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Abstract

Problem formalizability is examined under explicitly defined constraints of time and interaction budgets.
A five-level taxonomy (FO-F4) is introduced to characterize different degrees of formalizability, together
with a replicable protocol for estimating the distribution of these levels within a given course. To support
practical applicability in intelligent tutoring systems (ITS), a systematic mapping is established between
learner-facing mathematical interfaces and the programmatic APIs of state-of-the-art proof assistants
(Lean, Coq/Rocq, Isabelle) as well as external Automated Theorem Proving (ATP) and Satisfiability
Modulo Theories (SMT) back-ends. Worked mathematical examples are provided to demonstrate how this
mapping can be realized in practice. The study references current manuals and standards (Isabelle2025 &
Sledgehammer, Coq/Rocq 8.19, Mathematics in Lean 2025, SMT-LIB 2.7, Z3, and cvc5 documentation)
along with relevant benchmarks (miniF2F, LeanDojo, MATH) [1]-[6], [8]-[16]. To demonstrate
feasibility, we prepared an illustrative pilot on a curated set of undergraduate-level problems drawn from
typical algebra/calculus exercises. This pilot was not deployed in a live course, and its figures are
demonstrative rather than course-level estimates. We supply a small reproducibility package (data, solver
configurations, and proof-assistant scripts) to enable future replications and a planned in-situ study
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1. Introduction

Modern proof assistants, such as Isabelle/HOL, Coq (Rocq), and Lean, in combination with
Automated Theorem Proving (ATP) and Satisfiability Modulo Theories (SMT) back-ends, are now
capable of verifying extensive areas of mathematics, supported by steadily expanding libraries and
advanced automation techniques [1]-[5]. Nevertheless, a systematic planning instrument is still
lacking for educators to determine what proportion of a course’s problems can be readily
formalized and proved with modest instructional support, and which problems remain resistant
under comparable constraints. This paper proposes a resource-sensitive definition of
formalizability, introduces a five-level taxonomy (FO-F4), and establishes a replicable measurement
protocol. In addition, a structured mapping is presented from learner-facing mathematical
interfaces to the application programming interfaces (APIs) of Isabelle/Sledgehammer, Lean, and
Rocq/Coq, together with standardized bridges to external ATP (TPTP) and SMT-LIB back-ends
(current version 2.7, released February 5, 2025) [2], [6], [11].
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2. Related Work: Educational Uses of Proof Assistants and ATP/SMT

Lean in mathematics education. A growing body of work analyzes Lean as a vehicle for teaching
proof. Thoma & lannone report an exploratory study with first-year undergraduates, observing
positive effects on students’ ability to construct proofs—even on paper—after working with Lean
[17]. Massot details didactic goals and classroom experience, including controlled natural-language
and “verbose” modes for beginners [18]. A pilot by Bottoni in a “Foundations of Mathematics”
course evaluates Lean’s impact on understanding and on organizing practical sessions [19]. Beyond
formal studies, there is a wide practice of university courses and workshops that integrate Lean
into undergraduate math curricula (e.g., “Courses using Lean” and the “Learning Mathematics with
Lean” event series) [20], [21]. Collectively, these sources underscore Lean’s strengths for instant
feedback, graded hints, and scaffolded library use, while leaving open a course-level metric of what
fraction of typical problems can be quickly formalized.

Coq (Rocq) in logic/programming courses. The long-running textbook series Software
Foundations has served as a “gentle on-ramp” to Coq for logic, semantics, and algorithm
verification; a “15 years on” retrospective summarizes pedagogical principles and experience at
scale [22], [23]. Earlier case studies document teaching logic and formal methods with Coq in
classroom settings [24]. These works highlight the effectiveness of tactical learning (induction,
equality rewriting, lia/ring automation) and stepwise feedback, but they do not provide
resource-oriented per-course estimates of problem shares.

Isabelle/HOL in formal methods — and even examinations. Several “from the classroom” reports
exist. Villadsen et al. describe Isabelle in two courses on logic and automated reasoning and share
organizational practices [25]. Jacobsen shows how exams in automated reasoning can be built in
Isabelle so that a large portion of grading is semi-automated [26]. Updated tutorials (e.g., Nipkow’s
Programming and Proving in Isabelle/HOL and the Isabelle tutorial) serve as pedagogical
foundations, especially for induction and equivalence transformations typically used near the start
of a course [27], [28]. In practice, automation (notably Sledgehammer) reduces manual burden;
however, none of these works quantify a course in terms of “% of problems FO/F1...” under fixed
time/hint budgets.

Where SMT and ATP fit pedagogically. In deductive verification education, Why3-based courses
show how to structure topics (loop invariants, ghost code, specifications) with industrial SMT
back-ends [29]. In the ACL2 community, pedagogic IDEs such as DRACULA and Proof Pad ease
students’ first steps [30], [31]. For auto-checking programming tasks, SMT-based systems (e.g.,
AutoRubric) reduce student code to solver formulas for equivalence checking against references
[32]. There are also student-oriented guides to SMT modeling and solver use [33]. The conclusion
across these lines is consistent: SMT/ATP cover QF_LIA/NRA and equality problems well (often
F0-F1 in similar to proposed scale), yet their role in a comprehensive course profile is usually
described narratively—without systematic statistics.

Links to Al-assisted proving and benchmarks. For hint selection and advanced challenge sets,
two modern corpora are particularly relevant: LeanDojo (programmatic access to Lean proof states
with retrieval augmentation) and miniF2F (formalized Olympiad-level problems) [34], [35]. These
resources focus on proof difficulty and lemma retrieval, but do not offer course-oriented estimates
of “what fraction of real curricular problems can be quickly formalized.” That precise gap is
addressed by this paper’s methodology (UI—API mapping in §3 and measurement protocol in §6)
[1]-[16].

A complementary perspective is provided by A. Chukhray et al., where proposed that formal
verification systems (i.e., interactive proof assistants and automated theorem provers) could be
integrated into Intelligent Tutoring Systems for higher mathematics courses in order to enable the
checking of complex problems, not just routine exercises [36]. This vision directly motivates our
resource-aware taxonomy, since it raises the practical question of which types of problems are
formally checkable within reasonable budgets and how such capabilities can be embedded into
adaptive ITS workflows.



3. Interface mapping (learner math Ul — prover APls — ATP/SMT)
3.1. Conceptual layers

*  (A) Learner UI (math layer): typed expressions, goals, and actions (Simplify, Rewrite, Prove,
Search lemma, Solve inequalities).

*  (B) Logical AST: typed terms, binders ( v ,3 ), connectives, algebraic structures (semirings,
rings, fields), vectors/matrices [7].

* (C) Prover interface: tactics + libraries in Lean (mathlib), Rocq/Coq, Isabelle/HOL [1], [3]-
(5].

* (D) External automation: Sledgehammer bridges Isabelle to ATP/SMT; direct SMT-LIB calls
target Z3/cvc5 for fragments like QF_LIA/NRA; TPTP is the de-facto ATP format [2], [6],
(8].[9], [11]-[13].

3.2. Data model and translation
Let the UI grammar of terms be
tri=x/c/f(t)it@t/(t,t)r{t/d(t)} 1)
and formulas
Qri=t=t/t<t/ -/ PA P/ Vv d/ V X.¢/ T X.¢. )
A compiler @ maps Ul inputs to a typed AST [7] of the target system (HOL with type
classes/locales). Constraints ¢ are normalized to solver fragments (e.g., QF LIA/NRA) when

possible; otherwise they remain interactive subgoals. The ITP kernel checks proof terms; external
tools only propose steps [1], [6], [8], [9].

3.3. Mapping tables
Table 1
Object-level mapping from math UI to prover APIs and solver logics.
Math Ul element Lean (mathlib) Coq/Rocq  Isabelle/HOL  ATP/SMT logic
N.Z.Q.R.C Nat, Int, Rat, nat, Z, Q, nat, int, QF LIA /
Ty Real, Complex R, C rat, real, (QF_ )NRA
complex -
Sets, xe S,SC T Set a, x € s, s stdlib/ sets-as-predic  FOL fragments
e Ensembles ates/locales
Algebraic structures ~ Semiring, Ring,  ring/field locales/type —
i clel biodile libs classes
Quantifiers/ forall, Exists, forall, exists, V,3,A,v,—  FOL fragments
connectives T JAUR\ VAR

Vectors/Matrices Matrix, Fin n mathcomp/ HOL-Algebra linear (partial)
stdlib / analysis




Notes: Lean mathlib and Mathematics in Lean expose consistent APIs; Rocq/Coq provides
ring/field/ lia; Isabelle organizes algebra via locales and algebra_simps [1], [3]-[5].

Table 2
Action-level mapping (UI verb — tactics / solver calls).
UI action Lean (mathlib) Coq/Rocq Isabelle/HOL  External
Simplify simp, simpl, cbn simp —
simp_all
Rewrite by lemma rewrite rewrite simp add: _—
[lemma ] lemma lemma
Prove polynomial ring ring/field algebra simp gsometimes SMT
identity S
Solve linear linarith lia Limeidiln/ SMT QF LIA in
constraints BLth Z3/cvch
Search for lemma apply?, Search, Sledgehammer ATP (E, Vampire)
librari_searc eauto via TPTP
Nonlinear real nlinarith nra, psatz nlinarith SMT QF_NRA
arith. (partial) (partial) (heuristic)

On Isabelle, Sledgehammer bridges to ATP/SMT; SMT-LIB 2.7 is the latest spec (Feb 2025); Z3/cvc5
provide proof/trace documentation [2], [6]-[9], [12], [13].

3.4. Benchmarks

For challenge pools and evaluation in tutors and research: miniF2F (formal Olympiad-level tasks),
LeanDojo (programmatic access to Lean proof states), and MATH (text-first, step-by-step
competition problems) [14]-[16].

3.5. Correctness by translation (safety)

If the UI—>AST compiler @ preserves types and binds symbols to intended structures (e.g., R as a
field), and the target ITP kernel checks the proof term m of ®(¢), then the original Ul statement ¢
holds in the intended structure. External ATP/SMT calls are advisory; kernels verify [1], [6]-[9].

4. Operational definition and the FO-F4 taxonomy

Definition (formalizability under budget B).
A mathematics problem P is formalizable under B if there exists:

1. an adequate encoding [[ P ]] in the target logic/system and
2. achecked derivation (by automation and/or interactive steps) within B, where

B=(time limits , interaction limits , library scope ) ®3)

Taxonomy (indicative budgets; tune to course level).



* F0 — Fully automatic. Solved without human hints (<30s wall time). Typical: rewriting,
linear arithmetic, polynomial identities. Lean: simp, linarith, ring; Coq: lia, ring;
Isabelle: simp, linarith, algebra_simps; SMT: QF LIA/NRA; ATP: equality +
rewriting.

* F1 — Minimal hints. 1-3 tactics or a short sketch (<5min). May reuse one auxiliary lemma;
at most 2 external calls (Sledgehammer/SMT).

* F2 — Short structured proof. 5-20min; several steps and 1-3 lemmas using standard
libraries (analysis/algebra).

* F3 — Nontrivial development. 20-60 min+; needs helper lemmas/definitions; substantial
tactic/solver orchestration.

* F4 — Impractical under BBB. Lacks abstractions/lemmas or requires costly encodings (e.g.,
delicate geometry, compactness/existence arguments).

Drivers of complexity. (i) Library coverage (definitions/theorems present?); (ii) Logic/fragment
(e.g., first-order vs. higher-order, SMT theory availability); (iii) Proof archetype (equational,
inductive, -0, existence); (iv) Lemma search (availability vs. invention).

5. Mathematical foundations and worked examples

This section presents a sequence of representative mathematical results, each formulated as a self-
contained statement and accompanied by a proof sketch. For each result, we provide formal code
snippets in Lean, Coq (Rocq), and Isabelle/HOL, which serve to illustrate its placement within the
proposed F-level taxonomy.

5.1. Algebraic identities (ring normalization)

Theorem 4.1 (Binomial identity). V x,y € R: (x+y)2= X +2xy+y°
Proof sketch. Normalization in the equational theory of commutative semirings.
1. Lean:

theorem binomial (x y : R) : (x + y)"2 = x"2 + 2*x*y + y*2 := by ring
2. Isabelle/HOL:

lemma binomial: " (x + y)72 = x"2 + 2*x*y + y~2"
by (simp add: algebra simps)

3. Coq/Rocq:

From Cog Require Import Reals Psatz.

Open Scope R scope.

Lemma binomial : forall x y: R, (x + y)7*2 = x"2 + 2*x*y + y"2.
Proof. ring. Qed.

Typical F-level: FO (library-backed normalization).

5.2. Linear arithmetic and transitivity

Lemma4.2. Forall x, y,z€ Z,if x<yAy<zthenx<z.
Proof. Linear integer arithmetic.
1. Lean:

import Mathlib.Data.Int.Basic
open Int
theorem le transitive (x y z : Z) (hi1 : x <vy) (h2 : vy < 2z) : x

IA
N
Il

by



exact le trans hi h:
2. Coq/Rocq:

From Cog Require Import ZArith Lia.
Lemma le transitive (x y z : Z) : x <=y —> y <=2z -> x <= z.
Proof. intros; lia. Qed.

Typical F-level: FO (via lia/linarith/SMT QF_LIA).

5.3. Induction and sums

n
nin+1
Proposition 4.3 (Arithmetic series). V n€IN: Z k= %
k=1
Proof sketch. Induction on n.
Lean 4:
open Nat
theorem sum nat (n : N)
(> k in Finset.range (n+l), k) = n*(nt+l)/2 := by

-- uses library lemmas about "Finset.range  and sums
simpa using Nat.sum range id

Typical F-level: F1-F2 (one-page structured proof with library lemmas).

5.4. £-8 reasoning for limits

Proposition 4.4. Fora,b€R ,lim (bx)=ba

Xx=>a

Proof sketch.
Givene>0,choose §=¢/max(1,b|). If 0<|x—a|<S then|b x—b a|=|b||x—al<e

Typical F-level: F2-F3 (uses analysis libraries and e-6 lemmas).

5.5. Separable ODE
Example 4.5. Solve y'=Kky (constant k € IR)

Solution. y (X): Ce'™, A formal proof uses integration facts or exponential series;

Typical F-level: F2-F3 depending on library coverage (existence/uniqueness, differentiability of e

)-
6. Measurement protocol and statistical estimators

Let | P,|"_ be atomic problems sampled from a course.
Pipeline:

1. Normalization: harmonize notation; split multi-part items into atomic goals.
. Automation first: run SMT/ATP with strict timeouts (e.g., 30s, 1205).
3. ITP with light hints: Lean/Coq/Isabelle with a cap on hints/tactics (e.g., <3) and external
calls.

4. Labeling: assign FO-F4; record ¢, and t #hints, #external calls, tool versions.

prove’

5. Dual annotation: two annotators; reconcile; report Cohen’s
x

6. Aggregation: compute per-topic %F0...%F4 and medians.



6.1. Proportions and uncertainty

L _1x (4)
pi="-2_1(label (P,)=F]
ni=1
Table 3
Common proof archetypes and indicative automation strategies
Archetype Example topics Likely F-level Effective procedures
Equational rewriting polynomial identities FO-F1 simp, ring; SMT
arithmetic; ATP
equality
Linear inequalities bounds, systems FO-F1 linarith; lia; SMT
QF_LIA
Induction sequences, sums F1-F2 ITP induction + helper
lemma
€0 limits continuity F2-F3 analysis libraries +
guided steps
ODE tasks separable/linear F2-F3 rewrite + library facts;

limited SMT support

Olympiad assignments geometry/comb. F3-F4 bespoke lemmas; weak
direct automation

Normalize Automation —P[ ITP+Hints HF-labeling H t |T5t.
Integration

Figure 1: Measurement pipeline

7. Integrating F-labels into ITS

Adaptive scheduling.

Mass practice & instant feedback (FO-F1): auto-checkable pools; graded hints tied to mapped tactics
(e.g.,“Try linarith”). Strategy instruction (F2): scaffolded sketches; lemma search via apply? /
Sledgehammer([2]. Capstones (F3-F4): longer proofs; use miniF2F and LeanDojo tasks to assess
retrieval/lemma-search skills; compare with MATH for text-first problem difficulty [14]-[16].

7.1. Feedback mapping with Reverse Projection

Tactic failure — hint (UI math form).

* System: linarith fails.

*  Hint: “Try linarith after isolating linear terms.”



*  Math Ul mapping: highlight inequality x < y, y < z and suggest: “Try combining inequalities
to derive x < z.”

Solver counterexample — minimal falsifying instance.

* System: linarith fails.
*  Hint: “Try linarith after isolating linear terms.”

*  Math Ul mapping: highlight inequality x < y, y < z and suggest: “Try combining inequalities

toderive x < z.”

Proof state— subgoals listed for the learner with micro-hints.

7.2. Content authoring

Build a bank of formalized templates aligned with weekly topics (algebra, analysis, linear algebra,
ODEs), each tagged with F-labels and example code for Lean/Cogq/Isabelle.

8. lllustrative pilot and reproducibility

Scope and caveat. We conducted an illustrative pilot to exercise the labeling protocol on a curated
set of undergraduate problems. Importantly, this pilot was not run in a live course; its purpose is to
demonstrate workflow and artifacts, not to estimate course-level shares.

Setup. The set comprises 12 atomic problems (algebraic identities and linear inequalities,
induction/sums, -8 limits, a separable-ODE pattern). Budgets were fixed as specified earlier:
automation timeouts 30s & 120s, ITP hint cap <3, standard libraries for Lean4 / Coq (Rocq)8.19 /
Isabelle 2025, and Z3 / cvc5 / E / Vampire back-ends. Tool versions and commands are included in
the artifact.

Annotation and reliability. Two authors independently labeled the items (FO-F4) under the same
budgets; disagreements were reconciled. Cohen’s k=0.78 with 83% raw agreement (10/12),
indicating substantial agreement.

Table 4
F-level distribution for the illustrative pilot
F-level Count Share (%) Median time (s) Median time (s)
to formalize to prove
FO 4 33.3 18 10
F1 2 16.7 35 70
F2 4 33.3 55 180
F3 2 16.7 120 420
F4 0 0 - -

Interpretation. The FO-F1 items are routine equational/linear tasks (e.g., ring, linarith/lia;
QF_LIA in SMT). F2 typically needs short structured proofs (induction, e-8). F3 requires helper
lemmas/definitions (e.g., ODE facts). No F4 appeared under these budgets in this illustrative set.
These outcomes should not be read as course-level estimates.



9. Threats to validity

*  Version drift. Library growth can shift some items from F2—F1 or F1—F0; always report
tool versions and re-sample each term.

* Annotator expertise. F-labels depend on the skill of annotators in specific ITPs; mitigate
with dual annotation and .

* Topic idiosyncrasies. “Elementary” geometry/olympiad tricks may be F3-F4 due to
modeling overhead.

*  Logic mismatch. Results apply primarily to HOL-centric ITPs with ATP/SMT bridges.

10. Conclusion

This paper presents a resource-aware definition of formalizability; introduces the five-level FO-F4
taxonomy; specifies a measurement protocol with practical estimators; expands the set of
mathematical exemplars; and provides a Ul-to-API mapping that grounds intelligent tutoring
system (ITS) adaptation in the concrete capabilities of modern provers. Future work includes: (i)
releasing a benchmarked corpus of course problems annotated with F-labels; (ii) conducting
multi-institutional replications; and (iii) publishing fully reproducible scripts for Isabelle/HOL,
Lean, and Coq (Rocq), together with solver configurations. This paper includes an illustrative pilot
(8) that was not deployed in a live course; the reported figures are demonstrative.
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