a table Table 2.

All three proposed solutions belong to the Pareto-optimal set. However, when comparing the second
and third solutions, the improvement in function 𝑓3 in the third solution is negligible, while the
deterioration in the values of functions 𝑓1, 𝑓2 is relatively significant. Therefore, from the perspective
of balancing the objectives, the second solution is the most evident choice. For the final decision, it
is advisable to involve the decision maker, who can take into account the priorities and preferences
among the criteria.

6. Bridging our models with ML and AI

The module selection problem (Model 1) and the program layout problem (Model 2) can be extended
to highly important tasks such as selecting and configuring layers, activation functions, connections,
and other neural network components under constraints such as inference time, accuracy, energy
consumption, etc.

7. Conclusion

The study investigates the problem of selecting and arranging software modules in intelligent informa-
tion systems, highlighting its formulation as a multiobjective combinatorial optimization problem. Two
mathematical models were proposed, each reflecting a crucial stage of the software lifecycle, namely,

• optimal selection of program modules with execution time and memory constraints,
• optimal allocation of arrays in hierarchical memory structures.



These problems were formalized as linear optimization problems in terms of Euclidean combinatorial
configurations, providing a unified mathematical framework for their analysis and solution.

The proposed two-stage approach, combining linear convolution of criteria with combinatorial
optimization, enables a reduction of complex multi-objective optimization problems to a sequence of
tractable single-objective continuous optimization problems, where surface and polyhedral relaxations
are combined. The case study confirmed the ability of the method to identify Pareto-optimal solutions.

Overall, the results demonstrates applicability of combinatorial optimization methods to the domain
of software engineering. Future work may focus on extending the approach to larger-scale systems and
other applied domains including machine learning and artificial intelligence.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT and Grammarly for grammar and
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