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Abstract
Problem formalizability is examined under explicitly defined constraints of time and interaction budgets. 
A five-level taxonomy (F0–F4) is introduced to characterize different degrees of formalizability, together 
with a replicable protocol for estimating the distribution of these levels within a given course. To support  
practical applicability in intelligent tutoring systems (ITS), a systematic mapping is established between 
learner-facing mathematical  interfaces and the programmatic  APIs  of  state-of-the-art  proof  assistants 
(Lean,  Coq/Rocq,  Isabelle)  as  well  as  external  Automated  Theorem  Proving  (ATP)  and  Satisfiability 
Modulo Theories (SMT) back-ends. Worked mathematical examples are provided to demonstrate how this 
mapping can be realized in practice. The study references current manuals and standards (Isabelle2025 & 
Sledgehammer,  Coq/Rocq 8.19,  Mathematics in Lean 2025,  SMT-LIB 2.7,  Z3, and cvc5 documentation) 
along  with  relevant  benchmarks  (miniF2F,  LeanDojo,  MATH)  [1]–[6],  [8]–[16].  To  demonstrate 
feasibility, we prepared an illustrative pilot on a curated set of undergraduate-level problems drawn from 
typical  algebra/calculus  exercises.  This  pilot  was  not  deployed  in  a  live  course,  and  its  figures  are 
demonstrative rather than course-level estimates. We supply a small reproducibility package (data, solver 
configurations, and proof-assistant scripts) to enable future replications and a planned in-situ study
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1. Introduction

Modern  proof  assistants,  such  as  Isabelle/HOL,  Coq  (Rocq),  and  Lean,  in  combination  with 
Automated Theorem Proving (ATP) and Satisfiability Modulo Theories (SMT) back-ends, are now 
capable of verifying extensive areas of mathematics, supported by steadily expanding libraries and 
advanced automation techniques [1]–[5]. Nevertheless, a systematic planning instrument is still 
lacking  for  educators  to  determine  what  proportion  of  a  course’s  problems  can  be  readily 
formalized and proved with modest instructional support, and which problems remain resistant 
under  comparable  constraints.  This  paper  proposes  a  resource-sensitive  definition  of 
formalizability, introduces a five-level taxonomy (F0–F4), and establishes a replicable measurement 
protocol.  In  addition,  a  structured  mapping  is  presented  from  learner-facing  mathematical  
interfaces to the application programming interfaces (APIs) of Isabelle/Sledgehammer, Lean, and 
Rocq/Coq,  together with standardized bridges to external  ATP (TPTP) and SMT-LIB back-ends 
(current version 2.7, released February 5, 2025) [2], [6], [11]. 
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2. Related Work: Educational Uses of Proof Assistants and ATP/SMT

Lean in mathematics education. A growing body of work analyzes Lean as a vehicle for teaching 
proof.  Thoma & Iannone report an exploratory study with first-year undergraduates, observing 
positive effects on students’ ability to construct proofs—even on paper—after working with Lean 
[17]. Massot details didactic goals and classroom experience, including controlled natural-language 
and “verbose” modes for beginners [18].  A pilot by Bottoni in a “Foundations of Mathematics” 
course evaluates Lean’s impact on understanding and on organizing practical sessions [19]. Beyond 
formal studies, there is a wide practice of university courses and workshops that integrate Lean 
into undergraduate math curricula (e.g., “Courses using Lean” and the “Learning Mathematics with 
Lean” event series) [20], [21]. Collectively, these sources underscore Lean’s strengths for instant 
feedback, graded hints, and scaffolded library use, while leaving open a course-level metric of what 
fraction of typical problems can be quickly formalized.
    Coq (Rocq)  in  logic/programming  courses.  The  long-running  textbook  series  Software 
Foundations  has  served  as  a  “gentle  on-ramp”  to  Coq  for  logic,  semantics,  and  algorithm 
verification; a “15 years on” retrospective summarizes pedagogical principles and experience at 
scale [22],  [23].  Earlier case studies document teaching logic and formal methods with Coq in 
classroom settings [24].  These works highlight the effectiveness of  tactical  learning (induction, 
equality  rewriting,  lia/ring  automation)  and  stepwise  feedback,  but  they  do  not  provide 
resource-oriented per-course estimates of problem shares. 
     Isabelle/HOL in formal methods — and even examinations. Several “from the classroom” reports 
exist. Villadsen et al. describe Isabelle in two courses on logic and automated reasoning and share 
organizational practices [25].  Jacobsen shows how exams in automated reasoning can be built in 
Isabelle so that a large portion of grading is semi-automated [26]. Updated tutorials (e.g., Nipkow’s 
Programming  and  Proving  in  Isabelle/HOL and  the  Isabelle  tutorial)  serve  as  pedagogical 
foundations, especially for induction and equivalence transformations typically used near the start 
of a course [27],  [28].  In practice, automation (notably  Sledgehammer) reduces manual burden; 
however, none of these works quantify a course in terms of “% of problems F0/F1…” under fixed 
time/hint budgets. 
     Where SMT and ATP fit pedagogically. In deductive verification education, Why3-based courses 
show how to structure  topics  (loop invariants,  ghost  code,  specifications)  with industrial  SMT 
back-ends [29]. In the ACL2 community,  pedagogic IDEs such as DRACULA and Proof Pad ease 
students’  first  steps [30],  [31].  For  auto-checking programming tasks,  SMT-based systems (e.g., 
AutoRubric) reduce student code to solver formulas for equivalence checking against references 
[32]. There are also student-oriented guides to SMT modeling and solver use [33]. The conclusion 
across these lines is consistent: SMT/ATP cover  QF_LIA/NRA and equality problems well (often 
F0–F1 in  similar to proposed scale),  yet their role in a  comprehensive course profile is usually 
described narratively—without systematic statistics. 
     Links to AI-assisted proving and benchmarks. For hint selection and advanced challenge sets,  
two modern corpora are particularly relevant: LeanDojo (programmatic access to Lean proof states 
with retrieval augmentation) and miniF2F (formalized Olympiad-level problems) [34], [35]. These 
resources focus on proof difficulty and lemma retrieval, but do not offer course-oriented estimates 
of  “what  fraction  of  real  curricular  problems  can  be  quickly  formalized.”  That  precise  gap  is  
addressed by this paper’s methodology (UI→API mapping in §3 and measurement protocol in §6) 
[1]–[16].
   A complementary perspective is provided by A.  Chukhray et al.,  where proposed that formal 
verification systems (i.e.,  interactive proof assistants and automated theorem provers)  could be 
integrated into Intelligent Tutoring Systems for higher mathematics courses in order to enable the 
checking of complex problems, not just routine exercises [36]. This vision directly motivates our 
resource-aware taxonomy, since it raises the practical question of which types of problems are 
formally checkable within reasonable budgets and how such capabilities can be embedded into 
adaptive ITS workflows.



3. Interface mapping (learner math UI → prover APIs → ATP/SMT)

3.1. Conceptual layers

 (A) Learner UI (math layer): typed expressions, goals, and actions (Simplify, Rewrite, Prove,  
Search lemma, Solve inequalities).

 (B) Logical AST: typed terms, binders (∀ ,∃ ), connectives, algebraic structures (semirings, 
rings, fields), vectors/matrices [7].

 (C) Prover interface: tactics + libraries in Lean (mathlib), Rocq/Coq, Isabelle/HOL [1], [3]–
[5].

 (D) External automation: Sledgehammer bridges Isabelle to ATP/SMT; direct SMT-LIB calls 
target Z3/cvc5 for fragments like QF_LIA/NRA; TPTP is the de-facto ATP format [2], [6], 
[8] ,[9], [11]–[13].

3.2. Data model and translation

Let the UI grammar of terms be 

t : :=x ∣ c ∣ f (t )∣ t⊕ t ∣ (t , t )∣ {t ∣ ϕ(t )} (1)

and formulas 

ϕ : :=t=t ∣ t ≤ t ∣ ¬ϕ ∣ ϕ∧ ϕ ∣ ϕ∨ ϕ ∣ ∀ x .ϕ ∣ ∃ x .ϕ . (2)

A  compiler  Φ maps  UI  inputs  to  a  typed  AST  [7]  of  the  target  system  (HOL  with  type 
classes/locales).  Constraints  ϕ are  normalized  to  solver  fragments  (e.g.,  QF_LIA/NRA)  when 
possible; otherwise they remain interactive subgoals. The ITP kernel checks proof terms; external 
tools only propose steps [1], [6], [8], [9].

3.3. Mapping tables

Table 1
Object-level mapping from math UI to prover APIs and solver logics.

Math UI element Lean (mathlib) Coq / Rocq Isabelle/HOL ATP/SMT logic

ℕ ,ℤ ,ℚ ,ℝ ,ℂ Nat, Int, Rat, 
Real, Complex 

nat, Z, Q, 
R, C 

nat,  int, 
rat,  real, 
complex 

QF_LIA  / 
(QF_)NRA 

Sets, x∈ S , S⊆ T Set α, x  s∈ , s 
 t⊆  

stdlib/
Ensembles 

sets-as-predic
ates/locales

FOL fragments 

Algebraic structures Semiring, Ring, 
Field, Module 

ring/field 
libs 

locales/type 
classes 

— 

Quantifiers/
connectives 

forall, Exists, 
,∧  , →∨  

forall, exists, 
/\ , \\/, -> 

∀, ∃, ∧, ∨, ⟶ FOL fragments 

Vectors/Matrices Matrix, Fin n mathcomp/
stdlib 

HOL-Algebra  
/ analysis 

linear (partial) 



Notes: Lean  mathlib and  Mathematics  in  Lean expose  consistent  APIs;  Rocq/Coq  provides 
ring/field/lia; Isabelle organizes algebra via locales and algebra_simps [1], [3]–[5]. 

Table 2
Action-level mapping (UI verb → tactics / solver calls). 

UI action Lean (mathlib) Coq / Rocq Isabelle/HOL External

Simplify simp, 
simp_all 

simpl, cbn simp — 

Rewrite by lemma rewrite 
[lemma] 

rewrite 
lemma 

simp  add: 
lemma 

— 

Prove polynomial 
identity 

ring ring/field algebra_simp
s 

sometimes SMT 

Solve linear 
constraints 

linarith lia linarith/
arith 

SMT  QF_LIA  in 
Z3/cvc5

Search for lemma apply?, 
library_searc

h 

Search, 
eauto 

Sledgehammer ATP  (E,  Vampire) 
via TPTP

Nonlinear real 
arith. 

nlinarith 

(partial) 
nra, psatz nlinarith 

(partial) 
SMT  QF_NRA 
(heuristic)

On Isabelle, Sledgehammer bridges to ATP/SMT; SMT-LIB 2.7 is the latest spec (Feb 2025); Z3/cvc5 
provide proof/trace documentation [2], [6]–[9], [12], [13]. 

3.4. Benchmarks

For challenge pools and evaluation in tutors and research: miniF2F (formal Olympiad-level tasks), 
LeanDojo (programmatic  access  to  Lean  proof  states),  and  MATH (text-first,  step-by-step 
competition problems) [14]–[16]. 

3.5. Correctness by translation (safety)

If the UI→AST compiler Φ preserves types and binds symbols to intended structures (e.g., ℝ as a 
field), and the target ITP kernel checks the proof term π of Φ(ϕ), then the original UI statement ϕ 
holds in the intended structure. External ATP/SMT calls are advisory; kernels verify [1], [6]–[9]. 

4. Operational definition and the F0–F4 taxonomy

Definition (formalizability under budget B). 
A mathematics problem P is formalizable under B if there exists:

1. an adequate encoding [ [P ]] in the target logic/system and
2. a checked derivation (by automation and/or interactive steps) within B, where 

B=(time limits , interaction limits , library scope) (3)

Taxonomy (indicative budgets; tune to course level). 



 F0 — Fully automatic. Solved without human hints (≤ 30 s wall time). Typical: rewriting, 
linear arithmetic, polynomial identities. Lean: simp, linarith, ring; Coq: lia, ring; 
Isabelle:  simp,  linarith,  algebra_simps;  SMT:  QF_LIA/NRA;  ATP:  equality  + 
rewriting. 

 F1 — Minimal hints. 1–3 tactics or a short sketch (≤ 5 min). May reuse one auxiliary lemma; 
at most 2 external calls (Sledgehammer/SMT). 

 F2  —  Short  structured  proof. 5–20 min;  several  steps  and  1–3  lemmas  using  standard 
libraries (analysis/algebra). 

 F3  — Nontrivial  development. 20–60 min+;  needs  helper  lemmas/definitions;  substantial 
tactic/solver orchestration. 

 F4 — Impractical under BBB. Lacks abstractions/lemmas or requires costly encodings (e.g., 
delicate geometry, compactness/existence arguments). 

Drivers  of  complexity. (i)  Library  coverage (definitions/theorems  present?);  (ii)  Logic/fragment 
(e.g.,  first-order  vs.  higher-order,  SMT  theory  availability);  (iii)  Proof  archetype (equational, 
inductive, ε–δ, existence); (iv) Lemma search (availability vs. invention). 

5. Mathematical foundations and worked examples

This section presents a sequence of representative mathematical results, each formulated as a self-
contained statement and accompanied by a proof sketch. For each result, we provide formal code 
snippets in Lean, Coq (Rocq), and Isabelle/HOL, which serve to illustrate its placement within the 
proposed F-level taxonomy.

5.1. Algebraic identities (ring normalization)

Theorem 4.1 (Binomial identity). ∀ x , y∈ ℝ :(x+ y)2=x2+2 xy+ y2

Proof sketch. Normalization in the equational theory of commutative semirings. 
1. Lean:

theorem binomial (x y : ) : (x + y)^2 = x^2 + 2*x*y + y^2 := by ringℝ

2. Isabelle/HOL: 

lemma binomial: "(x + y)^2 = x^2 + 2*x*y + y^2" 
by (simp add: algebra_simps)

3. Coq / Rocq:

From Coq Require Import Reals Psatz.
Open Scope R_scope.
Lemma binomial : forall x y: R, (x + y)^2 = x^2 + 2*x*y + y^2.
Proof. ring. Qed.

Typical F-level: F0 (library-backed normalization). 

5.2. Linear arithmetic and transitivity

Lemma 4.2. For all 𝑥 , 𝑦 ,𝑧 ∈ ℤ , if x ≤ y∧ y ≤ z then x ≤ z .
Proof. Linear integer arithmetic. 

1. Lean:

import Mathlib.Data.Int.Basic
open Int
theorem le_transitive (x y z : ) (h  : x ≤ y) (h  : y ≤ z) : x ≤ z := byℤ ₁ ₂



  exact le_trans h  h₁ ₂

2. Coq / Rocq:

From Coq Require Import ZArith Lia.
Lemma le_transitive (x y z : Z) : x <= y -> y <= z -> x <= z.
Proof. intros; lia. Qed.

Typical F-level: F0 (via lia/linarith/SMT QF_LIA). 

5.3. Induction and sums

Proposition 4.3 (Arithmetic series). ∀ n∈ℕ :∑
k=1

n

k=
n(n+1)

2
.

Proof sketch. Induction on n. 
Lean 4:

open Nat
theorem sum_nat (n : ) :ℕ
    (∑ k in Finset.range (n+1), k) = n*(n+1)/2 := by
  -- uses library lemmas about `Finset.range` and sums
  simpa using Nat.sum_range_id

Typical F-level: F1–F2 (one-page structured proof with library lemmas). 

5.4. ε–δ reasoning for limits

Proposition 4.4. For a ,b∈ℝ , lim
x→a

(b x)=ba

Proof sketch. 
Given ε>0 , choose δ=ε /max (1 ,|b|). If 0<|x−a|<δ then|b x−ba|=|b||x−a|<ε  

Typical F-level: F2–F3 (uses analysis libraries and ε–δ lemmas).

5.5. Separable ODE

Example 4.5. Solve y ′=ky (constant k ∈ ℝ)

Solution. y (x)=C ekx, A formal proof uses integration facts or exponential series; 

Typical F-level: F2–F3 depending on library coverage (existence/uniqueness, differentiability of ekx

). 

6. Measurement protocol and statistical estimators

Let {Pi }i=1
n be atomic problems sampled from a course.

Pipeline:

1. Normalization: harmonize notation; split multi-part items into atomic goals.
2. Automation first: run SMT/ATP with strict timeouts (e.g., 30 s, 120 s).
3. ITP with light hints: Lean/Coq/Isabelle with a cap on hints/tactics (e.g., ≤ 3) and external 

calls.
4. Labeling: assign F0–F4; record t formalize and t prove, #hints, #external calls, tool versions. 
5. Dual  annotation:  two  annotators;  reconcile;  report  Cohen’s 𝜅
6. Aggregation: compute per-topic %F0…%F4 and medians.



6.1. Proportions and uncertainty

p̂k=
1
n
∑
i=1

n

1{label (Pi)=Fk }
(4)

Table 3
Common proof archetypes and indicative automation strategies 

Archetype Example topics Likely F-level Effective procedures 

Equational rewriting polynomial identities  F0–F1 simp, ring; SMT 
arithmetic; ATP 

equality 

Linear inequalities bounds, systems F0–F1 linarith; lia; SMT 
QF_LIA 

Induction sequences, sums F1–F2 ITP induction + helper 
lemma 

ε–δ limits continuity F2–F3 analysis libraries + 
guided steps 

ODE tasks separable/linear F2–F3 rewrite + library facts; 
limited SMT support 

Olympiad assignments geometry/comb. F3–F4 bespoke lemmas; weak 
direct automation 

Figure 1: Measurement pipeline

7. Integrating F-labels into ITS

Adaptive scheduling. 
Mass practice & instant feedback (F0–F1): auto-checkable pools; graded hints tied to mapped tactics 
(e.g.,“Try  linarith”).  Strategy  instruction  (F2):  scaffolded  sketches;  lemma  search  via  apply?  /  
Sledgehammer[2].  Capstones (F3–F4):  longer proofs;  use miniF2F and LeanDojo tasks to assess 
retrieval/lemma-search skills; compare with MATH for text-first problem difficulty [14]–[16].

7.1. Feedback mapping with Reverse Projection 

Tactic failure → hint (UI math form).

 System: linarith fails.

 Hint: “Try linarith after isolating linear terms.”



 Math UI mapping: highlight inequality x ≤ y, y ≤ z and suggest: “Try combining inequalities 
to derive x ≤ z.”

 Solver counterexample → minimal falsifying instance. 

 System: linarith fails.

 Hint: “Try linarith after isolating linear terms.”

 Math UI mapping: highlight inequality x ≤ y, y ≤ z and suggest: “Try combining inequalities 
to derive x ≤ z.”

Proof state→ subgoals listed for the learner with micro-hints.

7.2. Content authoring

Build a bank of formalized templates aligned with weekly topics (algebra, analysis, linear algebra, 
ODEs), each tagged with F-labels and example code for Lean/Coq/Isabelle. 

8. Illustrative pilot and reproducibility

Scope and caveat. We conducted an illustrative pilot to exercise the labeling protocol on a curated 
set of undergraduate problems. Importantly, this pilot was not run in a live course; its purpose is to 
demonstrate workflow and artifacts, not to estimate course-level shares. 
Setup. The  set  comprises  12  atomic  problems (algebraic  identities  and  linear  inequalities, 
induction/sums,  ε–δ  limits,  a  separable-ODE  pattern).  Budgets  were  fixed  as  specified  earlier: 
automation timeouts 30 s & 120 s, ITP hint cap ≤ 3, standard libraries for Lean 4 / Coq (Rocq) 8.19 / 
Isabelle 2025, and Z3 / cvc5 / E / Vampire back-ends. Tool versions and commands are included in 
the artifact. 
Annotation and reliability. Two authors independently labeled the items (F0–F4) under the same 
budgets;  disagreements  were  reconciled.  Cohen’s  κ = 0.78 with  83 % raw  agreement  (10/12), 
indicating substantial agreement. 

Table 4
F-level distribution for the illustrative pilot  

F-level Count Share (%) Median  time  (s) 
to formalize

Median  time  (s) 
to prove

F0 4 33.3 18 10

F1 2 16.7 35 70

F2 4 33.3 55 180

F3 2 16.7 120 420

F4 0 0 - -

Interpretation. The F0–F1 items are routine equational/linear tasks (e.g., ring, linarith/lia; 
QF_LIA in SMT).  F2 typically needs short structured proofs (induction, ε–δ).  F3 requires helper 
lemmas/definitions (e.g., ODE facts).  No F4 appeared under these budgets in this  illustrative set. 
These outcomes should not be read as course-level estimates. 



9. Threats to validity

 Version drift. Library growth can shift some items from F2→F1 or F1→F0; always report 
tool versions and re-sample each term.

 Annotator expertise. F-labels depend on the skill of annotators in specific ITPs; mitigate 
with dual annotation and .𝜅

 Topic  idiosyncrasies.  “Elementary”  geometry/olympiad  tricks  may  be  F3–F4  due  to 
modeling overhead.

 Logic mismatch. Results apply primarily to HOL-centric ITPs with ATP/SMT bridges.

10. Conclusion

This paper presents a resource-aware definition of formalizability; introduces the five-level F0–F4 
taxonomy;  specifies  a  measurement  protocol  with  practical  estimators;  expands  the  set  of 
mathematical  exemplars;  and  provides  a  UI-to-API  mapping  that  grounds  intelligent  tutoring 
system (ITS) adaptation in the concrete capabilities of modern provers. Future work includes: (i)  
releasing  a  benchmarked  corpus  of  course  problems  annotated  with  F-labels;  (ii)  conducting 
multi-institutional  replications;  and  (iii)  publishing  fully  reproducible  scripts  for  Isabelle/HOL, 
Lean, and Coq (Rocq), together with solver configurations. This paper includes an illustrative pilot 
(8) that was not deployed in a live course; the reported figures are demonstrative.
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