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Abstract
The article presents an approach to analyzing the factors that determine the success of military missions  
involving unmanned aerial vehicles (UAVs) based on the integration of simulation modeling and machine 
learning methods. A UAV mission planner has been developed that enables modeling of tactical scenarios,  
taking  into  account  air  defense  and  electronic  warfare  threats,  weather  conditions,  and  UAV flight 
characteristics. Based on the mission simulation data generated by the planner, a training dataset was 
formed  for  building  machine  learning  models  (logistic  regression,  decision  trees,  ensemble  methods,  
neural networks) to predict mission success and assess the impact of individual factors. The results show 
that the key determinants of effectiveness are route and flight parameters as well as threat intensity, while 
external conditions and UAV characteristics play a secondary role. The findings enable the formulation of 
practical  recommendations  for  optimizing  mission  planning  and  enhancing  the  safety  of  UAV 
deployment.
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1. Introduction

Modern  military  operations  increasingly  rely  on  the  deployment  of  unmanned  aerial  vehicles 
(UAVs),  which perform a wide range of tasks  – from reconnaissance and fire control to strike 
missions  deep  in  the  enemy’s  rear.  The  success  of  such  operations  is  largely  determined  by 
numerous factors: the technical characteristics of the UAVs themselves, environmental conditions,  
multi-objective  target  selection,  the  level  and dynamics  of  threats,  enemy actions,  and chosen 
tactical scenarios. Consequently, there is a growing need for intelligent technologies capable of  
identifying the most significant parameters and predicting mission effectiveness.

One  of  the  promising  approaches  is  the  integration  of  simulation  modeling  with  machine 
learning methods. Simulation models enable the reproduction of various scenarios of UAV combat 
use and the generation of data for analysis, while machine learning algorithms can detect patterns, 
assess the influence of individual factors, and generate recommendations for improving planning 
effectiveness. 

This research is particularly motivated by the rapid proliferation of UAVs in modern conflicts,  
particularly during the war in Ukraine, where drones play a key role in reconnaissance, precision 
strikes, and the targeting of critical infrastructure. Mission planning in such contexts occurs under 
uncertainty caused by enemy air defense and electronic warfare systems, variable operational and 
environmental conditions, as well as inherent limitations of the UAVs themselves.

Traditional mission planning methods often inadequately account for the complex interactions 
among multiple factors, which may lead to equipment loss or reduced operational efficiency. The 
application  of  machine  learning  in  combination  with  simulation-generated  data  enables  the 
development of tools for multifactor analysis and the identification of key variables that determine 
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mission success or failure. This creates opportunities for developing intelligent decision support 
systems  capable  of  adapting  mission  plans  according  to  specific  operational  conditions  and 
minimizing risks.

2. State of the Art and Problem Statement

The planning of combat and reconnaissance missions with the use of unmanned aerial vehicles 
(UAVs) is a multi-component task that requires the integration of optimization methods, artificial 
intelligence technologies, geographic information systems, and simulation modeling. Optimization 
methods enable the determination of efficient UAV routes and flight parameters under resource 
and  threat  constraints.  Artificial  intelligence  technologies  provide  adaptability  in  planning, 
prediction of  enemy behavior,  and real-time decision-making.  Geographic  information systems 
deliver precise spatial information on terrain, infrastructure, and threat zones for safe and well-
grounded UAV mission route  planning.  Simulation modeling makes it  possible  to  test  mission 
scenarios and evaluate the effectiveness of strategies before their actual execution.

The system we have developed is designed to support tactical and operational mission planning 
with UAVs, taking into account group tactics and wave attacks, different launch and maneuvering 
scenarios, as well as bypassing areas affected by enemy air defense (AD) and electronic warfare 
(EW) systems [1].  Mission execution simulation allows for the assessment of  probable mission 
effectiveness  prior  to  implementing  them  into  a  real  flight  control  system.  Machine  learning 
methods demonstrate strong synergy when combined with simulation modeling approaches and 
can therefore enhance our UAV mission planner.

The  development  of  simulation  models  inherently  involves  improving  the  accuracy  of  the 
virtual  environment  since  it  refers  to  a  real  system.  Without  direct  access  to  the causal  rules 
governing the actual system, it  is  necessary to approximate the outcomes of various scenarios 
using probabilistic and statistical models. In contrast, machine learning relies on algorithms that 
self-adjust based on data and are primarily applied to prediction tasks.

From this arises several scenarios for the joint use of simulation modeling and machine learning 
(ML) methods (Figure 1). 

Figure 1: Synergistic Application of Simulation Modeling and Machine Learning.



ML researchers may use a simulation model as a mechanism for generating unlimited labeled 
data  to  evaluate  the  performance  of  new ML algorithms.  Alternatively,  properly  verified  and 
validated simulation models can generate relevant training datasets for ML models.

Moreover,  synthetic  data  obtained  from  simulation  can  help  data  processing  researchers 
validate  their  hypotheses  using  ML  models  with  proof-of-concept  before  investing  in  data 
collection methods and technologies. In addition, ML models developed from a simulation model 
can serve as lightweight and portable versions that can be effectively deployed directly on edge 
devices – namely, UAV onboard systems.

We conducted an analysis of scientific publications that apply machine learning methods for 
analyzing, forecasting, and improving the effectiveness of UAV missions.

In [2], a review is provided of ML techniques applied across various aspects of UAV operation –  
from mission planning to communications, monitoring, and sensor data processing. Key directions 
and gaps are highlighted, in particular the absence of fully integrated solutions.

Study  [3]  describes  the  application  of  deep  reinforcement  learning  for  the  development  of 
cooperative strategies that maximize the survival of UAV swarms in hostile environments with 
radar systems.

In  [4],  a  Bayesian  network  is  constructed  on  the  basis  of  incident  and accident  reports  to 
analyze  UAV  risk  factors  (technical  failures,  human  factors,  technologies),  model  probability 
dependencies and risk levels, and assess their combined impact on UAV accident severity.

An ML model for predicting energy consumption (voltage, current,  battery discharge) under 
varying weather conditions is considered in [5]. This represents an interesting integration of real 
UAV  logs  with  meteorological  data  for  forecasting  UAV  energy  usage,  with  the  best  results 
obtained for ensemble gradient boosting models.

The advantages and challenges of large language models (LLMs) in achieving UAV security and 
protection are examined in [6]. It is determined that LLMs can function as high-level planners, 
translating natural language instructions into practical flight tasks, such as waypoint generation 
for trajectory planning or group UAV formation coordination [7].

Article [8] presents a review of UAV route planning methods, including deterministic models,  
stochastic  approaches,  evolutionary  methods,  and  machine  learning  techniques.  The  authors 
emphasize that in real UAV applications, supervised learning can leverage historical flight records 
– such as chosen routes, speeds, and weather data – to develop regression or classification models  
that support flight trajectory prediction.

In [9], a method is proposed for large-scale UAV swarm mission planning using an ensemble 
predictive model of trajectory length. The authors tested the effectiveness of the proposed method 
across 15 simulated missions of different scales. The mission input data included the number and 
location of UAVs, the number and location of targets,  and the number, location, and radius of 
threat  sources.  However,  the  software  tool  presented  in  the  study  has  no  integration  with 
geographic information systems, meaning that all trajectories remain hypothetical and educational 
in nature.

Although modern literature devotes considerable attention to UAV swarm planning and the 
concept of swarm intelligence [10, 11] – which involves interaction and coordination among group 
members – military mission planning in enemy rear areas is fundamentally different in nature. In  
such missions, UAV groups are formed to strike a specific target, with each drone assigned an 
individual  route  that  considers  maneuvering,  flanking  approaches,  varying  attack  angles,  and 
defined ranges of action. In these conditions, interaction between drones is nearly absent, and the 
use  of  swarm  intelligence  is  unnecessary,  since  the  primary  complexity  lies  in  the  strategic  
planning of individual routes and the synchronization of their effects,  rather than in collective 
coordination.



3. Research aim and objectives

The aim of this study is to develop and validate an approach for analyzing factors influencing the  
success  of  military  operations  involving  unmanned  aerial  vehicles  (UAVs)  by  integrating 
simulation modeling into a mission planner and employing machine learning methods.

To achieve this aim, the following objectives were set:

 to formalize the space of factors determining UAV mission effectiveness, including UAV 
characteristics, mission route parameters, environmental conditions, and enemy threats.

 to develop an approach for generating data based on simulation modeling of UAV missions 
in the mission planner under various tactical conditions.

 to construct and test machine learning models (logistic regression, decision trees, ensemble 
methods, neural networks) for classifying mission outcomes and assessing the impact of 
factors.

 to identify the key variables that most significantly influence mission success and conduct a 
comparative analysis of their importance.

 to  formulate  recommendations  for  improving  UAV  mission  planning,  enabling  the 
adaptation  of  mission  tactics  according  to  operational  environment  conditions  and 
minimizing the risk of mission failure.

4. Research methodology

UAV military mission planning is a multi-level process that involves the interaction of command 
structures,  forward  units,  analysis  of  enemy  actions,  and  the  identification  of  targets  for 
reconnaissance and strike operations (Figure 2).

Figure 2: Conceptual Representation of UAV Mission Planning Task.

At  the  command level,  the  situational  center  plays  a  key  role,  ensuring  the  integration  of 
information on the location of enemy forces and assets, control of operational battlefield data, and 
accounting  of  identified  objects  for  subsequent  fire  engagement.  Another  critical  task  is 
coordination between units and operational planning, which involves aligning UAV missions with 
the actions of other forces. Notably, the DELTA system – a Ukrainian military product ecosystem – 



is used for conducting combat operations.  The system consists of a mobile application, a military 
messenger,  secure battlefield streaming, a digital  map, and planning tools and integration with 
other systems [12].

In forward units, key roles are fulfilled by outposts and combat units that provide direct support 
for UAV mission execution. These structures include:

 aerial reconnaissance units, which provide data on enemy positions.
 artillery reconnaissance units, which identify potential enemy artillery firing points.
 electronic  warfare  and  electronic  reconnaissance  units  (EW/ELINT),  which  provide 

situational awareness of the radio environment and enemy countermeasures.
 unmanned  aerial  system  units  (UAS  units),  responsible  for  UAV  launch,  control,  and 

technical maintenance, including launch sites and ground control stations.

The enemy, in turn, possesses a wide range of counter-UAV measures. These include command 
posts, observation outposts, artillery units, air defense systems, electronic warfare systems, and 
radar detector networks. These assets serve as key targets for reconnaissance and strike missions.

In general, UAV mission targets vary in depth of engagement: directly at the frontline; within 
the tactical zone behind the front line; and in the strategic depth of the enemy’s rear.  Typical  
objects  of  interest  for  reconnaissance  and  strike  UAV  missions  include  military  units  and 
equipment,  command  posts  and  control  centers,  depots  and  logistics  hubs,  energy  and  fuel 
infrastructure, as well as fortifications and engineering equipment.

UAV missions are classified according to their purpose and operational format. They can be 
reconnaissance or strike missions, executed as single sorties, group operations, swarms, or wave  
attacks. Operational conditions are taken into account, including the nature of frontline zones, the 
presence of countermeasures and other threats, environmental features (terrain, urban areas), and 
concealment levels.

Thus, the UAV mission planning process represents a complex system of interaction between 
command structures, forward units, and technical assets, taking into account the characteristics of 
the combat environment and potential enemy actions.

In  this  study,  an  integrated  approach  is  applied,  combining  simulation  modeling  within  a 
specially developed UAV mission planner and machine learning methods to analyze key factors 
determining the effectiveness of combat tasks.

1. Simulation Modeling

We developed a UAV mission planner for strategic and tactical operation planning (Figure 3), 
which provides for:

 modeling complex combat scenarios.
 selection and prioritization of targets.
 forecasting potential UAV losses.
 consideration  of  countermeasures  from  electronic  warfare  (EW)  and  air  defense  (AD) 

systems.
 automatic generation of routes for UAV groups with the possibility of wave attacks.
 evaluation of probable mission effectiveness before uploading into the real flight control 

system.

During the modeling process,  mission routes are generated with corresponding tactical  and 
technical characteristics (route length, speed, flight altitude, number of maneuver points, number of 
UAVs  in  a  group,  launch  modes,  etc.).  Subsequently,  task  execution  simulation  accounts  for 
dynamic losses within the operational zones of AD and EW systems.

Results of simulation experiments:



 assigned target damage.
 UAV losses during task execution.
 mission routes in the format of start and finish coordinates, number of intermediate points, 

route length, number of UAVs involved, speed, duration, etc.

2. Training Dataset Formation

The simulation model in the mission planner includes the following agent populations:

 Drone – UAV agent.
 Mission – mission agent.
 WayPoint – route point agent.
 Target – target agent.
 Radar – AD/EW threat zone agent.

Figure 3: UAV Mission Planner Interface.

Additionally,  we  have  formed  a  database  that  can  be  easily  integrated  and  adapted  for 
interaction with real combat management systems and the situational center.

This database includes:

 Flight logs – telemetry data generated in the mission planner during mission simulation,  
and in real operations, provided by the autopilot. The geographic information system used 
is OpenStreetMap, and terrain data is handled via the Google Maps Elevation API.

 Mission plan table – data on UAV mission routes generated in the planner.
 Threat intelligence table – deployed threat zones (AD, EW) in the planner,  and in real 

operations, data from reconnaissance units or integrated monitoring systems.



 Weather  table  –  obtained  from  external  APIs;  we  use  the  OpenWeather  API,  which 
provides historical data, current weather conditions, and hourly forecasts for any location.

 Mission outcome table – aggregated data after mission simulations.

The integration of these diverse data sources enabled the creation of a unified dataset, where 
each row corresponds to a single UAV mission (Table 1). This dataset includes both technical route 
parameters  and  external  factors  that  determine  mission  execution  conditions.  Features  were 
selected based on their importance for assessing mission success and their suitability for use in  
machine learning algorithms for outcome prediction.

Table 1
Description of the Dataset for Machine Learning 

Feature Data Type Description

MissionID Integer (ID) Unique Mission ID in Planner

DroneType Categorical UAV  Type  (reconnaissance,  strike,  FPV,  loitering 
munition) 

RouteLength Numeric (km) Total Mission Route Length

AltitudeMean Numeric (m) Average Flight Altitude Above Ground Level

Formation Categorical Operational Format (Single, Group, Swarm, Wave)

WaypointsCount Numeric Number of Waypoints (Maneuver Points) per Mission

Weather_Wind Numeric (m/s) Average Wind Speed During Mission

Weather_Cloud Numeric (%) Cloudiness During Mission

Threat_EW Binary (0/1) Presence of EW Systems in Route Area

Threat_AD Binary (0/1) Presence of AD Systems in Route Area

Duration Numeric (min) Mission Duration

Loss Binary (0/1) UAV Loss During Mission (Yes/No)

Success Binary (0/1) Mission Outcome (Success/Failure)

This set of features encompasses both technical route parameters and UAV characteristics, as 
well as external environmental factors and enemy threats, enabling the construction of predictive 
and analytical models for risk assessment and mission planning optimization.

3. Application of Machine Learning Methods

To analyze the factors influencing UAV mission success, several machine learning approaches 
were applied:

 Logistic  Regression – as  a  baseline interpretable model  to  establish initial  relationships 
between features and mission outcomes.

 Decision Trees – to identify important features and generate explainable decision rules.



 Ensemble  Methods (including Random Forest  and XGBoost)  –  to  improve classification 
accuracy and provide more reliable feature importance estimation.

 Neural Networks – to explore complex nonlinear relationships that may not be captured by 
simpler models.

4. Interpretation of Results

The  above  models  allowed  us  to  determine  the  relative  importance  of  various  factors  and 
identify the variables that most significantly affect the probability of mission success. This, in turn, 
forms the basis for integrating ML analysis results directly into the mission planner, providing 
users with recommendations for optimal UAV operation planning.

5. Data analysis and modeling results

To better understand the dataset structure and identify potential relationships between variables, 
an initial exploratory data analysis (EDA) was conducted. 

Figure 4 presents a heatmap of correlations among numerical and ordinal variables. A strong 
positive  correlation  is  observed  between  RouteLength  and  the  number  of  waypoints 
(WaypointsCount, r≈0.98), which is expected as longer routes typically contain more waypoints. A 
high  correlation  is  also  found  between  RouteLength  and  flight  duration  (Duration,  r≈0.87), 
confirming that mission time depends on distance. Features related to mission success (Success) 
show  negative  correlations  with  threat  factors  (Threat_EW  and  Threat_AD_num,  r≈-0.20), 
indicating their influence on the probability of mission completion. As expected, the Loss variable 
is strongly inversely correlated with Success (r≈-0.81). This analysis confirms the relevance of route 
and threat factors for building predictive models of mission outcomes.

Figure 4: Feature Correlation Heatmap.

Figure 5 illustrates the distribution of mission route length (RouteLength) considering mission 
formation (Formation) and the presence of electronic warfare threats (Threat_EW).

Across all formation types (e.g., swarm, single), route lengths are fairly uniformly distributed 
between 20–200 km. The impact of EW threats is reflected in shifts in distributions: for swarms,  
missions with longer routes occur more frequently even in the presence of EW threats. For single  
UAVs, EW threats are more often associated with medium and longer routes, potentially increasing 



the risk of UAV loss. These and other visualizations allow preliminary insights into the dataset 
structure and highlight the necessity of machine learning models for uncovering complex patterns.

The performance metrics of the evaluated models are presented in Table 2. The baseline logistic 
regression model demonstrated the highest classification accuracy (Accuracy = 0.685) and AUC 
(0.727), indicating its capability to reliably distinguish between successful and failed missions even 
with a relatively simple linear structure. Its recall (0.454) was moderate, meaning the model did not  
always detect all failure cases.

Figure 5: Distribution of Route Length by Mission Formation and Presence of EW Threats.

Decision  tree-based  models  showed  slightly  lower  accuracy  (Decision  Tree:  0.651,  Random 
Forest:  0.651)  but  provided  better  interpretability  and  transparency  of  decision  rules.  Among 
ensemble methods, Random Forest was the most stable in terms of Precision and F1-score, while 
XGBoost showed a balance between Precision (0.509) and Recall (0.436) but lagged behind logistic 
regression in AUC. The neural network (MLP) achieved results comparable to ensemble methods 
(Accuracy = 0.637) but did not surpass classical algorithms in any key metric.

Since the baseline MLP demonstrated somewhat lower accuracy compared to other methods, an 
additional experiment was conducted to optimize its hyperparameters. A grid search with cross-
validation was applied, varying the hidden layer architecture, activation functions, weight update 
methods, and regularization coefficient.

Table 2
Consolidated Model Performance Metrics

Model Accuracy Precision Recall F1-score ROC_AUC

Logistic regression 0.685 0.588 0.454 0.512 0.727

MLP (tuned) 0.673 0.575 0.392 0.466 0.713

Random Forest 0.651 0.529 0.374 0.438 0.698

XGBoost 0.641 0.509 0.436 0.470 0.674

Baseline MLP 0.637 0.502 0.469 0.485 0.655

Decision Tree 0.651 0.527 0.396 0.452 0.654

The best-performing configuration included three hidden layers with sizes 128–64–32, the tanh 
activation function, the adam optimizer with an adaptive learning rate, and regularization with 



alpha ≈ 0.0061. The obtained results showed an improvement in classification accuracy to 0.673 
(compared to 0.637 in the baseline model). 

The confusion matrix analysis indicated that the network performed much better in classifying 
missions ending in failure (class 0), whereas for successful missions (class 1), Precision and Recall 
remained  lower  (0.58  and  0.39,  respectively).  However,  compared  to  the  baseline  MLP,  the 
improved  version  achieved  better  balance  between  the  classes.  This  suggests  that  applying 
sampling strategies or class weight adjustments could further increase the sensitivity of the model 
to successful mission cases.

In  conclusion,  logistic  regression  provided  the  best  balance  between  interpretability  and 
performance, achieving the highest ROC_AUC metrics. Ensemble methods can be useful for scaling 
the problem and handling larger datasets, while neural networks are suitable for exploring complex 
interdependencies among factors.

6. Discussion

The  obtained  results  indicate  that  assessing  UAV  mission  success  is  a  multifactorial  task,  
containing both linear and nonlinear relationships among features. The highest contribution to 
predictive  performance comes from factors  such as  route  length,  number  of  waypoints,  threat  
intensity (AD and EW), and environmental conditions. The impact of individual variables can vary 
significantly depending on the specific operational scenario. 

Logistic regression demonstrated the best performance among the evaluated models, suggesting 
a relatively linear nature of part of the dependencies in the data generated by the mission planner 
through simulation of multiple UAV missions. Ensemble methods, while less stable in results, allow 
identification of more complex combinations of factors.  This confirms the appropriateness of a 
combined approach: interpretable models can be used to establish baseline decision rules, while 
more sophisticated algorithms can support in-depth analysis and discovery of nontrivial patterns.

To evaluate the contribution of individual features to UAV mission outcome prediction, three 
methods  were  applied  –  Logistic  Regression,  Random  Forest,  and  XGBoost  –  allowing  the 
assessment of feature importance based on their influence on model predictions and uncertainty 
reduction  (Figure 6).

Figure 6: Feature Importance by Logistic Regression, Random Forest, and XGBoost.



The analysis showed that flight and route characteristics play a key role in route planning. The 
greatest  influence  is  observed  for  mean  flight  altitude  (AltitudeMean),  highlighting  its  critical  
importance  for  mission  effectiveness,  avoidance  of  AD and  EW  threats,  and  consideration  of 
weather conditions. Flight duration (Duration) is also significant as it directly affects battery/fuel 
resources, detection risks, and the necessity for precise path planning. The number of waypoints 
(WaypointsCount)  reflects  flight  complexity  and  the  UAV’s  maneuvering  capability  to  avoid 
potential threats. Route length (RouteLength) similarly influences mission outcomes, indicating the 
relationship between flight duration and resource constraints.

Figure 7 presents diagrams showing how the probability of success varies depending on the 
length  of  the  route,  average  altitude,  and  duration  using  the  Random  Forest  method.  Partial 
Dependence Plots indicate that increasing RouteLength beyond ~120 km reduces the likelihood of 
success,  while higher AltitudeMean increases it.  The effect of Duration is less pronounced and 
fluctuates around a stable level.

External  factors,  such  as  threats  and  weather,  have  a  smaller  but  still  important  effect. 
Specifically,  electronic  warfare  threats  (Threat_EW)  and  low-altitude  air  defense  systems 
(Threat_AD_low) contribute noticeably to the model, whereas weather conditions, such as clear 
skies  or  strong  wind,  have  relatively  lower  importance.  Drone  formation  characteristics 
(Formation_swarm, Formation_single) and UAV types (strike, recon, FPV, loitering munition) have 
a minor influence, indicating a secondary role in overall prediction.

Figure 7: Partial Dependence Plot to the Random Forest Method.

Overall,  the  Random  Forest  analysis  suggests  that  physical  route  parameters  and  flight 
characteristics  are  primary  determinants  of  UAV mission  effectiveness,  while  external  threats,  
environmental conditions, and UAV specifics play a secondary role. These findings emphasize the 
need to focus planning algorithms on route and flight parameter optimization to enhance mission 
efficiency and safety.

To evaluate the operational usability of the models, we analyzed precision-recall trade-offs and 
calibration. Figure 8 presents the PR curve for the positive class (mission success) with an average 
precision of 0.561. 



Figure 8: PR curve for the positive class (mission success).

Threshold analysis  (Table  3)  shows that  the best  F1  score  (0.598)  is  achieved at  a  decision 
threshold  of  0.30,  where  precision  is  0.487  and  recall  is  0.773.  This  configuration  provides  a  
balanced  trade-off,  ensuring  that  most  successful  missions  are  correctly  identified  while 
maintaining moderate precision. 

The corresponding confusion matrix illustrates this balance. Additionally, calibration analysis 
(Figure  9)  indicates  that  predicted  probabilities  are  reasonably  well  aligned  with  observed 
frequencies, which supports their use for decision-making and threshold adjustment in operational 
settings.

Table 3
Threshold analysis

Threshold Precision Recall F1-score Confusion Matrix 
(TP/FP/FN/TN)

0.20 0.443 0.912 0.596 164 / 313 / 24 / 249

0.30 (best F1-score) 0.487 0.773 0.598 255 / 222 / 62 / 211

0.40 0.521 0.590 0.533 329 / 148 / 112 / 161

0.50 0.575 0.392 0.466 398 / 79 / 166 / 107

0.60 0.651 0.253 0.364 440 / 37 / 204 / 69



Figure 9: Results of calibration analysis.

To  assess  robustness  and  mitigate  potential  data  leakage  across  operational  groups,  we 
performed grouped cross-validation using GroupKFold. The results show consistent performance 
across folds (Fold 1: AUC=0.725, Fold 2: AUC=0.734, Fold 3: AUC=0.707, Fold 4: AUC=0.713). The 
mean AUC across folds was 0.720 (std=0.011), indicating that the model generalizes well across 
different operational partitions.

These  results  are  particularly  important  in  a  military  context,  as  model  interpretability  is 
crucial: decisions must be understandable to commanders and integrable into real-world mission 
planning processes.  Future work could incorporate target  selection criteria,  dynamic battlefield 
factors, and uncertainty in intelligence data.

7. Conclusions

In this study, a methodology for analyzing factors affecting UAV mission success was developed 
and validated, integrating simulation-based mission planning with machine learning methods. The 
feature space affecting UAV mission performance was formalized, including UAV characteristics,  
route parameters,  environmental  conditions,  and enemy threats.  A data  generation mechanism 
based  on  simulation  of  tactical  scenarios  in  the  mission  planner  was  implemented,  enabling 
systematic study under various operational conditions.

Machine  learning models  (logistic  regression,  decision trees,  ensemble  methods,  and neural 
networks) were constructed and evaluated for mission outcome classification. Logistic regression 
demonstrated  the  highest  balanced  performance  (Accuracy  =  0.685,  ROC_AUC  =  0.727).  Key 
variables  significantly  influencing  mission  success  probability  were  identified,  including  route 
length, number of waypoints, intensity of AD and EW threats, and environmental factors.

The grouped cross-validation analysis confirmed that the model maintains stable performance 
across different operational  partitions (mean AUC=0.720 ± 0.011),  suggesting that the observed 
factor importance and predictive accuracy are not artifacts of a specific subset of the synthetic data 
but can be generalized across distinct mission scenarios.

Practical  recommendations  have  been  formulated  for  UAV  mission  planning  specialists, 
enabling adaptation of operational tactics according to environmental parameters and minimizing 
the  risk  of  mission  failure.  Overall,  the  results  demonstrate  the  effectiveness  of  integrating 
simulation-based  mission  planning  with  machine  learning  for  analyzing  and  predicting  UAV 
mission performance in complex tactical scenarios.

A key limitation of this study is the reliance on synthetic data generated by the simulation  
framework, which may not fully capture real-world operational complexity. Future research should 



incorporate external validation on real or shadow mission data to quantify the simulator-to-reality 
gap and improve model calibration for operational deployment.
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