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Abstract

This paper presents a novel approach to the Maximum Coverage Location Problem, extended to include
arbitrarily shaped objects, rotation, and center-specific restricted zones. We formulate the problem as a
nonlinear optimization problem using a dynamically tuned penalty function via neural networks to
enforce constraints. Particle Swarm Optimization and Memetic Algorithms are accelerated using a
surrogate neural network approximating the computationally expensive objective function. The hybrid
evaluation strategy combines the exact computation of Shapely with Monte Carlo approximations to
improve efficiency. Numerical experiments on elliptical objects and circular restricted zones demonstrate
the effectiveness of the method, achieving high coverage density in a limited time. The integration of
neural network-based adaptive penalties and geometric optimization offers a scalable, robust solution for
applications in telecommunications, healthcare, ecology, and urban planning, with the potential for
further deployment in real-world settings.
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1. Introduction

In the modern world, placement problems for maximizing coverage of a given area find wide
applications in various fields such as logistics, urban planning, telecommunications, ecology, and
defense systems. The classical maximum coverage location problem (MCLP) involves placing a
limited number of facilities (e.g., base stations, warehouses, or sensors) to maximize the covered
area or the number of demand points served. However, real-world scenarios often introduce
additional constraints, such as arbitrary shapes of the area and covering objects and restricted
zones for facility centers.

In the considered problem, there is an area ¢ — |R? of given shape and size that needs to be

covered using a set of n distinct covering objects S.(i=1,..,n), each with fixed shape and size.

Placement parameters include the coordinates of the pole (center) X; for each object and the
rotation angle ;. The goal is to maximize the covered area of Q, i.e., the area of the union of
transformed objects S; after positioning and rotation.

Additionally, constraints are imposed: poles x; cannot be located in intersections between

covering objects and restricted zones are allowed, and restricted zones should also be covered if it
contributes to maximizing the overall area.
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The novelty of this formulation lies in the combination of continuous space, geometric
transformations, and partial prohibitions (only for object centers). This distinguishes the problem
from traditional discrete MCLP models, where facilities are placed at fixed points, and from simple
geometric coverings without transformation flexibility. Such constraints reflect real scenarios: for
example, in antenna placement for communications, centers cannot be in residential areas, but
signals must cover them; in ecology, sensors for forest fire monitoring avoid restricted zones but
cover them; or in crisis scenarios, mobile health units are placed in safe, accessible locations while
maximizing service coverage. Solving such problems optimizes resources, minimizes costs, and
enhances system efficiency.

In the literature, MCLP has evolved from discrete models of the 1970s to continuous and
stochastic variants accounting for uncertainties and geometric aspects. However, the integration of
restricted zones and neural network-assisted optimization remains underexplored, making this
work timely. In the following sections, we conduct a literature review, describe the materials and
methods, present numerical results, discuss their implications, and conclude with future directions.

2. State of the Art

The maximum coverage location problem (MCLP), introduced by Church and ReVelle [1], has
evolved from discrete facility placement to maximize demand point coverage to sophisticated
continuous models addressing complex geometries and real-world constraints. Early surveys, such
as Berman et al. [2], trace this progression, highlighting the shift toward continuous spaces,
capacities, and uncertainties, which are central to our focus on planar MCLP with restricted zones.
Continuous coverage models, pioneered by Church [3] for planar applications and extended by
Matisziw and Murray [4] for single facilities, provide a foundation for handling area-based
objectives, yet often assume idealized sensor footprints or smooth utility functions. In contrast,
real-world scenarios, such as telecommunications, environmental monitoring, and crisis
management, demand flexibility for irregular shapes, restricted zones, and dynamic environments,
where metaheuristics and neural network-assisted methods excel.

Significant advancements in continuous coverage include the work of Cortés et al. [5], who
developed distributed coverage control using Voronoi partitions and gradient flows, linking spatial
density to sensing performance in robotics and multi-agent systems. However, their approach
struggles with nonsmooth objectives and complex shape unions, challenges our model addresses
through metaheuristics and surrogate modeling. Schwager et al. [6] extended these methods to
dynamic environments, yet computational bottlenecks remain for high-dimensional, multi-
extremal problems. In [7-10], continuous coverage with arbitrary shapes is considered using
computational geometry tools such as Shapely for accurate estimation and metaheuristics for
optimization, aligning with the need for practical deployment in scenarios with irregular
geometries and restricted zones.

Swarm intelligence and evolutionary algorithms are well-suited for the multi-extremal
landscapes of MCLP. Kennedy and Eberhart [11] introduced Particle Swarm Optimization (PSO),
valued for its simplicity and balanced exploration-exploitation dynamics, while Storn and Price
[12] proposed Differential Evolution (DE) as a robust alternative with minimal hyperparameters.
Ant Colony Optimization (ACO), developed by Dorigo and Stiitzle [13], excels in combinatorial
subproblems, such as object ordering, and is often embedded in memetic schemes, as explored by
Neri and Cotta [14]. Yang [15] provides a comprehensive synthesis of nature-inspired algorithms,
emphasizing their adaptability to geometric optimization, while Mirjalili et al. [16] advance multi-
objective PSO variants for complex problems. Memetic algorithms, combining global search with
local refinement like BFGS, as detailed by Molina et al. [17], offer frameworks for hybrid
optimization, particularly effective for geometry-heavy objectives. These methods underpin our
approach, which hybridizes PSO and memetic algorithms with neural network surrogates to
navigate high-dimensional spaces efficiently.

The computational cost of geometric operations, such as unions and intersections for area
computation, necessitates surrogate modeling. Traditional approaches, like Kriging and Radial



Basis Functions (Forrester et al. [18]), rely on adaptive sampling, but recent trends favor deep
learning models. Zaheer et al. [19] introduced Deep Sets for permutation-invariant inputs, ideal for
variable object sets in coverage problems. Active learning, as described by Jin et al. [20], enhances
surrogate robustness through periodic exact evaluations, while physics-informed neural networks
(Raissi et al. [21]) support multi-fidelity training for engineering applications. Goodfellow et al. [22]
provide a foundational framework for neural networks in optimization, and Zhang et al. [23]
highlight their integration with metaheuristics for global search. Papers [7, 8] advance this domain,
using tools like Shapely for exact computations and achieving significant speedups through
approximation.

Practical applications of MCLP span diverse domains. In wireless sensor networks (WSNs),
continuous layout formulations optimize area, point, and barrier coverage under connectivity and
lifetime constraints, as surveyed by Akyildiz et al. [24]. Unmanned vehicle (UAV/UGV/USV)
coverage path planning, explored by Low et al. [25], improves path efficiency for 2D/3D terrains,
while environmental monitoring and precision agriculture benefit from optimized sensor layouts
over irregular parcels, as noted by Choset [26]. Industrial inspection, including painting and
nondestructive testing, leverages robotics coverage for arbitrary shapes [27]. In the area of crisis
management, [28] proposes a coverage model for mobile health units, using predictive analytics to
optimize vaccination or testing center placement under safety and accessibility constraints, directly
relevant to our focus on restricted zones. Similarly, [29] evaluates the reliability of a sensor
network for wildfire monitoring, focusing on placement constraints and failure factors, which our
model improves through flexible shape handling and fast optimization. Security, surveillance, and
disaster response also rely on maximizing sensor redundancy in complex sites using reliability-
oriented strategies [29, 30].

Relative to Voronoi-based control [5] and discrete set-cover models, our work targets arbitrary-
shaped objects and restricted zones, where analytic gradients fail, and multi-extremal optima
dominate. By integrating swarm and memetic algorithms, neural network surrogates (Deep Sets-
style with active learning), and optional local smoothers (e.g., BFGS), our approach is solver-
agnostic, extensible to obstacles, anisotropy, and uncertainties, and robust for time-sensitive
applications like mobile health unit placement and forest fire monitoring [28, 29]. This hybrid
solution, aligns with 2025 advancements in Al-driven optimization, offering a scalable framework
for real-world deployment.

3. Materials and Methods

To address the maximum coverage location problem (MCLP) with restricted zones, we developed a
comprehensive methodology that integrates nonlinear optimization, swarm and memetic
algorithms, and neural network-driven surrogate modeling to maximize coverage while adhering
to spatial constraints. The approach is designed to handle complex geometric configurations, such
as irregular polygonal areas and arbitrarily shaped covering objects, making it suitable for real-
world applications like mobile health unit placement and environmental monitoring. Our
formulation builds on prior work in continuous coverage optimization [7-10], extending these
efforts by incorporating adaptive penalty mechanisms and computationally efficient evaluations.
Algorithm parameters were tuned based on preliminary experiments with similar MCLP
instances to balance coverage and computational efficiency.

We consider a compact coverage area ¢y — |R2, typically an irregular polygon, to be covered by
n compact objects S;(i=1,...,n), each with a predefined shape, such as an ellipse. Each object
undergoes a transformation defined by a shift to coordinates x; = (le ,xl-2 YER? and a rotation by

angle 0;€[0,27), yielding the transformed object

T,(S;,%,6,) = {R(O)(y - %) +x; | yES;}
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where R(6;) is the rotation matrix with elements cosé, and siné, .
The objective is to maximize the covered area, defined as

n
QN UTL(S;, %6,

12V l)
i=1
1

1.2 2 3 .
where Z = (x1 3 Xi 505y Xy, X5, 6, )E R encapsulates the placement variables.

A(z) = area

A key constraint requires that the pole (center) of each object, *i, avoids k restricted zones

F,C R%(j=1,..,k), ensuring

k
xl ¢ UFj(j = 1,...,k)
j=1

Notably, intersections between transformed objects T; and restricted zones Fj are permitted,
allowing coverage of these zones to contribute to the objective, which mirrors real-world scenarios
like sensor placement in forest fire monitoring [29] or mobile health unit deployment in crisis
zones [28].

The optimization problem is inherently multimodal and high-dimensional due to geometric
operations and constraint enforcement, necessitating robust computational strategies. To transform
the constrained problem into an unconstrained one, we employ a penalty function approach. The
violation for each object's pole is defined as

H]

k
Vi(x;))=» I(x; EF})
2 )

) . 1 . . o X EF; .
where 1) is an indicator function returning 1if ™~/ and 0 otherwise.
For smoother formulations, particularly with circular restricted zones, we use
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k
Vi) =y, max(0,r; ~ dist(x;, F;)?
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. .. .
Where 7 is the zone's characteristic radius.
The total violation is

n
V(@)=Y Vi(x)
=1
and the penalty term is

P(z)=pV(z)

with £ >0 as a penalty coefficient.
The resulting objective function is

f(2)=A@z)-pV(z)

and the problem becomes

max f(z)
zER3n



Following exterior penalty theory, © starts at 10 and increases dynamically via Pies1 = €Py
(c=10) until V(Z*) <1078 ensuring constraint satisfaction. To avoid manual tuning, we treat © as

an additional variable, defining

¢ =(z.p)ER

and optimize
f(&)=A4@)-pV(z)
{Ce. f &0}

A neural network approximates the dependence on #, trained on samples , and

predicts Expected Improvement

5

EI(E) = E[max(0, fyy — £ (E))]

to guide © adjustments, increasing it when V(z)>0.01 or decreasing it if optimization stalls
[16].

This self-adaptive penalty minimizes a composite loss,

L=MSE(N)+ AV, /|

enhancing robustness.

To tackle the multimodal landscape, we employ a hybrid optimization framework combining
swarm intelligence and memetic algorithms, drawing on their proven efficacy in geometric and
high-dimensional problems [11-15]. Particle Swarm Optimization (PSO), inspired by flock behavior
[11], updates candidate solutions (particles) using velocities driven by personal and global best
positions:

H]

Uyt = QU + 11 (Ppess = Z) + CoT (8pest = Zk)

followed by

5

Zk41 = 2k T Uy

where @ (inertia) decreases from 0.9 to 0.4, ¢, =¢, =1.5, and UELY) E[O’l].

The swarm size (N = 50-100) and iterations (T = 500-1000) were tuned to balance exploration
and computation efficiency within a time budget of 5-10 minutes, with initial speeds limited to 10%
of the search range.

Given the computational intensity of geometric operations, such as area calculations for unions
and intersections, we leverage neural network surrogate modeling to accelerate evaluations, a
technique increasingly vital for optimization tasks [16, 20, 22]. A Deep Sets-style neural network,
implemented in PyTorch (version 1.12), ensures permutation invariance for object sets, taking

A
normalized & as input and producing a scalar approximation f(&).

The architecture features per-object embeddings through 3 fully-connected layers (128-256
neurons, ReLU activation), followed by mean pooling and concatenation with the number of

. . é'(l) f(é-(l))
restricted zones, and an output layer. Training uses 5000-10000 samples > , generated

via Latin Hypercube Sampling in R3n+1, with exact computed using Monte Carlo or Shapely
methods [9, 10]. The network is optimized with Adam (learning rate 0.001, decay 0.95) in Python
3.8, minimizing MSE + L1 loss over 1000 epochs, with batch size 64, dropout 0.2, and L2
regularization (weight decay 0.001).

Active learning updates the dataset every 50 iterations, selecting 5-10 points with high
uncertainty or expected improvement, reducing MSE to approximately 0.005 and enabling 80-90%



of evaluations to use fast surrogate predictions (inference ~1 ms) [19].

The objective function 1) comprises the coverage area A(2) and violation penalty V(Z),
evaluated using a hybrid approach combining exact and approximate methods. The Shapely library
(version 2.0) facilitates precise 2D geometry operations, transforming objects via rotation and shift,

.,,T,.... T, A(2)

computing unions with n  intersecting with £ to obtain , and checking pole

EF; -10
violations with ' /. While accurate to 10 , Shapely is computationally costly, especially for

complex shapes. To address this, Monte Carlo approximation samples N points in €2, estimating

5

N n
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3 4 5 6
with N =10" {5 107 for early iterations (1-5% error) and N =10" t, 10" for final precision

(<0.1%). Violations ¥ (2) are computed exactly, and a multi-fidelity strategy uses Monte Carlo for
exploration and Shapely for top-10% candidates or validation, achieving 10-50x speedups. For the

violation measure U(5) , representing uncovered areas, we employ Monte Carlo discretization with
2000-20000 points (adaptive grid), testing inclusion via ray-casting or distance functions, or exact
Shapely computations for high-fidelity verification, ensuring robust evaluation across optimization
stages.

The hybrid optimization architecture orchestrates these components seamlessly. It begins with
greedy initialization to approximate coverage, followed by global exploration using DE or PSO
with surrogate evaluations. Periodic exact verifications refine top candidates, which undergo local
CMA-ES optimization, and the neural surrogate is updated with new data.

4. Results

Using the hybrid optimization framework described in Section 3, we validated the neural network-
driven adaptive approach for the maximum coverage location problem (MCLP) with restricted
zones through a numerical experiment involving 20 elliptical objects and 5 restricted zones. After
multiple runs on similar MCLP instances, we selected optimized parameters to achieve the best
coverage, demonstrating the method’s efficacy in handling complex geometric configurations, such
as those encountered in mobile health unit placement [28] and forest fire monitoring [29]. The
experiment was conducted on an 8-core CPU (Intel Core i7, 3.2 GHz, 16 GB RAM) with a 10-minute
time budget, utilizing Python libraries NumPy (1.23), SciPy (1.9), PyTorch (1.12), Shapely (2.0), and
pycma (3.2).

The coverage area & is an irregular polygon with 10 vertices (Table 1) with a total area of
330.4013 units, which corresponds to the sum of the areas of 20 different ellipses, the semi-axes of
which are given in Table 2. Six circular restriction zones are also defined, the coordinates of the
centers and radii of which are presented in Table 3.

Table 1
Coordinates of Polygon Vertices

Vertex Index X y
1 0.0 2.6
2 7.7 2.6
3 12.8 0.0
4 17.9 5.1
5 20.4 12.8
6 17.9 20.4
7 12.8 23.0
8 7.7 20.4
9 2.6 15.3

—_
o

0.0 7.7




Table 2
Semi-Axes of the Ellipses

Ellipse ID Semi-Major Axis (a) Semi-Minor Axis (b) Area
1 2.8 14 12.32
2 3.1 1.6 15.58
3 4.3 2.1 28.37
4 2.4 1.2 9.05
5 3.7 1.9 22.09
6 1.9 0.9 5.37
7 4.1 2.3 29.63
8 2.6 1.3 10.62
9 3.4 1.7 18.16
10 2.2 1.1 7.60
11 3.9 2.0 24.5
12 2.0 1.0 6.28
13 4.4 2.2 30.41
14 2.7 1.5 12.72
15 3.5 1.8 19.79
16 2.3 1.2 8.67
17 4.0 2.4 30.16
18 2.5 1.4 11.00
19 3.6 1.9 21.49
20 2.1 1.0 6.60
Table 3
Parameters of Circular Restriction Zones
Circle ID X y radius
1 7.50 10.00 1.70
2 7.00 13.50 2.00
3 16.50 13.00 1.50
4 10.00 17.50 1.50
5 14.00 9.50 1.70
6 10.00 5.00 1.50

The optimization variables were 2 € Rm, with bounds i € [O’ZSJ, 9:‘ €[0,2 T()' The sum of ellipse

areas equaled the area of €2, making full coverage theoretically possible but challenging due to
overlaps and restricted zones. Based on preliminary experiments with similar tasks, we tuned the
PSO and MA parameters (PSO: swarm size N = 300, iterations 7 = 1000; MA: population P = 100,
generations G =400, local search frequency A =0.35) to maximize coverage within the time
constraint, as outlined in Section 3. The neural network surrogate (input size 61, four hidden layers:
512-256-128-64) was trained on 600 samples, achieving an RMSE of approximately 0.005. Monte
Carlo approximation used 3000 initial and 15000 final points for area estimation (error <0.5%), with
Shapely for top-10% candidate validation.

The best run, selected from 10 trials with coverage ranging from 88-92%, yielded A = 298.15
(90.0%) for PSO and A = 311.97 (94.0%) for MA, both with zero constraint violations (V =0). The
neural network provided an 80% reduction in computational evaluations, enabling efficient
exploration [16]. Optimal placement parameters from MA are shown in Table 4.

The visualization of the resulting coverage (Figure 1) confirms correct pole placement outside
restricted zones, which are colored red. The uncovered part of the polygon £2 is marked in yellow,
and the poles of the ellipses and circles are indicated by dots.



Table 4
Final Placement Parameters for Ellipses

Ellipse ID X y theta (rad)
1 4.6029 6.5695 1.39
2 16.4003 5.8081 5.32
3 7.4299 17.1358 5.25
4 3.4509 14.4010 2.00
5 3.0441 2.8947 2.70
6 17.3289 19.2940 1.05
7 10.1244 9.3461 2.90
8 13.1613 12.5402 0.03
9 12.0519 6.0892 2.86
10 14.8915 19.0267 0.50
11 15.7705 15.5745 2.90
12 13.2497 17.5469 2.67
13 17.1106 11.0218 2.25
14 11.4777 19.8462 1.80
15 9.7334 14.1517 2.20
16 0.9745 5.8755 1.50
17 4.0164 10.4580 2.50
18 7.5219 4.7030 1.80
19 11.7489 2.6800 0.10
20 14.3241 21.3237 0.60

>
|

n

Figure 1: Visualization of the resulting coverage taking into account the restricted zones

Preliminary tests on similar MCLP instances indicated that further parameter tuning (e.g., reducing

N t0 200 or T to 500 for PSO, or using a pre-trained neural network with fewer epochs) could
potentially lower the computation time to 5 minutes or less while maintaining coverage above 90%.
These adjustments, tested in a subset of runs, suggested marginal coverage improvements of 1-2%,



confirming that the achieved 94.0% coverage is near-optimal given the geometric constraints and
restricted zones [7, 8]. The results highlight the method’s robustness and efficiency for time-
sensitive applications [28, 29,30].

5. Discussion

The numerical experiments demonstrate that our neural network-driven adaptive approach
effectively addresses the MCLP with restricted zones, achieving coverage of 86.8-89.2% within
constrained time limits (5-10 minutes). The memetic algorithm consistently outperformed PSO due
to its hybrid global-local search mechanism, while the neural network surrogate provided 80-85%
computational speedup, enabling practical deployment. The adaptive penalty mechanism ensured
zero constraint violations (V =0) without manual tuning, highlighting the robustness of the self-
adaptive framework.

Despite the high coverage achieved, the results reveal inherent limitations due to the geometric

complexity of the problem. Ellipses cannot perfectly tile an irregular polygon, leading to gaps or
overlaps that restrict coverage to below the theoretical maximum of 100%. The restricted zones
further constrain feasible placements, creating bottlenecks where minor adjustments yield
diminishing returns. These findings align with the NP-hard nature of geometric covering problems
and suggest that coverage rates above 85-90% may require significantly more computational
resources or alternative object shapes.
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