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Abstract
The  growing  complexity  of  aerospace  cyber-physical  systems  demands  rigorous  methods  to  ensure 
software correctness, reliability, and compliance with safety standards. Traditional verification techniques 
often fail to detect dimensional inconsistencies that can lead to critical failures. This paper presents a  
formal verification approach based on dimensional analysis, specifically tailored for aerospace software. 
The method employs mathematical models derived from the statistical characteristics of C/C++ source 
code to identify dimensional defects in computations, data flows, and control algorithms. The proposed 
approach provides several benefits: early compile-time detection of defects, reduced testing effort and 
duration,  cost  savings  through  the  elimination  of  latent  defects,  and  improved  software  reliability, 
robustness,  and  performance.  By  integrating  dimensional  analysis  with  formal  specification  and 
verification  frameworks,  the  method  enables  early  detection  of  inconsistencies  and  mitigates  defect 
propagation across system components. Case studies show that the method detects up to 90% (with an 
average of 66%) of incorrect uses of software variables and operations at both compile time and run time.  
This detection rate depends on the distribution of operations and dimensions in the C++ source files. The 
results demonstrate the method’s effectiveness in uncovering errors overlooked by conventional testing. 
Overall,  the  proposed  technique  serves  as  a  complementary  tool  for  aerospace  software  verification, 
enhancing quality assurance and supporting certification processes.
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1. Introduction

Aerospace  cyber-physical  systems  (CPS)  are  highly  integrated  environments  where  physical 
processes  such  as  flight  dynamics  are  tightly  coupled  with  computational  algorithms,  sensors,  
actuators, and control systems [1]. These systems are increasingly central to modern aerospace 
engineering,  improving  efficiency,  safety,  performance,  and  real-time  decision-making. 
Applications of aerospace CPS span autonomous aircraft, spacecraft and satellites, commercial and 
military aviation, and predictive maintenance. In these contexts, CPS enable autonomy, advanced 
flight control, digital twins, sensor fusion, and adaptive diagnostics [2].

Despite their advantages, aerospace CPS face several critical challenges. Real-time constraints 
demand processing of large volumes of sensor data with strict latency requirements, especially for 
navigation, flight control, and emergency response. Safety and reliability are paramount, as these 
systems are safety-critical and must be fault-tolerant and resilient to avoid catastrophic failures. 
Integration and testing also remain complex, requiring approaches such as model-based design 
(MBD)  to  ensure  subsystem  interoperability  [3].  Finally,  increasing  reliance  on  digital 
communication exposes aerospace CPS to cybersecurity threats,  necessitating robust protection 
mechanisms[4].

Addressing these challenges necessitates advanced verification methods. Classical approaches to 
software  verification,  including  Hoare’s  seminal  work  on  proving  compiler  correctness  [5], 
demonstrate  that  formal  verification  can  provide  guarantees  about  program  behavior  beyond 
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syntactic  correctness  [6].  Building  on  these  principles,  this  paper  explores  the  use  of  formal 
verification  [7]  based  on  dimensional  analysis (DA)  [8]  as  a  novel  approach  to  enhance  the 
reliability  and  safety  of  aerospace  CPS  software.  Prior  work  by  the  authors  [9]  [10]  has 
demonstrated the feasibility of applying DA to C/C++ code for detecting latent errors and ensuring 
physical consistency.

This paper explores the use of formal verification based on DA as a novel approach to improve 
the reliability and safety of aerospace CPS software.

2. The Formal Verification Method of CPS software

The proposed approach leverages natural software invariants, defined as the physical dimensions 
of variables corresponding to real-world quantities. By integrating these invariants into program 
specifications,  program expressions can be reformulated into a set  of  lemmas requiring formal 
proof.  This  process  enables  verification  of  both  dimensional  homogeneity  and  program 
conciseness.

As noted by Martínez-Rojas et al. [11], DA is a well-established methodology in physics and 
engineering, used to identify or validate relationships among physical quantities based on their 
dimensions. Within the International System of Units (SI) [12], each physical quantity is expressed 
as  a  combination  of  seven  base  dimensions:  length  (meter,  m),  time  (second,  s),  amount  of 
substance (mole,  mol),  electric current (ampere,  A),  temperature (kelvin, K),  luminous intensity 
(candela, cd), and mass (kilogram, kg) [13]. Derived units are defined as products of powers of base 
units, and when the numerical factor of such a product equals one, they are classified as coherent  
derived  units.  Together,  SI  base  and  coherent  derived  units  form  a  coherent  system,  where 
equations involving numerical values mirror the structure of the underlying physical relationships. 
This property ensures consistency and accuracy in computations involving physical  quantities,  
making DA a reliable foundation for software verification.

Some coherent derived units in the SI are assigned specific names and, together with the seven 
base units, form the foundation of the SI system. All other units are expressed as combinations of 
these. The central principle of DA is that physical laws must remain valid regardless of the units  
used. According to the rule of dimensional homogeneity, every physically meaningful equation 
must balance dimensions on both sides. This principle underpins the use of DA across physics and 
engineering.

Conventional software analysis tools primarily check syntax and semantics, but not the physical 
correctness of code. When program code is treated as a set of expressions involving variables, 
constants, and operations, DA can be integrated into the compilation or verification process. This 
enables the detection of mismatches in variable usage, inconsistent unit conversions, and incorrect 
dimensional  operations  directly  at  the  software  level.  By  embedding  dimensional  checks  into 
program  specifications,  aerospace  and  safety-critical  applications  can  benefit  from  early  error 
detection, reduced defect propagation, and improved reliability of C/C++ implementations [14].

The correctness of program expressions can be evaluated by analyzing the dimensionality of 
their values. When expressions preserve dimensional homogeneity, they are likely to represent 
physically meaningful relationships. Conversely, violations of homogeneity signal incorrect use of 
program variables or operations. Unlike conventional checks, DA can be applied not only to simple 
expressions but also to procedure and function calls,  enabling a broader validation of software 
behavior.

DA thus provides a systematic way to ensure the physical correctness of software code. By 
embedding physical  dimensions  into  program specifications,  it  becomes possible  to  verify  that 
computations remain consistent  with the physical  laws governing the modeled system. In this 
view, software can be regarded as a model of a physical process, and DA serves as a validation tool  
to confirm the model’s adherence to physical principles.



Incorporating DA into the software development and verification process enables the detection 
of errors caused by inconsistent or incorrect unit usage [15]. This contributes to the development 
of  safer,  more reliable,  and physically accurate software—particularly in safety-critical  domains 
such as aerospace cyber-physical systems.

A software system can be viewed as a hierarchy of interacting components. At the highest level,  
it is composed of subsystems; each subsystem consists of software units, and each unit is defined by 
a  set  of  operators.  Operators,  in  turn,  are  expressed  as  ordered  sequences  of  statements  or 
expressions.  This  hierarchical  structure  allows  systematic  verification  of  interactions  and 
operations across different levels of the system.

To establish dimensional homogeneity within the system, verification must proceed step by 
step: the homogeneity of the overall system depends on the homogeneity of its subsystems; each 
subsystem’s  homogeneity  depends  on  that  of  its  software  units;  and  unit-level  homogeneity 
requires the homogeneity of individual statements or expressions. This layered approach provides 
a structured pathway for verifying dimensional consistency throughout the code.

Within this framework,  we distinguish between two categories of  operations.  Multiplicative 
operations (*, /, etc.) generate new physical dimensions, while additive operations (+, −, =, <, ≤, >,  
≥, !=, etc.) act as checkpoints, enforcing dimensional homogeneity. When program variables are 
associated with specific physical dimensions, this property can be treated as a software invariant. 
Each additive operation then serves as a basis for generating lemmas, which collectively support  
the formal verification of dimensional correctness across the system.

DA enables verification of the physical dimensions of program variables, allowing the detection 
of  errors  caused  by  inconsistent  unit  usage,  incorrect  dimensional  relationships,  or  improper 
application of operations, variables, and procedures. Nonetheless, challenges arise when different 
quantities share the same dimensions. For example, moments of inertia and angular velocity both 
involve combinations of mass and length, yet represent fundamentally different physical concepts.  
Detecting defects in such cases requires careful analysis of expressions.

3. Software Defect Detection Models

Software defect detection models designed to identify errors, inconsistencies, and potential faults in 
software systems before deployment. These models aim to predict, locate, and prevent defects by 
analyzing code structure, execution patterns, or software behavior. 

Proposed  defect  detection  models  incorporate  probabilistic  methods  to  improve  predictive 
accuracy,  leveraging defect  data.  In  safety-critical  domains,  such as  aerospace  and automotive 
systems,  defect  detection  models  are  essential  for  ensuring  reliability  and  compliance  with 
dimensional homogeneity.

3.1. General Software Defect Detection Model

To simplify the analysis, we assume that each software statement may contain at most one defect,  
occurring with a probability of  Pdef. The model begins with the initial state labeled  “Software”, 

which branches into two possible outcomes:  “Software has a defect” with probability  Pdef,  and 

“Software does not have a defect” with probability 1−Pdef.
Decision trees provide a structured way to visualize sequences of decisions or events along with 

their probabilities and outcomes. In the context of software defect detection, they can be enhanced 
by incorporating  DA. By assigning physical dimensions as invariants to program variables, DA 
allows the detection of defects arising from inconsistent or incorrect use of units and operations. 
Each node in the decision tree can represent not only the presence or absence of a syntactic or 
semantic defect but also violations of dimensional homogeneity.

This combined approach enables early identification of errors that might remain undetected by 
conventional  testing.  For  example,  a  branch  could  represent  a  statement  where  a  variable’s  



dimensional type conflicts with an operation, triggering a defect detection alert. Figure 1 illustrates 
a  decision  tree  model  for  software  defect  detection  enhanced  with  dimensional  analysis, 
demonstrating  how  this  methodology  supports  systematic  verification  of  both  traditional  and 
physics-based software correctness. 

Figure 1: General software defect detection model.

Software has N software units.  In the state ‘Software Uniti has a defect’,  our focus shifts to 
detecting the defect. The model branches out into two possible outcomes: ‘Defect detected’ and 
‘Defect  not  detected’,  with  probabilities  of  PDD and  1−PDD,  respectively.  Let  us  define  that 

software units has equal  Pdef Here Pdef represents a probability of a software defect in the code. 
The conditional probability of software uniti defect detection defined as:

ηi=
Pdef

Pdef PDDi+Pdef(1−PDDi)
=PDDi .

(1)

The total conditional probability of software defect detection η=∑
i=1

N

PDDiωi=∑
i=1

N

ηiωi , where 

ωi is a weight of software uniti, e.g. ωi=
Si

∑
i=1

N

Si

, where Si is a size of software uniti and ∑
i=1

N

ωi=1.

We can extend the defect detection model to account for two types of defects - variable defects 
and operation defects—while still assuming that at most one defect occurs per software statement 
(see Figure 2).

A  variable defect arises when a program variable is used incorrectly, such as referencing the 
wrong variable or using one with an incompatible physical dimension or orientation. An operation 
defect occurs when an operator or function is applied incorrectly, for example, using the wrong 
arithmetic or logical operator within a software uniti.



By distinguishing these  defect  types,  the  model  provides  a  more  detailed  representation of 
potential  errors  in  software  statements,  enabling  targeted  detection  and  analysis.  Despite  the 
increased complexity, the assumption of a single defect per statement simplifies the probabilistic 
modeling, allowing the systematic application of decision tree methods and, when integrated with 
DA,  facilitates  the  detection  of  both  conventional  coding  errors  and  violations  of  physical 
correctness.

In this more complex model, the initial event state is ‘Software uniti.’ At the branching point, 
the model expands into two possible outcomes: ‘Variable’ and ‘Operation,’ with probabilities of  
Pvari and 1−Pvari, respectively which defined for every software uniti. The ‘Variable’ state has two 
potential outcomes at the next level: ‘Correct use of variable’ and ‘Incorrect use of variable’, with  
probabilities of 1−Pdef and Pdef, respectively. The ‘Incorrect use of variable’ state has two possible 
outcomes  at  the  next  level:  ‘Variable  defect  detected’  and  ‘Variable  defect  not  detected’,  with 
probabilities of PVDI and 1−PVDI , respectively. Here, PVDI represents the probability of detecting a 
variable defect in the uniti.

Figure 2: Complex software defect detection model.

In  addition to  the  ‘Variable’  state,  the model  also has  an ‘Operation’  state,  which has  two 
possible outcomes at the next level: ‘Correct use of operation’ and ‘Incorrect use of operation’, with 
probabilities of 1−Pdef and Pdef, respectively.

The ‘Incorrect use of operation’ state has two possible outcomes: ‘Operation defect detected’ 
and ‘Operation defect not detected’,  with probabilities of  PODi and 1−PODi, respectively. Here, 

PODi represents the probability of detecting an operation defect in the source code of software unit i. 
The conditional probability of a software defect in software uniti can be defined as follows:

ηi=
PVDD I

+PODDi
PVDDi+PVDNDi+PODDi+PODNDi

,

here PVDDi=PvariPdef PVDi, PODDi=(1−Pvari)Pdef PODi,
PVDNDi=PvariPdef(1−PVDi), PODNDi=(1−Pvari)Pdef(1−PODi)
and we have:

ηi=PvariPVDi+(1−Pvari)PODi (2)



As per Expression (2), for software uniti the conditional probability of software defect detection 
depends on the probability of the software variables used in the source code of software unit and  
the conditional probabilities of detecting defects (defects of operations and defects of variables). 

The total conditional probability of a software defect in software which includes N unit can be 

defined  as  follows:  η=∑
i=1

N

ηiωi=∑
i=1

N

(PvariPVDi+(1−Pvari)PODi)ωi , where  ωi is  a  weight  of 

software uniti ωi=
N vi+NOi

∑
k=1

N

(N vk+NOk)
,  

where N vi - number of variable used in software uniti, NOi - - number of operation used in software 

uniti, N  - total number of software units.
We can determine the value of  Pvari,  N vi,  NOi by analyzing the software code statically, i.e., 

without executing the code. However, to determine the values of PVDi and PODi, we would need to 
build additional software defect detection models.

3.2. Software Defect Detection Model for Incorrect Variable Usage.

The proposed model allows the detection of incorrect variable usage (see Figure 3).

Figure 3: Model for Detecting Incorrect Variable Usage in Software. 

This model has an initial state of ‘Software Variablei’ and is applied to each software unit. The 
initial state has two transitions  to states ‘OK’ and ‘Check Dimension’, with probabilities  1−Pdef 
and  Pdef,  respectively.  In  the  state  ‘Check  Dimension’,  we  can  evaluate  the  required  physical  
dimension of the variable using dimensional analysis.

If the actual physical dimension is equal to the required physical dimension, we cannot detect  
the software defect. However, if the dimensions differ, a software defect can be identified. In this  
case,  the  probabilities  are  Pdimi and  1−Pdimi,  where  Pdimi represents  the  probability  that  two 
randomly selected variables in software unit have the same physical dimension.

Let  us  define  the  conditional  probability  of  defect  detection  of  incorrect  use  of  a  program 
variable in the software uniti as follows:

PVDi=
PDDi

PDDi+PDNDi
.



Here PDDi=Pdef(1−Pdimi) and PDNDi=Pdef Pdimi, 

PVDi=1−Pdimi (3)

Let us consider a set of distinct software variables {var1 , ... , varNvi } and a set of diverse physical 

dimensions  {dim1 , ... , dimNdi },  where  N vi  represents  the  cardinality  of  set  {var i } and  N Di 

represents the cardinality of set  {dimi }. To depict  the  relationship between these variables and 

dimensions, we can make use of an nijk-matrix (4) which defined for every software i-unit:

dim1 dim2 dim3 dim4 dim5 dim6 dim7
… dimNd−1 dimNDi

(4)

var1 ni11 0 0 0 0 0 0 … 0 0

var2 ni21 0 0 0 0 0 0 … 0 0

var3 0 ni31 0 0 0 0 0 … 0 0

var4 0 0 ni 43 0 0 0 0 … 0 0

var5 0 0 0 ni54 0 0 0 … 0 0

var6 0 0 0 ni64 0 0 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

varNvi−1 0 0 0 0 0 0 0 … 0 ni , N vi−1 , N Di

varNvi 0 0 0 0 0 0 0 … 0 ni , N vi , N Di

e.g. ni11  - the total number usage of var1 which has physical dimension dim1
ni21 - the total number usage of var2 which has physical dimension dim1 etc.

The  equation for  the  total  number  of  usages  of  all  software  variables  with  dimension  j  in 
software unit i can be written as follows:

NVUsageij=∑
k=1

N vi

nikj. (5)

where  nikj represents the total number of usages of k-variable which has a  j-physical dimension 

which used in the i-unit; N vi  is the cardinality set of software variables in the i-unit. Equation (6) 
shows the total number of variable usages in the i-unit code:

NVARi=∑
k=1

N vi

∑
j=1

N Di

nikj. (6)

To define the probability of choosing l-variable and m-variable with the same dimensions, we 
can use the total number of usages of variables with the j-physical dimension and the total number 
of usages of all variables in the i-unit code:

Dilm=
nilm
NVARi

(∑
k=1

NVi

nikl)−nilm

NVARi−nilm

(7)

According to (7), the probability of choosing two random variables that have the same physical  
dimension in i-unit is given by the following equation:



Pdimi=∑
l=1

NVi

∑
m=1

N Di

(
nilm
NVARi

(∑
k=1

NVi

nikl)−nilm

NVARi−nij
),

(8)

here nikj represents the number of usages for the k-variable with the j-physical dimension in the i-

unit;  NVARi represents the total number of variable usages in the i-unit;  N Di represents the total 

number of different dimensions of variables in the i-unit; and NVi represents the total number of 
variables in the code.

The total conditional probability of software defect detection in a system consisting of N units 

can be defined as follows: ηD=∑
i=1

N

PVDiωi , where PVDi=1−Pdimi , ωi is a weight of software i-unit 

ωi=
N vi

∑
k=1

N

N vk

, where N vi - number of variable usages in i-unit, N   - total number of software units

ηD=∑
i=1

N

(1−Pdimi)ωi. (9)

Expression (9) defines the total conditional probability of detecting a software defect in software 
comprising N units.

3.3. Model for Detecting Incorrect Usage of Operations and Variables.

Consider three subsets of C/C++ operations: 

 Additive operations (A) include arithmetic, assignment, comparison, increment/decrement, 
member access, and concatenation operators.

 Multiplicative operations (M) include multiplication, division, modulo, and their compound 
assignment forms.

 Other  operations  (O) cover  logical,  bitwise,  shift,  scope,  conditional,  and  compound 
assignment operators not included in A or M.

This classification supports dimensional analysis by distinguishing operators that generate new 
dimensions (multiplicative) from those that check or preserve dimensional homogeneity (additive), 
while other operators are treated separately for consistency checks. In addition, we are given three 
probabilities associated with the utilization of this operation in the source code, namely, PA,  PM , 

and PO. let us define the sum of these probabilities as the full group probability:

PA+PM+PO=1. (10)

Let us define PA, PM , and PO as follows:

PA=
N A

N A+NM+NO
, PM=

NM

N A+NM+NO
, PO=

NO
N A+NM+NO

(11)



Here, N A represents the total number of “additive” operations in a file, NM  represents the total 

number of “multiplicative” operations in a file,  and  NO represents the total  number of “other” 
operations in the file.

In this case, we can build a decision tree for the detection of incorrect use of operations based 
on dimensional analysis. The model allows us to define the conditional probability of operation 
defect detection (see Figure 4).

Figure 4: Model for Detecting Incorrect Usage of Operations and Variables.

According to Figure  4, the model  begins with an initial state  Operation, which branches into 
three additional states: A, M, and O, as defined in Expressions (10). The M state further splits into 
two states: IMi  (incorrect M operation, with probability PdefO) and CMi (correct M operation, with 

probability 1−PdefO). The CMi state then divides into CMVi (correct M operation with a Variable 

defect, probability Pdefv) and CVi (correct M operation with a correct variable, probability 1−Pdefv). 



The CMVi state expands further into two cases: CMVDNDi (correct M operation with an incorrect 
variable of the same dimension, probability  Pdimi,  defect not detected) and  CMVDDi (correct M 

operation with an incorrect variable of a different dimension, probability 1−Pdimi, defect detected). 
Other nodes of the proposed model follow the same structural logic and are defined with analogous 
probability values.

Let us define the probability of a software defect as Pdef=
N def

NO+N v

. where N def=N defO+N defV  is 

the total number of incorrect usages of operations and variables, and NO+N v is the total number 
usages of operations and variables. That is why we can define the probabilities of a software defect  

as: PdefO=
N defO

NO
, Pdefv=

N defv

N v

.

Because most operations have two operands, we can define that 2NO=N v and:

Pdef=
N defO+N defV

NO+2NO
=2
3
Pdefv+

2
3

N defO

N v

. 

Because  PdefO≪1,  Pdefv≪1,  Pdef≪1,  then  
N defV

3NO
≪1  

2N defO

3N v

≪1 Pdef≈
PdefO
3

≈ 2
3
Pdefv, 

PdefO≈3Pdef,  Pdefv≈
3
2
Pdef.

According to Figure 4:

the  conditional probability  of  software  defect  detection  in  the  i-th  unit  can  be  defined  as:  

ηi=
∑ PDD

∑ PDD+∑ PDND
;

the  conditional  probability  of  absence  of  software  defects  in  the  i-th  unit  after  performing 

formal verification can be defined as: φi=
∑ PDD+∑ POK

∑ PDD+∑ PDND+∑ POK
.

According (10) we have: ηi=1+
∑ PDND
1−∑ POK

 and φi=1−∑ PDND.

According to Figure 4: POK=PCOVOK+PCAVOK+PCMVOK , 

PDND=PCOVDND+POODND+PCAVDND+PAADND+PCMVDND+PAAVDND

After simplification POK=1−
3
2
Pdef−3Pdef+

9
2
Pdef
2 ,

∑ PDND=
3
2
(1−3Pdef)Pdef Pdim+3PO

2 Pdef+3Pdef PA
2 (1−3

2
Pdef)+

9
2
PA
2 Pdef

2 Pdim.

Because Pdef≪1 we can define:

φi≈1−3(
Pdim
2

+PO
2 +PA

2 )Pdef, (12)

ηi=1−
3
4
(
Pdim
2

+PO
2 +PA

2 ). (13)



The  results of  statistical  modeling  of  conditional  probabilities  were  obtained  for 
Pdim=0,0001…0,1 and  Pdef=0,00001…0,01,  PO∈[0…1],  PA∈[PO…1],  and are  shown in 
Figures 5, 6, 7.

Figure 5: Conditional probability of software dimensional defects detecting as a function of Pdim. 
The green line represents the minimum value, the blue line – the expected value, and the red line –  
the maximum value of conditional probability.

The conditional probability of software defect detection is defined by the probabilities PO and 

PM . The average probability is approximately 0,66, with a minimum value of 0,26 and a maximum 
value of 1.0.

Figure 6: Conditional probability of software correctness after formal verification as a function of 
Pdef for Pdim=0,0001. The green line represents the minimum value, the blue line – the expected 
value, and the red line – the maximum value of conditional probability.

The average probability of software correctness after formal verification for  Pdim=0,0001 is 

approximately 1 when Pdef varies within the range 0,000001…0,001.
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Figure 7: Conditional probability of software correctness after formal verification as a function of 
Pdef for  Pdim=0,01. The green line represents the minimum value, the blue line – the expected 
value, and the red line – the maximum value of conditional probability.

The  average  probability of  software  correctness  after  formal  verification  for  Pdim=0,01 is 

approximately 1 when Pdef varies within the range 0,000001…0,001.
The overall expected conditional probability of detecting dimensional defects in software.

η=∑
i

ηi
NOi

, where NOi - total number of operations in the i-software unit.

The overall expected conditional probability of correctness after formal verification φ=∑
i

φi
NOi

.

If all software units contain the same number of operations, the total probability is defined by 
expressions (12) and (13). For units of different sizes, the resulting probabilities decrease.

4. Conclusion

This paper has introduced a formal software verification method that leverages software invariants 
derived  from dimensional  analysis.  According  to  [10],  a  formal  type  system  defines  software 
templates based on physical dimensions and fundamental numerical types. These templates enable 
the creation of dimensioned constants and variables and support operator overloading in C++. 
According  to  the  C++,  it  is  also  possible  to  define  numeric  literals  as  constants  of  different 
dimension types.

The proposed approach offers several notable advantages. It enables early defect detection at 
compile-time,  which  helps  reduce  the  likelihood  of  error  propagation  into  later  development 
stages. It also decreases testing overhead by supporting formal verification during both compile-
time and run-time.  As  a  result,  development  costs  are  lowered because  early  identification  of 
defects minimizes the need for extensive debugging, maintenance, and post-release corrections. 
The method enhances software quality, demonstrating the capability to detect between 60% and 
90% of latent defects  related to incorrect use of  physical  dimensions in software variables and 
improper application of operations involving dimensioned variables. The proposed method allows 
checking the correct  use of  dimensioned arguments in C++ class methods.  This detection rate  
depends on the distribution of operations and dimensions in the C++ source files [9]. It serves as a 
complementary  verification  technique  that  targets  defect  classes  often missed  by  conventional 
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testing, based on the intrinsic characteristics of the software.  Additionally,  the method has the 
potential for continuous improvement, offering opportunities to further increase detection rates 
and overall reliability.

Together,  these benefits underscore the method’s effectiveness as a practical tool for software 
defect detection. Its high detection rate, along with reduced testing efforts and improved reliability, 
make it a compelling addition to the suite of formal verification techniques. The implementation of 
the proposed method using metaprogramming increases the reliability of software code, as the 
C/C++ compiler can perform formal verification at compile time [16].

However, the method does have certain limitations. Chief among them is the requirement for 
explicit knowledge of the physical dimensions and orientations of source variables at compile-time. 
Despite  this  constraint,  the  method  enhances  programmer  productivity  by  automating  the 
detection  of  dimensional  and  orientational  inconsistencies.  It  also  enables  comprehensive 
dimensional  correctness checks across variables,  operations,  functions,  and procedures  through 
argument verification.

While  the  method  shows  considerable  promise  in  improving  software  reliability,  its  full 
potential  in  complex  software  systems will  only  be  realized  through further  research and the  
development of specialized analysis tools.
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