
Formal Verification of Aerospace Cyber-Physical System
Software⋆

Yuriy Manzhos1,† and Yevheniia Sokolova1,∗,†

1 National Aerospace University “Kharkiv Aviation Institute”, Vadyma Manka St, 17, Kharkiv, 61070 Kharkiv, Ukraine

Abstract
The growing complexity of aerospace cyber-physical systems demands rigorous methods to ensure
software correctness, reliability, and compliance with safety standards. Traditional verification techniques
often fail to detect dimensional inconsistencies that can lead to critical failures. This paper presents a
formal verification approach based on dimensional analysis, specifically tailored for aerospace software.
The method employs mathematical models derived from the statistical characteristics of C/C++ source
code to identify dimensional defects in computations, data flows, and control algorithms. The proposed
approach provides several benefits: early compile-time detection of defects, reduced testing effort and
duration, cost savings through the elimination of latent defects, and improved software reliability,
robustness, and performance. By integrating dimensional analysis with formal specification and
verification frameworks, the method enables early detection of inconsistencies and mitigates defect
propagation across system components. Case studies show that the method detects up to 90% (with an
average of 66%) of incorrect uses of software variables and operations at both compile time and run time.
This detection rate depends on the distribution of operations and dimensions in the C++ source files. The
results demonstrate the method’s effectiveness in uncovering errors overlooked by conventional testing.
Overall, the proposed technique serves as a complementary tool for aerospace software verification,
enhancing quality assurance and supporting certification processes.

Keywords
aerospace cyber-physical systems, formal verification, physical dimension, software defect model

1. Introduction

Aerospace cyber-physical systems (CPS) are highly integrated environments where physical
processes such as flight dynamics are tightly coupled with computational algorithms, sensors,
actuators, and control systems [1]. These systems are increasingly central to modern aerospace
engineering, improving efficiency, safety, performance, and real-time decision-making.
Applications of aerospace CPS span autonomous aircraft, spacecraft and satellites, commercial and
military aviation, and predictive maintenance. In these contexts, CPS enable autonomy, advanced
flight control, digital twins, sensor fusion, and adaptive diagnostics [2].

Despite their advantages, aerospace CPS face several critical challenges. Real-time constraints
demand processing of large volumes of sensor data with strict latency requirements, especially for
navigation, flight control, and emergency response. Safety and reliability are paramount, as these
systems are safety-critical and must be fault-tolerant and resilient to avoid catastrophic failures.
Integration and testing also remain complex, requiring approaches such as model-based design
(MBD) to ensure subsystem interoperability [3]. Finally, increasing reliance on digital
communication exposes aerospace CPS to cybersecurity threats, necessitating robust protection
mechanisms[4].

Addressing these challenges necessitates advanced verification methods. Classical approaches to
software verification, including Hoare’s seminal work on proving compiler correctness [5],
demonstrate that formal verification can provide guarantees about program behavior beyond
⋆ProfIT AI’25: 5th International Workshop of IT-professionals on Artificial Intelligence, October 15–17, 2025, Liverpool, UK
∗ Corresponding author.
† These authors contributed equally.

 y.manzhos@khai.edu (Y. Manzhos); y.sokolova@khai.edu (Y. Sokolova)
 0000-0002-4910-7285 (Y. Manzhos); 0000-0002-1497-4987 (Y. Sokolova)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
mailto:t.princesales@utwente.nl

syntactic correctness [6]. Building on these principles, this paper explores the use of formal
verification [7] based on dimensional analysis (DA) [8] as a novel approach to enhance the
reliability and safety of aerospace CPS software. Prior work by the authors [9] [10] has
demonstrated the feasibility of applying DA to C/C++ code for detecting latent errors and ensuring
physical consistency.

This paper explores the use of formal verification based on DA as a novel approach to improve
the reliability and safety of aerospace CPS software.

2. The Formal Verification Method of CPS software

The proposed approach leverages natural software invariants, defined as the physical dimensions
of variables corresponding to real-world quantities. By integrating these invariants into program
specifications, program expressions can be reformulated into a set of lemmas requiring formal
proof. This process enables verification of both dimensional homogeneity and program
conciseness.

As noted by Martínez-Rojas et al. [11], DA is a well-established methodology in physics and
engineering, used to identify or validate relationships among physical quantities based on their
dimensions. Within the International System of Units (SI) [12], each physical quantity is expressed
as a combination of seven base dimensions: length (meter, m), time (second, s), amount of
substance (mole, mol), electric current (ampere, A), temperature (kelvin, K), luminous intensity
(candela, cd), and mass (kilogram, kg) [13]. Derived units are defined as products of powers of base
units, and when the numerical factor of such a product equals one, they are classified as coherent
derived units. Together, SI base and coherent derived units form a coherent system, where
equations involving numerical values mirror the structure of the underlying physical relationships.
This property ensures consistency and accuracy in computations involving physical quantities,
making DA a reliable foundation for software verification.

Some coherent derived units in the SI are assigned specific names and, together with the seven
base units, form the foundation of the SI system. All other units are expressed as combinations of
these. The central principle of DA is that physical laws must remain valid regardless of the units
used. According to the rule of dimensional homogeneity, every physically meaningful equation
must balance dimensions on both sides. This principle underpins the use of DA across physics and
engineering.

Conventional software analysis tools primarily check syntax and semantics, but not the physical
correctness of code. When program code is treated as a set of expressions involving variables,
constants, and operations, DA can be integrated into the compilation or verification process. This
enables the detection of mismatches in variable usage, inconsistent unit conversions, and incorrect
dimensional operations directly at the software level. By embedding dimensional checks into
program specifications, aerospace and safety-critical applications can benefit from early error
detection, reduced defect propagation, and improved reliability of C/C++ implementations [14].

The correctness of program expressions can be evaluated by analyzing the dimensionality of
their values. When expressions preserve dimensional homogeneity, they are likely to represent
physically meaningful relationships. Conversely, violations of homogeneity signal incorrect use of
program variables or operations. Unlike conventional checks, DA can be applied not only to simple
expressions but also to procedure and function calls, enabling a broader validation of software
behavior.

DA thus provides a systematic way to ensure the physical correctness of software code. By
embedding physical dimensions into program specifications, it becomes possible to verify that
computations remain consistent with the physical laws governing the modeled system. In this
view, software can be regarded as a model of a physical process, and DA serves as a validation tool
to confirm the model’s adherence to physical principles.

Incorporating DA into the software development and verification process enables the detection
of errors caused by inconsistent or incorrect unit usage [15]. This contributes to the development
of safer, more reliable, and physically accurate software—particularly in safety-critical domains
such as aerospace cyber-physical systems.

A software system can be viewed as a hierarchy of interacting components. At the highest level,
it is composed of subsystems; each subsystem consists of software units, and each unit is defined by
a set of operators. Operators, in turn, are expressed as ordered sequences of statements or
expressions. This hierarchical structure allows systematic verification of interactions and
operations across different levels of the system.

To establish dimensional homogeneity within the system, verification must proceed step by
step: the homogeneity of the overall system depends on the homogeneity of its subsystems; each
subsystem’s homogeneity depends on that of its software units; and unit-level homogeneity
requires the homogeneity of individual statements or expressions. This layered approach provides
a structured pathway for verifying dimensional consistency throughout the code.

Within this framework, we distinguish between two categories of operations. Multiplicative
operations (*, /, etc.) generate new physical dimensions, while additive operations (+, −, =, <, ≤, >,
≥, !=, etc.) act as checkpoints, enforcing dimensional homogeneity. When program variables are
associated with specific physical dimensions, this property can be treated as a software invariant.
Each additive operation then serves as a basis for generating lemmas, which collectively support
the formal verification of dimensional correctness across the system.

DA enables verification of the physical dimensions of program variables, allowing the detection
of errors caused by inconsistent unit usage, incorrect dimensional relationships, or improper
application of operations, variables, and procedures. Nonetheless, challenges arise when different
quantities share the same dimensions. For example, moments of inertia and angular velocity both
involve combinations of mass and length, yet represent fundamentally different physical concepts.
Detecting defects in such cases requires careful analysis of expressions.

3. Software Defect Detection Models

Software defect detection models designed to identify errors, inconsistencies, and potential faults in
software systems before deployment. These models aim to predict, locate, and prevent defects by
analyzing code structure, execution patterns, or software behavior.

Proposed defect detection models incorporate probabilistic methods to improve predictive
accuracy, leveraging defect data. In safety-critical domains, such as aerospace and automotive
systems, defect detection models are essential for ensuring reliability and compliance with
dimensional homogeneity.

3.1. General Software Defect Detection Model

To simplify the analysis, we assume that each software statement may contain at most one defect,
occurring with a probability of Pdef. The model begins with the initial state labeled “Software”,

which branches into two possible outcomes: “Software has a defect” with probability Pdef, and

“Software does not have a defect” with probability 1−Pdef.
Decision trees provide a structured way to visualize sequences of decisions or events along with

their probabilities and outcomes. In the context of software defect detection, they can be enhanced
by incorporating DA. By assigning physical dimensions as invariants to program variables, DA
allows the detection of defects arising from inconsistent or incorrect use of units and operations.
Each node in the decision tree can represent not only the presence or absence of a syntactic or
semantic defect but also violations of dimensional homogeneity.

This combined approach enables early identification of errors that might remain undetected by
conventional testing. For example, a branch could represent a statement where a variable’s

dimensional type conflicts with an operation, triggering a defect detection alert. Figure 1 illustrates
a decision tree model for software defect detection enhanced with dimensional analysis,
demonstrating how this methodology supports systematic verification of both traditional and
physics-based software correctness.

Figure 1: General software defect detection model.

Software has N software units. In the state ‘Software Uniti has a defect’, our focus shifts to
detecting the defect. The model branches out into two possible outcomes: ‘Defect detected’ and
‘Defect not detected’, with probabilities of PDD and 1−PDD, respectively. Let us define that

software units has equal Pdef Here Pdef represents a probability of a software defect in the code.
The conditional probability of software uniti defect detection defined as:

ηi=
Pdef

Pdef PDDi+Pdef(1−PDDi)
=PDDi .

(1)

The total conditional probability of software defect detection η=∑
i=1

N

PDDiωi=∑
i=1

N

ηiωi , where

ωi is a weight of software uniti, e.g. ωi=
Si

∑
i=1

N

Si

, where Si is a size of software uniti and ∑
i=1

N

ωi=1.

We can extend the defect detection model to account for two types of defects - variable defects
and operation defects—while still assuming that at most one defect occurs per software statement
(see Figure 2).

A variable defect arises when a program variable is used incorrectly, such as referencing the
wrong variable or using one with an incompatible physical dimension or orientation. An operation
defect occurs when an operator or function is applied incorrectly, for example, using the wrong
arithmetic or logical operator within a software uniti.

By distinguishing these defect types, the model provides a more detailed representation of
potential errors in software statements, enabling targeted detection and analysis. Despite the
increased complexity, the assumption of a single defect per statement simplifies the probabilistic
modeling, allowing the systematic application of decision tree methods and, when integrated with
DA, facilitates the detection of both conventional coding errors and violations of physical
correctness.

In this more complex model, the initial event state is ‘Software uniti.’ At the branching point,
the model expands into two possible outcomes: ‘Variable’ and ‘Operation,’ with probabilities of
Pvari and 1−Pvari, respectively which defined for every software uniti. The ‘Variable’ state has two
potential outcomes at the next level: ‘Correct use of variable’ and ‘Incorrect use of variable’, with
probabilities of 1−Pdef and Pdef, respectively. The ‘Incorrect use of variable’ state has two possible
outcomes at the next level: ‘Variable defect detected’ and ‘Variable defect not detected’, with
probabilities of PVDI and 1−PVDI , respectively. Here, PVDI represents the probability of detecting a
variable defect in the uniti.

Figure 2: Complex software defect detection model.

In addition to the ‘Variable’ state, the model also has an ‘Operation’ state, which has two
possible outcomes at the next level: ‘Correct use of operation’ and ‘Incorrect use of operation’, with
probabilities of 1−Pdef and Pdef, respectively.

The ‘Incorrect use of operation’ state has two possible outcomes: ‘Operation defect detected’
and ‘Operation defect not detected’, with probabilities of PODi and 1−PODi, respectively. Here,

PODi represents the probability of detecting an operation defect in the source code of software unit i.
The conditional probability of a software defect in software uniti can be defined as follows:

ηi=
PVDD I

+PODDi
PVDDi+PVDNDi+PODDi+PODNDi

,

here PVDDi=PvariPdef PVDi, PODDi=(1−Pvari)Pdef PODi,
PVDNDi=PvariPdef(1−PVDi), PODNDi=(1−Pvari)Pdef(1−PODi)
and we have:

ηi=PvariPVDi+(1−Pvari)PODi (2)

As per Expression (2), for software uniti the conditional probability of software defect detection
depends on the probability of the software variables used in the source code of software unit and
the conditional probabilities of detecting defects (defects of operations and defects of variables).

The total conditional probability of a software defect in software which includes N unit can be

defined as follows: η=∑
i=1

N

ηiωi=∑
i=1

N

(PvariPVDi+(1−Pvari)PODi)ωi , where ωi is a weight of

software uniti ωi=
N vi+NOi

∑
k=1

N

(N vk+NOk)
,

where N vi - number of variable used in software uniti, NOi - - number of operation used in software

uniti, N - total number of software units.
We can determine the value of Pvari, N vi, NOi by analyzing the software code statically, i.e.,

without executing the code. However, to determine the values of PVDi and PODi, we would need to
build additional software defect detection models.

3.2. Software Defect Detection Model for Incorrect Variable Usage.

The proposed model allows the detection of incorrect variable usage (see Figure 3).

Figure 3: Model for Detecting Incorrect Variable Usage in Software.

This model has an initial state of ‘Software Variablei’ and is applied to each software unit. The
initial state has two transitions to states ‘OK’ and ‘Check Dimension’, with probabilities 1−Pdef
and Pdef, respectively. In the state ‘Check Dimension’, we can evaluate the required physical
dimension of the variable using dimensional analysis.

If the actual physical dimension is equal to the required physical dimension, we cannot detect
the software defect. However, if the dimensions differ, a software defect can be identified. In this
case, the probabilities are Pdimi and 1−Pdimi, where Pdimi represents the probability that two
randomly selected variables in software unit have the same physical dimension.

Let us define the conditional probability of defect detection of incorrect use of a program
variable in the software uniti as follows:

PVDi=
PDDi

PDDi+PDNDi
.

Here PDDi=Pdef(1−Pdimi) and PDNDi=Pdef Pdimi,

PVDi=1−Pdimi (3)

Let us consider a set of distinct software variables {var1 , ... , varNvi } and a set of diverse physical

dimensions {dim1 , ... , dimNdi }, where N vi represents the cardinality of set {var i } and N Di

represents the cardinality of set {dimi }. To depict the relationship between these variables and

dimensions, we can make use of an nijk-matrix (4) which defined for every software i-unit:

dim1 dim2 dim3 dim4 dim5 dim6 dim7
… dimNd−1 dimNDi

(4)

var1 ni11 0 0 0 0 0 0 … 0 0

var2 ni21 0 0 0 0 0 0 … 0 0

var3 0 ni31 0 0 0 0 0 … 0 0

var4 0 0 ni 43 0 0 0 0 … 0 0

var5 0 0 0 ni54 0 0 0 … 0 0

var6 0 0 0 ni64 0 0 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

varNvi−1 0 0 0 0 0 0 0 … 0 ni , N vi−1 , N Di

varNvi 0 0 0 0 0 0 0 … 0 ni , N vi , N Di

e.g. ni11 - the total number usage of var1 which has physical dimension dim1
ni21 - the total number usage of var2 which has physical dimension dim1 etc.

The equation for the total number of usages of all software variables with dimension j in
software unit i can be written as follows:

NVUsageij=∑
k=1

N vi

nikj. (5)

where nikj represents the total number of usages of k-variable which has a j-physical dimension

which used in the i-unit; N vi is the cardinality set of software variables in the i-unit. Equation (6)
shows the total number of variable usages in the i-unit code:

NVARi=∑
k=1

N vi

∑
j=1

N Di

nikj. (6)

To define the probability of choosing l-variable and m-variable with the same dimensions, we
can use the total number of usages of variables with the j-physical dimension and the total number
of usages of all variables in the i-unit code:

Dilm=
nilm
NVARi

(∑
k=1

NVi

nikl)−nilm

NVARi−nilm

(7)

According to (7), the probability of choosing two random variables that have the same physical
dimension in i-unit is given by the following equation:

Pdimi=∑
l=1

NVi

∑
m=1

N Di

(
nilm
NVARi

(∑
k=1

NVi

nikl)−nilm

NVARi−nij
),

(8)

here nikj represents the number of usages for the k-variable with the j-physical dimension in the i-

unit; NVARi represents the total number of variable usages in the i-unit; N Di represents the total

number of different dimensions of variables in the i-unit; and NVi represents the total number of
variables in the code.

The total conditional probability of software defect detection in a system consisting of N units

can be defined as follows: ηD=∑
i=1

N

PVDiωi , where PVDi=1−Pdimi , ωi is a weight of software i-unit

ωi=
N vi

∑
k=1

N

N vk

, where N vi - number of variable usages in i-unit, N - total number of software units

ηD=∑
i=1

N

(1−Pdimi)ωi. (9)

Expression (9) defines the total conditional probability of detecting a software defect in software
comprising N units.

3.3. Model for Detecting Incorrect Usage of Operations and Variables.

Consider three subsets of C/C++ operations:

 Additive operations (A) include arithmetic, assignment, comparison, increment/decrement,
member access, and concatenation operators.

 Multiplicative operations (M) include multiplication, division, modulo, and their compound
assignment forms.

 Other operations (O) cover logical, bitwise, shift, scope, conditional, and compound
assignment operators not included in A or M.

This classification supports dimensional analysis by distinguishing operators that generate new
dimensions (multiplicative) from those that check or preserve dimensional homogeneity (additive),
while other operators are treated separately for consistency checks. In addition, we are given three
probabilities associated with the utilization of this operation in the source code, namely, PA, PM ,

and PO. let us define the sum of these probabilities as the full group probability:

PA+PM+PO=1. (10)

Let us define PA, PM , and PO as follows:

PA=
N A

N A+NM+NO
, PM=

NM

N A+NM+NO
, PO=

NO
N A+NM+NO

(11)

Here, N A represents the total number of “additive” operations in a file, NM represents the total

number of “multiplicative” operations in a file, and NO represents the total number of “other”
operations in the file.

In this case, we can build a decision tree for the detection of incorrect use of operations based
on dimensional analysis. The model allows us to define the conditional probability of operation
defect detection (see Figure 4).

Figure 4: Model for Detecting Incorrect Usage of Operations and Variables.

According to Figure 4, the model begins with an initial state Operation, which branches into
three additional states: A, M, and O, as defined in Expressions (10). The M state further splits into
two states: IMi (incorrect M operation, with probability PdefO) and CMi (correct M operation, with

probability 1−PdefO). The CMi state then divides into CMVi (correct M operation with a Variable

defect, probability Pdefv) and CVi (correct M operation with a correct variable, probability 1−Pdefv).

The CMVi state expands further into two cases: CMVDNDi (correct M operation with an incorrect
variable of the same dimension, probability Pdimi, defect not detected) and CMVDDi (correct M

operation with an incorrect variable of a different dimension, probability 1−Pdimi, defect detected).
Other nodes of the proposed model follow the same structural logic and are defined with analogous
probability values.

Let us define the probability of a software defect as Pdef=
N def

NO+N v

. where N def=N defO+N defV is

the total number of incorrect usages of operations and variables, and NO+N v is the total number
usages of operations and variables. That is why we can define the probabilities of a software defect

as: PdefO=
N defO

NO
, Pdefv=

N defv

N v

.

Because most operations have two operands, we can define that 2NO=N v and:

Pdef=
N defO+N defV

NO+2NO
=2
3
Pdefv+

2
3

N defO

N v

.

Because PdefO≪1, Pdefv≪1, Pdef≪1, then
N defV

3NO
≪1

2N defO

3N v

≪1 Pdef≈
PdefO
3

≈ 2
3
Pdefv,

PdefO≈3Pdef, Pdefv≈
3
2
Pdef.

According to Figure 4:

the conditional probability of software defect detection in the i-th unit can be defined as:

ηi=
∑ PDD

∑ PDD+∑ PDND
;

the conditional probability of absence of software defects in the i-th unit after performing

formal verification can be defined as: φi=
∑ PDD+∑ POK

∑ PDD+∑ PDND+∑ POK
.

According (10) we have: ηi=1+
∑ PDND
1−∑ POK

 and φi=1−∑ PDND.

According to Figure 4: POK=PCOVOK+PCAVOK+PCMVOK ,

PDND=PCOVDND+POODND+PCAVDND+PAADND+PCMVDND+PAAVDND

After simplification POK=1−
3
2
Pdef−3Pdef+

9
2
Pdef
2 ,

∑ PDND=
3
2
(1−3Pdef)Pdef Pdim+3PO

2 Pdef+3Pdef PA
2 (1−3

2
Pdef)+

9
2
PA
2 Pdef

2 Pdim.

Because Pdef≪1 we can define:

φi≈1−3(
Pdim
2

+PO
2 +PA

2)Pdef, (12)

ηi=1−
3
4
(
Pdim
2

+PO
2 +PA

2). (13)

The results of statistical modeling of conditional probabilities were obtained for
Pdim=0,0001…0,1 and Pdef=0,00001…0,01, PO∈[0…1], PA∈[PO…1], and are shown in
Figures 5, 6, 7.

Figure 5: Conditional probability of software dimensional defects detecting as a function of Pdim.
The green line represents the minimum value, the blue line – the expected value, and the red line –
the maximum value of conditional probability.

The conditional probability of software defect detection is defined by the probabilities PO and

PM . The average probability is approximately 0,66, with a minimum value of 0,26 and a maximum
value of 1.0.

Figure 6: Conditional probability of software correctness after formal verification as a function of
Pdef for Pdim=0,0001. The green line represents the minimum value, the blue line – the expected
value, and the red line – the maximum value of conditional probability.

The average probability of software correctness after formal verification for Pdim=0,0001 is

approximately 1 when Pdef varies within the range 0,000001…0,001.

0

0,2

0,4

0,6

0,8

1

1,2

1,00E-05 0,0001 0,001 0,01 0,1

𝛈

Pdim

0,95
0,955
0,96
0,965
0,97
0,975
0,98
0,985
0,99
0,995

1
1,005

1,00E-06 1,00E-05 0,0001 0,001 0,01

𝞿

Pdef

Figure 7: Conditional probability of software correctness after formal verification as a function of
Pdef for Pdim=0,01. The green line represents the minimum value, the blue line – the expected
value, and the red line – the maximum value of conditional probability.

The average probability of software correctness after formal verification for Pdim=0,01 is

approximately 1 when Pdef varies within the range 0,000001…0,001.
The overall expected conditional probability of detecting dimensional defects in software.

η=∑
i

ηi
NOi

, where NOi - total number of operations in the i-software unit.

The overall expected conditional probability of correctness after formal verification φ=∑
i

φi
NOi

.

If all software units contain the same number of operations, the total probability is defined by
expressions (12) and (13). For units of different sizes, the resulting probabilities decrease.

4. Conclusion

This paper has introduced a formal software verification method that leverages software invariants
derived from dimensional analysis. According to [10], a formal type system defines software
templates based on physical dimensions and fundamental numerical types. These templates enable
the creation of dimensioned constants and variables and support operator overloading in C++.
According to the C++, it is also possible to define numeric literals as constants of different
dimension types.

The proposed approach offers several notable advantages. It enables early defect detection at
compile-time, which helps reduce the likelihood of error propagation into later development
stages. It also decreases testing overhead by supporting formal verification during both compile-
time and run-time. As a result, development costs are lowered because early identification of
defects minimizes the need for extensive debugging, maintenance, and post-release corrections.
The method enhances software quality, demonstrating the capability to detect between 60% and
90% of latent defects related to incorrect use of physical dimensions in software variables and
improper application of operations involving dimensioned variables. The proposed method allows
checking the correct use of dimensioned arguments in C++ class methods. This detection rate
depends on the distribution of operations and dimensions in the C++ source files [9]. It serves as a
complementary verification technique that targets defect classes often missed by conventional

0,95

0,955

0,96

0,965

0,97

0,975

0,98

0,985

0,99

0,995

1

1,005

1,00E-06 1,00E-05 0,0001 0,001 0,01

𝞿

Pdef

testing, based on the intrinsic characteristics of the software. Additionally, the method has the
potential for continuous improvement, offering opportunities to further increase detection rates
and overall reliability.

Together, these benefits underscore the method’s effectiveness as a practical tool for software
defect detection. Its high detection rate, along with reduced testing efforts and improved reliability,
make it a compelling addition to the suite of formal verification techniques. The implementation of
the proposed method using metaprogramming increases the reliability of software code, as the
C/C++ compiler can perform formal verification at compile time [16].

However, the method does have certain limitations. Chief among them is the requirement for
explicit knowledge of the physical dimensions and orientations of source variables at compile-time.
Despite this constraint, the method enhances programmer productivity by automating the
detection of dimensional and orientational inconsistencies. It also enables comprehensive
dimensional correctness checks across variables, operations, functions, and procedures through
argument verification.

While the method shows considerable promise in improving software reliability, its full
potential in complex software systems will only be realized through further research and the
development of specialized analysis tools.

Acknowledgements

We are grateful to Dr. D.I. Chumachenko for the invitation to participate in the conference, as well
as to our colleagues from National Aerospace University for their support and assistance.

Declaration on Generative AI

During the preparation of this work, the authors used GPT-5 and Grammarly in order to: grammar
and spelling check. After using these tools the authors reviewed and edited the content as needed
and takes full responsibility for the publication’s content.

References

[1] Hamzah, M.; Islam, M.M.; Hassan, S.; Akhtar, M.N.; Ferdous, M.J.; Jasser, M.B.; Mohamed, A.W.
Distributed Control of Cyber Physical System on Various Domains: A Critical Review. Systems
(2023) 11, 208. doi:10.3390/systems11040208.

[2] Oks, S.J., Jalowski, M., Lechner, M. et al. Cyber-Physical Systems in the Context of Industry
4.0: A Review, Categorization and Outlook. Inf Syst Front 26 (2024): 1731–1772.
doi:10.1007/s10796-022-10252-x

[3] Manzhos, Y., Sokolova, Y. The Software Development Lifecycle of Cyber-Physical Systems.
Visnyk of Kherson National Technical University (2024), 1(88): 237-245.
doi:10.35546/kntu2078-4481.2024.1.33

[4] Liubimov O, Turkin I, Pavlikov V, Volobuyeva L. Agile Software Development Lifecycle and
Containerization Technology for CubeSat Command and Data Handling Module
Implementation. Computation (2023): 11(9):182. doi:10.3390/computation11090182.

[5] Hoare, T. The Verifying Compiler: A Grand Challenge for Computing Research. In Modular
Programming Languages; Böszörményi, L., Schojer, P. Eds.; Springer, Berlin, Heidelberg, 2003,
pp. 25-35. doi:10.1007/978-3-540-45213-3_4.

[6] Boutekkouk, F. C Software Formal Verification. wipiec (2024): 10, 4.
[7] Krichen, M. A Survey on Formal Verification and Validation Techniques for Internet of

Things. Appl. Sci. (2023): 13, 8122. doi:10.3390/app13148122.
[8] Longo, S.G. Principles and Applications of Dimensional Analysis and Similarity, Springer

Cham, 2023. doi:10.1007/978-3-030-79217-6.

https://doi.org/10.1007/978-3-030-79217-6
https://doi.org/10.3390/app13148122.
https://doi.org/10.35546/kntu2078-4481.2024.1.33
https://doi.org/10.1007/s10796-022-10252-x

[9] Manzhos, Y.; Sokolova, Y. A Software Verification Method for the Internet of Things and
Cyber-Physical Systems. Computation (2023), 11, 135. doi: 10.3390/computation11070135.

[10] Manzhos, Y.; Sokolova, Y. A type system for formal verification of cyber-physical systems
C/C++ software. Radioelectronic and Computer Systems (2024), 1: 127-142.
doi:10.32620/reks.2024.1.11.

[11] Martínez-Rojas, J.A.; Fernández-Sánchez, J.L. Combining dimensional analysis with model
based systems engineering. Syst. Eng. (2022), 26: 71–87. doi:10.1002/sys.21646.

[12] Glavič P. Review of the International Systems of Quantities and Units Usage. Standards. (2021)
1(1) 2-16. doi:10.3390/standards1010002

[13] SI Units, 2023. URL: https://www.nist.gov/pml/owm/metric-si/si-units.
[14] Lischner, R. Programming at Compile Time. In Exploring C++20: The Programmer's

Introduction to C++; Apress: Berkeley, CA, 2020, pp.643-653. doi:10.1007/978-1-4842-5961-
0_73.

[15] Taylor, B.N. The Current SI Seen From the Perspective of the Proposed New SI. Journal of
research of the National Institute of Standards and Technology (2011), 116(6): 797-807.
doi:10.6028/jres.116.022

[16] Stavytskyi, P.; Voitko V.; Romanyuk, O. Analysis of metaprogramming capabilities in general-
purpose programming language. Information Technology and Computer Engineering (2022),
55(3): 44-50. doi:10.31649/1999-9941-2022-55-3-44-50

https://doi.org/10.1007/978-1-4842-5961-0_73.
https://doi.org/10.1007/978-1-4842-5961-0_73.
https://doi.org/10.1002/sys.21646
https://doi.org/10.32620/reks.2024.1.11.
https://doi.org/10.3390/computation11070135

	1. Introduction
	2. The Formal Verification Method of CPS software
	3. Software Defect Detection Models
	3.1. General Software Defect Detection Model
	3.2. Software Defect Detection Model for Incorrect Variable Usage.
	3.3. Model for Detecting Incorrect Usage of Operations and Variables.

	4. Conclusion
	Acknowledgements
	Declaration on Generative AI
	References

