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Abstract

The growing complexity of aerospace cyber-physical systems demands rigorous methods to ensure
software correctness, reliability, and compliance with safety standards. Traditional verification techniques
often fail to detect dimensional inconsistencies that can lead to critical failures. This paper presents a
formal verification approach based on dimensional analysis, specifically tailored for aerospace software.
The method employs mathematical models derived from the statistical characteristics of C/C++ source
code to identify dimensional defects in computations, data flows, and control algorithms. The proposed
approach provides several benefits: early compile-time detection of defects, reduced testing effort and
duration, cost savings through the elimination of latent defects, and improved software reliability,
robustness, and performance. By integrating dimensional analysis with formal specification and
verification frameworks, the method enables early detection of inconsistencies and mitigates defect
propagation across system components. Case studies show that the method detects up to 90% (with an
average of 66%) of incorrect uses of software variables and operations at both compile time and run time.
This detection rate depends on the distribution of operations and dimensions in the C++ source files. The
results demonstrate the method’s effectiveness in uncovering errors overlooked by conventional testing.
Overall, the proposed technique serves as a complementary tool for aerospace software verification,
enhancing quality assurance and supporting certification processes.

Keywords

aerospace cyber-physical systems, formal verification, physical dimension, software defect model

1. Introduction

Aerospace cyber-physical systems (CPS) are highly integrated environments where physical
processes such as flight dynamics are tightly coupled with computational algorithms, sensors,
actuators, and control systems [1]. These systems are increasingly central to modern aerospace
engineering, improving efficiency, safety, performance, and real-time decision-making.
Applications of aerospace CPS span autonomous aircraft, spacecraft and satellites, commercial and
military aviation, and predictive maintenance. In these contexts, CPS enable autonomy, advanced
flight control, digital twins, sensor fusion, and adaptive diagnostics [2].

Despite their advantages, aerospace CPS face several critical challenges. Real-time constraints
demand processing of large volumes of sensor data with strict latency requirements, especially for
navigation, flight control, and emergency response. Safety and reliability are paramount, as these
systems are safety-critical and must be fault-tolerant and resilient to avoid catastrophic failures.
Integration and testing also remain complex, requiring approaches such as model-based design
(MBD) to ensure subsystem interoperability [3]. Finally, increasing reliance on digital
communication exposes aerospace CPS to cybersecurity threats, necessitating robust protection
mechanisms[4].

Addressing these challenges necessitates advanced verification methods. Classical approaches to
software verification, including Hoare’s seminal work on proving compiler correctness [5],
demonstrate that formal verification can provide guarantees about program behavior beyond
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syntactic correctness [6]. Building on these principles, this paper explores the use of formal
verification [7] based on dimensional analysis (DA) [8] as a novel approach to enhance the
reliability and safety of aerospace CPS software. Prior work by the authors [9] [10] has
demonstrated the feasibility of applying DA to C/C++ code for detecting latent errors and ensuring
physical consistency.

This paper explores the use of formal verification based on DA as a novel approach to improve
the reliability and safety of aerospace CPS software.

2. The Formal Verification Method of CPS software

The proposed approach leverages natural software invariants, defined as the physical dimensions
of variables corresponding to real-world quantities. By integrating these invariants into program
specifications, program expressions can be reformulated into a set of lemmas requiring formal
proof. This process enables verification of both dimensional homogeneity and program
conciseness.

As noted by Martinez-Rojas et al. [11], DA is a well-established methodology in physics and
engineering, used to identify or validate relationships among physical quantities based on their
dimensions. Within the International System of Units (SI) [12], each physical quantity is expressed
as a combination of seven base dimensions: length (meter, m), time (second, s), amount of
substance (mole, mol), electric current (ampere, A), temperature (kelvin, K), luminous intensity
(candela, cd), and mass (kilogram, kg) [13]. Derived units are defined as products of powers of base
units, and when the numerical factor of such a product equals one, they are classified as coherent
derived units. Together, SI base and coherent derived units form a coherent system, where
equations involving numerical values mirror the structure of the underlying physical relationships.
This property ensures consistency and accuracy in computations involving physical quantities,
making DA a reliable foundation for software verification.

Some coherent derived units in the SI are assigned specific names and, together with the seven
base units, form the foundation of the SI system. All other units are expressed as combinations of
these. The central principle of DA is that physical laws must remain valid regardless of the units
used. According to the rule of dimensional homogeneity, every physically meaningful equation
must balance dimensions on both sides. This principle underpins the use of DA across physics and
engineering.

Conventional software analysis tools primarily check syntax and semantics, but not the physical
correctness of code. When program code is treated as a set of expressions involving variables,
constants, and operations, DA can be integrated into the compilation or verification process. This
enables the detection of mismatches in variable usage, inconsistent unit conversions, and incorrect
dimensional operations directly at the software level. By embedding dimensional checks into
program specifications, aerospace and safety-critical applications can benefit from early error
detection, reduced defect propagation, and improved reliability of C/C++ implementations [14].

The correctness of program expressions can be evaluated by analyzing the dimensionality of
their values. When expressions preserve dimensional homogeneity, they are likely to represent
physically meaningful relationships. Conversely, violations of homogeneity signal incorrect use of
program variables or operations. Unlike conventional checks, DA can be applied not only to simple
expressions but also to procedure and function calls, enabling a broader validation of software
behavior.

DA thus provides a systematic way to ensure the physical correctness of software code. By
embedding physical dimensions into program specifications, it becomes possible to verify that
computations remain consistent with the physical laws governing the modeled system. In this
view, software can be regarded as a model of a physical process, and DA serves as a validation tool
to confirm the model’s adherence to physical principles.



Incorporating DA into the software development and verification process enables the detection
of errors caused by inconsistent or incorrect unit usage [15]. This contributes to the development
of safer, more reliable, and physically accurate software—particularly in safety-critical domains
such as aerospace cyber-physical systems.

A software system can be viewed as a hierarchy of interacting components. At the highest level,
it is composed of subsystems; each subsystem consists of software units, and each unit is defined by
a set of operators. Operators, in turn, are expressed as ordered sequences of statements or
expressions. This hierarchical structure allows systematic verification of interactions and
operations across different levels of the system.

To establish dimensional homogeneity within the system, verification must proceed step by
step: the homogeneity of the overall system depends on the homogeneity of its subsystems; each
subsystem’s homogeneity depends on that of its software units; and unit-level homogeneity
requires the homogeneity of individual statements or expressions. This layered approach provides
a structured pathway for verifying dimensional consistency throughout the code.

Within this framework, we distinguish between two categories of operations. Multiplicative
operations (%, /, etc.) generate new physical dimensions, while additive operations (+, -, =, <, <, >,
>, !=, etc.) act as checkpoints, enforcing dimensional homogeneity. When program variables are
associated with specific physical dimensions, this property can be treated as a software invariant.
Each additive operation then serves as a basis for generating lemmas, which collectively support
the formal verification of dimensional correctness across the system.

DA enables verification of the physical dimensions of program variables, allowing the detection
of errors caused by inconsistent unit usage, incorrect dimensional relationships, or improper
application of operations, variables, and procedures. Nonetheless, challenges arise when different
quantities share the same dimensions. For example, moments of inertia and angular velocity both
involve combinations of mass and length, yet represent fundamentally different physical concepts.
Detecting defects in such cases requires careful analysis of expressions.

3. Software Defect Detection Models

Software defect detection models designed to identify errors, inconsistencies, and potential faults in
software systems before deployment. These models aim to predict, locate, and prevent defects by
analyzing code structure, execution patterns, or software behavior.

Proposed defect detection models incorporate probabilistic methods to improve predictive
accuracy, leveraging defect data. In safety-critical domains, such as aerospace and automotive
systems, defect detection models are essential for ensuring reliability and compliance with
dimensional homogeneity.

3.1. General Software Defect Detection Model

To simplify the analysis, we assume that each software statement may contain at most one defect,
occurring with a probability of P, The model begins with the initial state labeled “Software”,
which branches into two possible outcomes: “Software has a defect” with probability P, and
“Software does not have a defect” with probability 1 — P ;.

Decision trees provide a structured way to visualize sequences of decisions or events along with
their probabilities and outcomes. In the context of software defect detection, they can be enhanced
by incorporating DA. By assigning physical dimensions as invariants to program variables, DA
allows the detection of defects arising from inconsistent or incorrect use of units and operations.
Each node in the decision tree can represent not only the presence or absence of a syntactic or
semantic defect but also violations of dimensional homogeneity.

This combined approach enables early identification of errors that might remain undetected by
conventional testing. For example, a branch could represent a statement where a variable’s



dimensional type conflicts with an operation, triggering a defect detection alert. Figure 1 illustrates
a decision tree model for software defect detection enhanced with dimensional analysis,
demonstrating how this methodology supports systematic verification of both traditional and
physics-based software correctness.
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Figure 1: General software defect detection model.

Software has N software units. In the state ‘Software Unit; has a defect’, our focus shifts to
detecting the defect. The model branches out into two possible outcomes: ‘Defect detected’ and
‘Defect not detected’, with probabilities of Py, and 1—P,, respectively. Let us define that
software units has equal P, Here P, represents a probability of a software defect in the code.
The conditional probability of software unit; defect detection defined as:

l’] _ Pdef =P (1)
l PdefPDDi+Pdef<1_PDDi) o
N N
The total conditional probability of software defect detection T]ZZ p DD,.(x)I:Z 1, ®,;, where
i=1 i=1

N
i o .
~—, Where S, is a size of software unit; and Z w,=1.

>s
i=1

We can extend the defect detection model to account for two types of defects - variable defects
and operation defects—while still assuming that at most one defect occurs per software statement

W, is a weight of software unit;, e.g. ;=

(see Figure 2).

A variable defect arises when a program variable is used incorrectly, such as referencing the
wrong variable or using one with an incompatible physical dimension or orientation. An operation
defect occurs when an operator or function is applied incorrectly, for example, using the wrong
arithmetic or logical operator within a software unit;.



By distinguishing these defect types, the model provides a more detailed representation of
potential errors in software statements, enabling targeted detection and analysis. Despite the
increased complexity, the assumption of a single defect per statement simplifies the probabilistic
modeling, allowing the systematic application of decision tree methods and, when integrated with
DA, facilitates the detection of both conventional coding errors and violations of physical
correctness.

In this more complex model, the initial event state is ‘Software unit;’” At the branching point,
the model expands into two possible outcomes: ‘Variable’ and ‘Operation,” with probabilities of
P,,and 1—P

potential outcomes at the next level: ‘Correct use of variable’ and ‘Incorrect use of variable’, with

respectively which defined for every software unit;. The ‘Variable’ state has two

vari vari®

probabilities of 1— P 4 and P, respectively. The ‘Incorrect use of variable’ state has two possible
outcomes at the next level: “Variable defect detected’ and ‘Variable defect not detected’, with
probabilities of P, and 1— P, respectively. Here, P, represents the probability of detecting a

variable defect in the unit;.

Software
Uniti

Pvari 1 'Pvari

Variable Operation

1-Per Pder 1-Pgef Pet

Incorrect use

Correct use
of operation

Correct use Incorrect use

of variable of variable of operation

Pyai 1-Pygi Pogi 1-Pogi

Variable Variable Operation Operation

defect defect not
detected detected

defect defect not
detected detected

Figure 2: Complex software defect detection model.

In addition to the ‘Variable’ state, the model also has an ‘Operation’ state, which has two
possible outcomes at the next level: ‘Correct use of operation’ and ‘Incorrect use of operation’, with
probabilities of 1— P, and P, respectively.

The ‘Incorrect use of operation’ state has two possible outcomes: ‘Operation defect detected’
and ‘Operation defect not detected’, with probabilities of P, and 1— P, respectively. Here,
P i represents the probability of detecting an operation defect in the source code of software unit;.
The conditional probability of a software defect in software unit; can be defined as follows:

Pypp,+Popp,
Pypp,* Pypyp, + Popp + P ODNDK’
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vari) PODi (2)



As per Expression (2), for software unit; the conditional probability of software defect detection
depends on the probability of the software variables used in the source code of software unit and
the conditional probabilities of detecting defects (defects of operations and defects of variables).

The total conditional probability of a software defect in software which includes N unit can be

N N
defined as follows: I]ZZ r[l-a)l:z(Pvm.PVDi+(l—Pvan-)PODi)coi, where ; is a weight of
i=1 i=1
. N,+Ny,
software uniti W=,
Z (va+NOk>
k=1

where N, - number of variable used in software unit;, N, - - number of operation used in software

unit;, N - total number of software units.
We can determine the value of P, ;, N

without executing the code. However, to determine the values of P, and P, we would need to

N, by analyzing the software code statically, i.e.,

build additional software defect detection models.

3.2. Software Defect Detection Model for Incorrect Variable Usage.

The proposed model allows the detection of incorrect variable usage (see Figure 3).
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Figure 3: Model for Detecting Incorrect Variable Usage in Software.

This model has an initial state of ‘Software Variable;” and is applied to each software unit. The
initial state has two transitions to states ‘OK’ and ‘Check Dimension’, with probabilities 1— P
and P, respectively. In the state ‘Check Dimension’, we can evaluate the required physical
dimension of the variable using dimensional analysis.

If the actual physical dimension is equal to the required physical dimension, we cannot detect
the software defect. However, if the dimensions differ, a software defect can be identified. In this
and 1—P where P
randomly selected variables in software unit have the same physical dimension.

Let us define the conditional probability of defect detection of incorrect use of a program

case, the probabilities are P, dimis dimi represents the probability that two

variable in the software unit; as follows:

Pyn=

1



dimi>

Here PDD,.:Pdef(l_Pdimi> and Ppyp =P P
Pypi=1=P g, (3)

Let us consider a set of distinct software variables { vary,...,var NVJ and a set of diverse physical
dimensions {diml,...,dimNdi , where N, represents the cardinality of set lvari} and N,
represents the cardinality of set ~[dim-}. To depict the relationship between these variables and

dimensions, we can make use of an n,,-matrix (4) which defined for every software i-unit:

ijk
dim, dim, dim, dim, dim; dim; dim, ~~° dimy,_, dim

var, n,, 0 0 0 0 0O 0 0 0

var, n, 0 0 0 0 0

vary, 0 n, O 0O 0 0 0 0 0

var, 0 0 n, O 0 0 0o v 0 0 @

vars 0 0 0 ng O 0 (U 0 0

varg, 0 0 0 ng O 0 0 0 0

vary,.. 0 0 0 0 0 0 0 0 n,N,—1,N

vary,, 0 0 0 0 0 0 0 0 n,N,,Np

e.g. N;;; - the total number usage of var; which has physical dimension dim,
- the total number usage of var, which has physical dimension dim, etc.

The equation for the total number of usages of all software variables with dimension j in
software unit i can be written as follows:

N,

VUsageU Z (5)

where ny; represents the total number of usages of k-variable which has a j-physical dimension
which used in the i-unit; N, is the cardinality set of software variables in the i-unit. Equation (6)
shows the total number of variable usages in the i-unit code:

(6)
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To define the probability of choosing Il-variable and m-variable with the same dimensions, we
can use the total number of usages of variables with the j-physical dimension and the total number
of usages of all variables in the i-unit code:

Ny
n (Z nikl)_nilm 7)
D- — ilm k=1

ilm
Noyari Noyagi— Ny,

According to (7), the probability of choosing two random variables that have the same physical
dimension in i-unit is given by the following equation:
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here n; represents the number of usages for the k-variable with the j-physical dimension in the i-
unit; N, represents the total number of variable usages in the i-unit; N, represents the total
number of different dimensions of variables in the i-unit; and N, represents the total number of

variables in the code.
The total conditional probability of software defect detection in a system consisting of N units

N
can be defined as follows: n,= Z P, w;, where P,,,=1—P,.., @, is a weight of software i-unit
i=1

N
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i , where N ; - number of variable usages in i-unit, N - total number of software units

UDZZ (1_Pdimi)wi' )

Expression (9) defines the total conditional probability of detecting a software defect in software
comprising N units.

3.3. Model for Detecting Incorrect Usage of Operations and Variables.
Consider three subsets of C/C++ operations:

* Additive operations (A) include arithmetic, assignment, comparison, increment/decrement,
member access, and concatenation operators.

*  Multiplicative operations (M) include multiplication, division, modulo, and their compound
assignment forms.

*  Other operations (O) cover logical, bitwise, shift, scope, conditional, and compound
assignment operators not included in A or M.

This classification supports dimensional analysis by distinguishing operators that generate new
dimensions (multiplicative) from those that check or preserve dimensional homogeneity (additive),
while other operators are treated separately for consistency checks. In addition, we are given three
probabilities associated with the utilization of this operation in the source code, namely, P,, P,,,

and P,,. let us define the sum of these probabilities as the full group probability:
P,+P,+P,=1. (10)

Let us define P,, P,,, and P, as follows:

(11)



Here, N , represents the total number of “additive” operations in a file, N, represents the total
number of “multiplicative” operations in a file, and N, represents the total number of “other”

operations in the file.

In this case, we can build a decision tree for the detection of incorrect use of operations based
on dimensional analysis. The model allows us to define the conditional probability of operation
defect detection (see Figure 4).
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Figure 4: Model for Detecting Incorrect Usage of Operations and Variables.
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According to Figure 4, the model begins with an initial state Operation, which branches into
three additional states: A, M, and O, as defined in Expressions (10). The M state further splits into
two states: IM; (incorrect M operation, with probability P,.,) and CM; (correct M operation, with
probability 1—P ). The CM; state then divides into CMV; (correct M operation with a Variable

defect, probability P,,) and CV; (correct M operation with a correct variable, probability 1— P, ).



The CMYV; state expands further into two cases: CMVDND; (correct M operation with an incorrect
defect not detected) and CMVDD; (correct M

operation with an incorrect variable of a different dimension, probability 1— P, ., defect detected).

variable of the same dimension, probability Py .,
Other nodes of the proposed model follow the same structural logic and are defined with analogous
probability values.

N def

No+N

v

Let us define the probability of a software defect as P ;= - where Nyt =N j00F Ny is

the total number of incorrect usages of operations and variables, and N,+ N is the total number

usages of operations and variables. That is why we can define the probabilities of a software defect
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According to Figure 4:

the conditional probability of software defect detection in the i-th unit can be defined as:
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The results of statistical modeling of conditional probabilities were obtained for
P,.=0,0001...0,1 and P,,=0,00001...0,01, P,€[0...1], P,E[P,...1], and are shown in
Figures 5, 6, 7.

dim

1,2

0,8

= 0,6

0,4

0,2

1,00E-05 0,0001 0,001 0,01 0,1
Pdim

Figure 5: Conditional probability of software dimensional defects detecting as a function of P,

The green line represents the minimum value, the blue line - the expected value, and the red line -
the maximum value of conditional probability.

The conditional probability of software defect detection is defined by the probabilities P, and
P . The average probability is approximately 0,66, with a minimum value of 0,26 and a maximum

value of 1.0.
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Figure 6: Conditional probability of software correctness after formal verification as a function of
P for P
value, and the red line — the maximum value of conditional probability.

dgim = 0,0001. The green line represents the minimum value, the blue line — the expected

The average probability of software correctness after formal verification for P, ,=0,0001 is

approximately 1 when P varies within the range 0,000001...0,001.
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Figure 7: Conditional probability of software correctness after formal verification as a function of
P, for Py, =0,01. The green line represents the minimum value, the blue line - the expected

value, and the red line - the maximum value of conditional probability.

The average probability of software correctness after formal verification for Py =0,01 is

approximately 1 when P varies within the range 0,000001...0,001.

The overall expected conditional probability of detecting dimensional defects in software.

N N . :
n= Z ——, where N, - total number of operations in the i-software unit.

i NOi

The overall expected conditional probability of correctness after formal verification ¢ = Z ]\([P_,

i Noi
If all software units contain the same number of operations, the total probability is defined by

expressions (12) and (13). For units of different sizes, the resulting probabilities decrease.

4. Conclusion

This paper has introduced a formal software verification method that leverages software invariants
derived from dimensional analysis. According to [10], a formal type system defines software
templates based on physical dimensions and fundamental numerical types. These templates enable
the creation of dimensioned constants and variables and support operator overloading in C++.
According to the C++, it is also possible to define numeric literals as constants of different
dimension types.

The proposed approach offers several notable advantages. It enables early defect detection at
compile-time, which helps reduce the likelihood of error propagation into later development
stages. It also decreases testing overhead by supporting formal verification during both compile-
time and run-time. As a result, development costs are lowered because early identification of
defects minimizes the need for extensive debugging, maintenance, and post-release corrections.
The method enhances software quality, demonstrating the capability to detect between 60% and
90% of latent defects related to incorrect use of physical dimensions in software variables and
improper application of operations involving dimensioned variables. The proposed method allows
checking the correct use of dimensioned arguments in C++ class methods. This detection rate
depends on the distribution of operations and dimensions in the C++ source files [9]. It serves as a
complementary verification technique that targets defect classes often missed by conventional



testing, based on the intrinsic characteristics of the software. Additionally, the method has the
potential for continuous improvement, offering opportunities to further increase detection rates
and overall reliability.

Together, these benefits underscore the method’s effectiveness as a practical tool for software
defect detection. Its high detection rate, along with reduced testing efforts and improved reliability,
make it a compelling addition to the suite of formal verification techniques. The implementation of
the proposed method using metaprogramming increases the reliability of software code, as the
C/C++ compiler can perform formal verification at compile time [16].

However, the method does have certain limitations. Chief among them is the requirement for
explicit knowledge of the physical dimensions and orientations of source variables at compile-time.
Despite this constraint, the method enhances programmer productivity by automating the
detection of dimensional and orientational inconsistencies. It also enables comprehensive
dimensional correctness checks across variables, operations, functions, and procedures through
argument verification.

While the method shows considerable promise in improving software reliability, its full
potential in complex software systems will only be realized through further research and the
development of specialized analysis tools.
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