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Abstract

Breast cancer tumor detection and segmentation in ultrasound imaging is crucial for improving early diagnosis
and guiding treatment decisions. This paper presents a two-stage deep learning framework that integrates lesion
localization-guided semantic segmentation to enhance tumor detection in breast ultrasound images. In the first
stage, YOLOv11-n-nano, a lightweight detection model with approximately 2 million parameters, is employed
to localize suspicious regions of interest. In the second stage, advanced segmentation architectures—including
U-Net++, U-Net3+, Attention U-Net, and TransUNet—are applied to refine the segmentation of the localized
areas. The proposed framework is evaluated on the publicly available BUS_UCLM dataset. Our approach achieves
state-of-the-art performance, with DeepLabV3 obtaining a Dice score of 94.31% and an Intersection over Union
(IoU) of 92.10%. These results highlight the effectiveness of localization-guided segmentation in reducing false
positives and improving segmentation accuracy in breast ultrasound imaging.
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1. Introduction

According to the World Health Organization, breast cancer is the most commonly diagnosed cancer
among women worldwide, with over 2.3 million new cases in 2020 and accounting for approximately
685,000 deaths annually [1]. The diagnosis and treatment of breast cancer rely on multiple steps,
including clinical examinations and imaging techniques, to assess tumor presence, stage, and biological
characteristics. Among imaging modalities, ultrasound plays a central role in breast cancer diagnosis,
especially in young women and in patients with dense breast tissue, where mammography may be less
effective [2].

Breast ultrasound imaging offers several advantages: it is non-invasive, cost-effective, portable,
and free of ionizing radiation. However, ultrasound suffers from inherent limitations such as speckle
noise, low contrast, operator dependency, and variability in acquisition protocols [3]. These factors
make accurate interpretation a challenging task, often requiring considerable radiologist expertise.
Consequently, the integration of Artificial Intelligence (Al), particularly deep learning, into ultrasound
analysis has emerged as a promising direction for automating lesion detection, classification, and
segmentation.

In recent years, deep learning techniques, especially convolutional neural networks (CNNs), have
demonstrated remarkable success in medical image analysis tasks including classification, detection, and
segmentation [4, 5, 6, 7]. Several studies have focused on the diagnosis of breast lesion in mammography
and MRIL; however, fewer studies have systematically addressed the breast tumor segmentation in
ultrasound images. This task remains difficult due to factors such as heterogeneous tissue appearance,

ProfIT AI'25: 5th International Workshop of IT-professionals on Artificial Intelligence, October 15-17, 2025, Liverpool, UK
*Corresponding author.

& farioua@univ-boumerdes.dz (F. Arioua); f.touazi@univ-boumerdes.dz (F. Touazi); d.gaceb@univ-boumerdes.dz

(D. Gaceb); t.benzenati@univ-boumerdes.dz (T. Benzenati); i.telkhoukh@univ-boumerdes.dz (I. Telkhoukh);
nh.magaz@univ-boumerdes.dz (N. E. Magaz)

@ 0009-0003-2443-4412 (F. Arioua); 0000-0001-5949-5421 (F. Touazi); 0000-0002-6178-0608 (D. Gaceb); 0000-0002-0123-0022
(T. Benzenati)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5


mailto:f.arioua@univ-boumerdes.dz
mailto:f.touazi@univ-boumerdes.dz
mailto:d.gaceb@univ-boumerdes.dz
mailto:t.benzenati@univ-boumerdes.dz
mailto:i.telkhoukh@univ-boumerdes.dz
mailto:nh.magaz@univ-boumerdes.dz
https://orcid.org/0009-0003-2443-4412
https://orcid.org/0000-0001-5949-5421
https://orcid.org/0000-0002-6178-0608
https://orcid.org/0000-0002-0123-0022
https://creativecommons.org/licenses/by/4.0/deed.en

irregular tumor boundaries, small lesion sizes, and class imbalance between benign, malignant, and
normal samples [8, 9].

To address these challenges, incorporating a lesion localization step prior to segmentation has been
proposed as an effective strategy. By guiding the segmentation model toward regions of interest, this
two-stage approach reduces false positives and improves delineation of lesion boundaries [4]. This
design also reflects the clinical workflow, where radiologists typically identify suspicious regions before
performing detailed analysis. Furthermore, focusing segmentation on localized regions can alleviate
the effects of class imbalance and improve computational efficiency during both training and inference
[10]. Ensemble and hybrid deep learning strategies can further enhance robustness and generalization
across diverse imaging conditions [11, 12].

In this study, we present a two-stage deep learning pipeline for breast lesion analysis in ultrasound
images. The first stage localizes suspicious regions using a YOLO-based model, while the second stage
performs precise semantic segmentation with advanced architectures. We evaluate our framework on
the BUS_UCLM dataset, a publicly available breast ultrasound lesion segmentation dataset containing
683 images across benign, malignant, and normal categories. We integrate four state-of-the-art CNN-
based segmentation models: U-Net, U-Net++, TransUNet, Attention U-Net and DeepLab. We provide a
comprehensive comparison of their performance.

The structure of this paper is as follows: Section 2 reviews related literature on breast tumor analysis
in ultrasound imaging, with emphasis on deep learning-based methodologies. Section 3 introduces
the proposed methodology, including the two-stage localization-segmentation framework, dataset
preprocessing, and network architectures. Section 4 introduces the evaluation metrics and loss functions
employed to assess the performance of the different models. Section 5 presents the experimental results
and comparisons across different models. Finally, Section 6 concludes the paper with key findings,
limitations, and future research directions.

2. Related Work

Several studies have explored deep learning approaches for breast cancer detection and segmentation
in ultrasound imaging.

Cho et al. [13] proposed a multi-stage segmentation framework combining classification (BTEC-Net,
based on DenseNet and ResNet) and segmentation (RFS-UNet with residual and spatial attention).
Evaluated on the BUSI and UDIAT datasets, their approach significantly reduced false positives and
improved IoU (77%) and Dice (85%), outperforming conventional models such as UNet and PSPNet.

Raza et al. [14] introduced DeepBreastCancerNet, a 24-layer CNN with inception modules, enhanced
through transfer learning from nine pre-trained networks. Using the BUSI dataset (780 images) and an
additional set of 250 images, the model achieved remarkable accuracy (99.35% and 99.63%), surpassing
ResNet-50 (98.06%) and GoogLeNet (98.71%).

Mukasheva et al. [15] compared five UNet variants (UNet, Attention UNet, UNet++, Denselnception
UNet, Residual UNet) on 780 ultrasound images. Denselnception UNet achieved the highest Dice (0.976)
after augmentation, while Attention UNet underperformed, highlighting the influence of noise and
preprocessing strategies.

Khaledyan et al. [16] studied UNet-based architectures with preprocessing (CLAHE, augmentation)
on the BUSI dataset. Their proposed Sharp Attention UNet achieved Dice 0.93 and accuracy 97.9%,
outperforming UNet, Sharp UNet, and Attention UNet.

MohammadiNasab et al. [17] presented a self-supervised multi-task approach (DATTR2U-Net) for
Automated Breast Ultrasound (ABUS). Using inpainting and denoising as pretext tasks, their model
improved segmentation robustness. On TDSC-ABUS, it outperformed Faster R-CNN and YOLO, though
challenges remain for detecting very small lesions.

Madhu et al. [18] proposed UCapsNet, a two-stage model combining U-Net for segmentation and
Capsule Networks for classification. On BUS], it achieved outstanding results (segmentation Dice 99.07%,
classification accuracy 99.22%), surpassing pre-trained CNNs like VGG-19 and ResNet-50.



Almajalid et al. [19] used an enhanced U-Net with preprocessing (denoising, contrast adjustment)
and heavy augmentation on 221 images, achieving a Dice score of 82.5%, outperforming other automatic
methods.

Vallez et al. [20] introduced the BUS-UCLM dataset (683 annotated ultrasound images). In baseline
tests, Mask R-CNN performed best with Dice 77.09% and IoU 65.46%.

Zhang et al. [21] proposed a dual-branch DenseNet-UNet combining classification and segmentation
on 1600 images, reaching AUC 0.991 and Dice 89.8%, and showing good generalization on external data.

Vakanski et al. [22] integrated visual attention maps into a modified UNet for 510 images, achieving
Dice 90.5%, demonstrating the benefit of medical prior knowledge in guiding segmentation. Pan et al
[23] introduces a diffusion-based framework for synthesizing breast ultrasound images, integrating text
prompts and a shape-aware mask generator to enhance realism and diversity. It effectively addresses
data scarcity, with downstream evaluations showing strong performance boosts. On the BUS_UCLM
dataset, segmentation achieves a peak DSC of 83.5% (Attention UNet at 25% synthetic ratio). Vallez et
al. [24] evaluates deep learning approaches for breast ultrasound lesion detection and classification
using the BUS_UCLM dataset. Among the models tested, Sk-UNet achieved the highest performance
for multi-class segmentation with a IoU score of 79.2% and Dice of 87.3%.

Table 1 summarizes these related works.

Table 1
Comparison of deep learning-based approaches for breast cancer diagnosis from ultrasound images.
Reference Dataset Task / Method Model Results
Choetal. [13] BUSI Segmentation RFS-UNet loU = 0.77 ; Dice = 0.85
UDIAT Classification MSSE-ResNet101 Acc = 0.97
Asaf Raza et al. [14] BUSI Classification ResNet101 Precision = 0.99
Mukasheva et al. [15] BUSI Segmentation Dense Inception UNet Dice = 0.97
Donya et al. [16] BUSI Segmentation Sharp Attention U-Net Dice = 0.93
Poorya et al. [17] TDSC-ABUS Segmentation DATTR2U-Net Recall = 0.79 ; Precision = 0.56 ; SF = 0.65
Golla Madhu et al. [18] BUSI Segmentation U-Net loU = 0.94 ; Dice = 0.95 ; Precision = 0.92
BUSI Classification Capsule Network Acc =0.99
Almajalid et al. [19] 221 images Segmentation U-Net Dice = 0.82
Vallez et al. [20] BUS-UCLM Segmentation Mask R-CNN Dice = 0.77 ; loU = 0.65
Pan et al. [23] BUS-UCLM Segmentation Diffusion-based framework Dice = 0.835
Vallze et al. [24] BUS-UCLM and other Segmentation SK-Unet Dice = 0.873, loU=0.792
datasets
Zhang et al. [21] 1600 images Segmentation + Classifica- U-Net + DenseNet AUC = 0.991 ; Dice = 89.8%
tion
Vakanski et al. [22] BUSI Segmentation with attention U-Net-SA ; U-Net-SA-C Dice = 90.5% ; Jaccard = 83.8%

3. Proposed Approach

This section presents two deep learning strategies developed for the automatic segmentation of breast
lesions in ultrasound images. The goal is to enhance diagnostic accuracy and robustness by leveraging
both direct and localization-guided segmentation approaches.

- Approach 1: Direct semantic segmentation using deep neural networks such as U-Net++,
U-Net3+, Attention U-Net, TransUNet, and DeepLabv3.

- Approach 2: A localization-guided two-stage segmentation where YOLOv11-n is used to
localize regions of interest, which are subsequently segmented using the same set of models.

Both approaches were implemented and evaluated on the BUS_UCLM dataset (Breast Ultrasound
Lesion Segmentation Dataset) [20].
3.1. Approach 1: Direct Semantic Segmentation

This approach applies semantic segmentation directly to full breast ultrasound images, aiming to
produce pixel-wise boundaries of tumoral regions. The objective is to generate precise binary masks



Approach 1: Direct Semantic Segmentation
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Figure 1: Overview of the proposed segmentation strategies for breast ultrasound. Approach 1 (right) performs
direct semantic segmentation on full ultrasound images using state-of-the-art architectures. Approach 2 (left)
introduces a two-stage pipeline where lesion localization is first achieved via YOLOv11-n, followed by refined
segmentation of the extracted region. This hybrid design aims to improve robustness and precision by focusing
on regions of interest.

that distinguish between lesion and non-lesion areas without relying on any prior localization step.

To evaluate this strategy, we implemented and compared five state-of-the-art segmentation models
widely used in medical imaging: U-Net++ [25], U-Net3+ [26], Attention U-Net [27], TransUNet [28],
and DeepLabv3 [29]. Each model was trained on the BUS_UCLM dataset and evaluated using standard
performance metrics. The results obtained serve as a baseline for comparison with localization-guided
segmentation strategies (see Figure 1).

3.2. Approach 2: Localization-Guided Semantic Segmentation

In the second approach, we introduce a two-step pipeline to refine segmentation by concentrating on
the region of interest (ROI) of the lesion area identified in the original image. This strategy aims to
reduce false positives and improve precision.

- Lesion localization: The YOLOv11-n-nano (YOLOv11-n) model, with around 2 million parame-
ters, is a lightweight detector that delivers accurate results with low computational cost and fast
inference. YOLOv11-n is applied to the full ultrasound image to localize bounding boxes around
suspicious lesions.

- Targeted Segmentation: Detected regions are cropped, resized, and passed to a segmentation
model (same as those used in Approach 1) for semantic mask prediction. The resulting mask is
then reintegrated into the original image coordinate space.

This guided strategy helps the model concentrate on lesion-relevant pixels, potentially improving
performance in noisy or low-contrast ultrasound contexts (see Figure 1).

The localization-guided inference process is summarized in Algorithm 3.2. [H] Localization-Guided
Segmentation Pipeline using YOLOv11-n Preprocessed dataset D (ultrasound images I, ground truth



masks M¢grT)

YOLOv11-n detector

segmentation model S Segmentation metrics (Dice, IoU, etc.)
I € D ROI =YOLOv1l —n(I) // detect region(s) of interest
no localization Predict empty mask and assign perfect score

1. I. = Crop image using predicted ROI bounding box

2. M,=S(1,) //Apply segmentation model to obtain binary lesion mask
3. Reproject segmented mask into original image dimensions

4. Compute [Dice, IoU, Precision, Sensitivity, Recall](M,, Mar)

Return: [Dice, IoU, Precision, Sensitivity, Recall]

3.3. BUS_UCLM Dataset

The dataset we selected for ultrasound images in our approaches, BUS_UCLM (Breast ultrasound lesion
segmentation dataset) [20], contains a total of 683 images acquired from 38 patients, divided into three
categories: benign (174), malignant (90), and normal (419).

We split the dataset into 80% for the training set and 20% for the test set.

Table 2
Technical details of the BUS_UCLM dataset
Dataset name BUS_UCLM (Breast ultrasound lesion segmentation dataset)
Medical center University of Castilla-La Mancha
Total number of images 683 ultrasound images
Original format 2D (. png)
Total number of patients 38
Annotations Segmentation masks + bounding box coordinates
Main tasks Semantic segmentation & Object detection (YOLO)
Usage Training, validation, testing

Figure 2: Example of ultrasound images collected from the same patient, showing different transverse breast
slices extracted from the BUS-UCLM dataset

3.4. Preprocessing of the BUS_UCLM Dataset

Data preprocessing is an essential step to ensure the quality and consistency of the dataset, while also
improving model performance and reducing the risk of overfitting. For the BUS_UCLM dataset, which
consists of breast ultrasound images with corresponding lesion annotations, we applied the following
preprocessing steps:



« Resizing: All images were resized to a fixed resolution of 224 x 224 pixels, which is a common
requirement for convolutional neural network (CNN) architectures.

« Normalization: Pixel intensity values were normalized to the range [0, 1] in order to stabilize
training and ensure consistency across images.

+ Tensor Conversion: Images were converted into tensors, enabling efficient processing by deep
learning models during training and inference.

« Cropping Regions of Interest (ROI): In the second approach, we applied cropping to focus on
tumor-specific regions of interest. Using the provided ground-truth masks, the regions containing
lesions were extracted and cropped from the original ultrasound images.

« Data Augmentation: To improve robustness and reduce overfitting, data augmentation tech-
niques were applied. Specifically:

— Random Horizontal Flip: Applied to both the image and its corresponding mask with a
probability of 50%.

- Random Rotation: Images and masks were rotated by a random angle in the range
[—10°, +10°]. This augmentation was mainly used in the second approach to enhance
model generalization on the cropped ROIs.

4. Evaluation Metrics and Loss Functions

To assess the effectiveness of our proposed approach for breast cancer diagnosis, we employed a set of
standard evaluation metrics, including accuracy, F1-score, sensitivity, and precision, which are defined
below. These metrics were used to quantify the performance of both the detection and segmentation
components of the pipeline. In addition, appropriate loss functions were selected to guide model
optimization during training.

4.1. Classification Metrics

- Accuracy:
Accuracy = TP+ TN
TP+TN+ FP+FN
- Precision:
Precision = L
TP+ FP
- Recall (also called Sensitivity or True Positive Rate):
Recall = _Tr
TP+ FN

Represents the counts of correct and incorrect classifications for binary classification problems.

4.2. Segmentation Metrics

- Intersection over Union (IoU):

_|AnB| TP
~ |AuB| TP+FP+FN

IoU(A, B)

- Dice Coefficient (F1 Score):

214N B 9T P
Dice(A, B) = -
fee(A, B) = 1Bl ~ TP+ FP L FN

- Relation between Dice and IoU:

2 -IoU Dice
—_— and IoU =
1+ IoU

Dice = - -
2 — Dice



4.3. Segmentation Loss Functions

- Binary Cross Entropy (BCE):

N
Loce = 3 O [t To(u:) + (1~ 1) log(1 — )]
i=1

where ¢; is the ground truth label, ; the predicted probability.
- Dice Loss (derived from Dice coefficient):

23 Yiti
Lpice =1 — =—""—=—
“ DYt
- Focal Loss (to address class imbalance):

N
EFocal = - Z(l - yi)7 i IOg(yl)

=1

where 7 is the focusing parameter, and y; is the predicted probability.

4.4. YOLO Evaluation Metrics
- Average Precision (AP):
1
AP = / Precision(r) dr
0

- Mean Average Precision (mAP):

1 N
mAP = Z;APi
1=

- mAP@50:
mAP@50 = AP at IoU threshold of 0.50
- mAP@50:95:
p 09
mAP@50:95 = Z APLy
1oU=0.50

5. Experimental Results

5.1. Approach 1: Direct Semantic Segmentation

In the first strategy, segmentation models were directly applied to all ultrasound images of the
BUS_UCLM dataset. We evaluated five architectures: UNet++, UNet3+, Attention U-Net, TransUNet,
and DeepLabV3.

Table 3 summarizes the obtained results across different metrics (Loss, Dice, IoU, Recall, and Precision).
As illustrated, DeepLabV3 significantly outperformed other models, achieving the highest Dice (84.49%)
and IoU (73.57%), confirming its strong capability for tumor delineation.

The results demonstrate that DeepLabV3 clearly outperforms the other segmentation models in
terms of Dice and IoU, which confirms its ability to capture fine tumor boundaries more effectively.
UNet++ also shows competitive performance with a balanced precision and recall, making it a reliable
alternative when computational efficiency is considered. In contrast, UNet3+ and Attention U-Net
perform moderately, with Attention U-Net providing slightly higher recall but lower precision, indicating
a tendency to over-segment. TransUNet achieved the weakest results, suggesting that transformer-based



Table 3
Performance of segmentation models with the direct approach on BUS_UCLM ultrasound images.

Model Loss Dice (%) loU (%) Recall (%) Precision (%)
UNet++ 0.5044 79.19 66.26 77.44 84.43
UNet3+ 0.2905 77.67 64.09 75.02 83.37
Attention U-Net  0.4288 77.41 63.84 80.50 77.76
TransUNet 0.3722 70.18 54.86 69.50 73.65
DeepLabV3 0.2687 84.49 73.57 82.62 88.60

representations may require larger training datasets or additional fine-tuning to handle ultrasound-
specific noise and variability. Overall, the direct segmentation approach proves effective, but the
variability in performance across models highlights the importance of architecture choice for breast
ultrasound analysis.

Figure 3 presents visual examples of segmentation masks generated by the different models, high-
lighting the superior precision of DeepLabV3 compared to the other architectures.

Iransunet U-Net++ AUNet Unetiroist DeepLab

Ground Truth Dice=0.00, loU=0.00 Dice=0.00, loU=0.00 Dice=0.00, loU=0.00 Dice=0.00, loU=0.00 Dice=0.00, IoU=0.00

TransUnet U-Net++ AUNet UnetTroisP DeeplLab

Ground Truth Dice=0.75, loU=0.60 Dice=0.92, IoU=0.85 Dice=0.31, loU=0.18 Dice=0.92, loU=0.84 Dice=0.90, loU=0.81

TransUnet U-Net++ AUNet UnetTroisP eepLal
Dice=0.00, loU=0.00 Dice=0.01, loU=0.00 Dice=0.00, loU=0.00 Dice=0.00, 1oU=0.00 Dice=0.00, loU=0.00

Ground Truth

TransUnet U-Net++ AUNet UnetiroisP

DeepLab
Dice=0.87, loU=0.77 Dice=0.93, loU=0.87 Dice=0.56, loU=0.39 Dice=0.52, loU=0.35 Dice=0.91, loU=0.84

Ground Truth

TransUnet U-Net++ AUNet UnetTroisP

eepLal
Ground Truth Dice=0.00, loU=0.00 Dice=0.00, loU=0.00 Dice=0.00, loU=0.00 Dice=0.00, loU=0.00 Dice=0.68, loU=0.52

TransUnet U-Net++ UnetTroisP
Ground Truth Dice=0.00, loU=0.00 Dice=0.89, loU=0.80 Dice= 085 \OU 0.73 Dice=0.90, loU=0.83 Dice= 091 \OU 0.84

Figure 3: Comparison of segmentation masks obtained with Approach 1: Direct Semantic Segmentation for the
different five models.

5.2. Approach 2: Localization-Guided Semantic Segmentation

The second approach was designed as a two-step process: (1) lesion detection using YOLOv11, followed
by (2) focused segmentation on detected regions with the same five architectures.
YOLOvV11 achieved competitive detection performance with an mAP @50 of 81.8% and mAP@50-95



of 65%, ensuring robust region proposals for the subsequent segmentation stage.

Table 4
Detection results obtained by the YOLOv11 model on the breast BUS_UCLM dataset

Metric Value
mAP@50 81.8%
mAP@50:95 65%

Figure 4 illustrates several examples showcasing the performance of YOLOv11n on BUS_UCLM
dataset images.

Image 1 : Sans détection Image 1 : Avec détection
——

Image 2 : Sans détection Image 2 : Avec détectian

e e

Figure 4: Masses detected with YOLOv11-n on ultrasound images.

Table 5 reports the segmentation performances obtained after YOLOv11 detection. Results show
a clear improvement compared to the direct approach. All models achieved Dice and IoU above 91%.
DeepLabV3 achieved the best overall performance with a Dice of 94.31% and an IoU of 92.10%.

The results presented in Table 5 indicate that all segmentation models reached very high performances,
with Dice scores consistently above 94% and IoU values exceeding 91%. Among the tested architectures,
DeepLabV3 obtained the best overall results, achieving the highest Dice (94.31%) and IoU (92.10%),
confirming its robustness for accurate lesion delineation.

TransUNet also performed competitively, recording the lowest loss (0.3061) and the highest recall
(94.93%), which suggests a strong sensitivity in detecting lesion areas. In contrast, Attention U-Net
achieved the best precision (94.67%), reflecting its ability to reduce false positives while maintaining
high segmentation accuracy. Both UNet++ and UNet3+ yielded stable and reliable performances, with
Dice scores of 94.27% and 94.08% respectively, further confirming their effectiveness in this task.

Figure 5 illustrates segmentation masks generated by the two-stage approach. Compared to the direct
segmentation, the contours are more accurate, and false positives are reduced, confirming the benefit of
integrating a detection step before segmentation.

5.3. Discussion

Table 6 summarizes the performance of the two segmentation strategies. The direct segmentation
approach (Approach 1) provides reasonable results, with DeepLabV3 achieving the highest Dice (84.49%)
and IoU (73.57%), demonstrating its capability to capture tumor boundaries more accurately than the
other architectures. UNet++ also shows competitive performance, while TransUNet and Attention
U-Net are slightly weaker, either in precision or recall.

In contrast, the two-stage, YOLOv11-guided segmentation approach (Approach 2) substantially
improves performance across all models. By first localizing lesion regions, the models can focus



Table 5
Performance of segmentation models after YOLOv11 detection (two-stage approach).

Model Loss Dice (%) loU (%) Recall (%) Precision (%)
UNet++ 0.3071 94.27 92.03 94.66 94.52
UNet3+ 0.3072 94.08 91.74 94.83 94.00
Attention U-Net  0.3063 94.20 91.95 94.38 94.67
TransUNet 0.3061 94.20 91.93 94.93 94.14
DeepLabV3 0.3071 94.31 92.10 94.64 94.58

Transunet Ubeti+ ANet UnetrrisP Deeplab
Dice=100, 0U=1.00 Dice=100, loU=100 Dice=100, loU=100 Dice=100, oU=100 Dice=100, loU=100

Transunet

Uleti+ AUNet UnetTroisP
Ground Truth Dice=0.88, loU=0.79 Dice=0.89, 10U=0.80 Dice=0.90, 10U=0.82 Dice=0.88. 10U=0.79 Dice=0.89. l0U=0.79

Transunet

AUNet UnetTroisP
Dice=100. 10U=1.00 Dice=1.00. loU=1.00 Dice=100. 10U=1.00
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TransUnet UNet++ AUNet UnetTroisP Deeplab
Ground Truth Dice=0.89, loU=0.80 Dice=0.96, 10U=093 Dice=0.97, 10U=094 Dice=0.93, loU=0.87 Dice=0.96, loU=0.93

Transunet UnetTroisP

UNet+ AuNet Deeplab
Dice=0.94, 10U=0.88 Dice=0.92, 10U=0.85 Dice=0.93, loU=0.88 Dice=0.93, 10U=067 Dice=0.94, 10U=0.88

Transunet Uhet+ ANt UnetTroisp Deeplab
Dice=0.95,10U=0.91 Dice=0.96.10U=0.93 Dice=0.96, loU=0.92 Dice=0.95, 10U=091 Dice=0.95, 10U=091

Figure 5: Comparison of segmentation masks obtained with Approach 2: localization-guided semantic segmen-
tation using different models.
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their learning on relevant areas, resulting in consistently higher Dice and IoU scores (all above 91%).
DeepLabV3 again achieves the best overall performance (Dice 94.31%, IoU 92.10%), confirming its
robustness for precise tumor delineation. Notably, TransUNet attains the highest recall (94.93%),
indicating strong sensitivity to lesion regions, while Attention U-Net reaches the highest precision
(94.67%), reflecting effective reduction of false positives.

Overall, the results highlight the benefits of integrating a detection step prior to segmentation. The
two-stage framework not only enhances mask accuracy but also reduces over-segmentation and false
positives, making it a reliable strategy for breast ultrasound analysis.

5.4. Comparison with Related Work

The results clearly show that our approach substantially outperforms previous methods. While the
models from Vallez et al. [20] reach only 68-77% in Dice and around 56-65% in IoU, all of our models
exceed 94% in Dice and 91% in IoU, reflecting far more precise and reliable segmentation. Pan et al [23]
83.5% in Dice with Attention UNet at 25% synthetic ratio.

Among our models, DeepLabV3 slightly stands out with the best overall scores, but all others



Table 6
Comparison of segmentation model performances under both approaches (Direct vs. YOLOv11-Guided) on the
BUS_UCLM dataset.

Approach Model Loss Dice(%) loU (%) Recall (%) Precision (%)
UNet++ 0.5044 79.19 66.26 77.44 84.43
UNet3+ 0.2905 77.67 64.09 75.02 83.37
Approach 1 Attention U-Net  0.4288 77.41 63.84 80.50 77.76
TransUNet 0.3722 70.18 54.86 69.50 73.65
DeepLabV3 0.2687 84.49 73.57 82.62 88.60
UNet++ 0.3071 94.27 92.03 94.66 94.52
UNet3+ 0.3072 94.08 91.74 94.83 94.00
Approach 2 Attention U-Net  0.3063 94.20 91.95 94.38 94.67
TransUNet 0.3061 94.20 91.93 94.93 94.14
DeepLabV3 0.3071 94.31 92.10 94.64 94.58

(UNet++, UNet3+, Attention UNet, and TransUNet) perform very closely, confirming the robustness of
the proposed approach. In summary, our method brings a significant advancement in breast ultrasound

Table 7
Comparison with related work.
Article Models Dice loU
Vallez et al. [20] DeepLabV3 68.46%  56.56%
Vallez et al. [20] UNet 68.87% 56.94%
Vallez et al. [20] AttUNet 69.45%  57.53%
Vallez et al. [20] sk-UNet 69.43%  57.50%
Vallez et al. [20] Mask R-CNN 77.09%  65.46%
Pan et al[23] Diffusion-based framework  83.50% -
Vallze et al. [24] SK-Unet 87.3% 79.2%
Our approach UNet3+ 94.08%  91.74%
Our approach Attention UNet 94.20% 91.95%
Our approach TransUNet 94.20%  91.93%
Our approach UNet++ 94.27%  92.03%
Our approach DeepLabV3 94.31% 92.10%

image segmentation by effectively combining detection and segmentation.

6. Conclusion and Future Work

Breast tumor segmentation in ultrasound imaging is essential for enhancing early diagnosis and
improving patient management. In this study, we introduced a two-stage deep learning framework that
integrates lesion localization with semantic segmentation to better delineate tumors in breast ultrasound
images. The pipeline uses YOLOv11-n-nano, a lightweight detector of around 2 million parameters,
for efficient and robust lesion localization, followed by leading segmentation architectures—U-Net3+,
TransUNet, U-Net++,DeepLabV3, and Attention U-Net—to refine tumor boundaries. Evaluations on the
BUS_UCLM dataset demonstrate that our approach significantly outperforms conventional methods.

The localization-guided segmentation strategy boosts precision by focusing the segmentation models
on tumor-relevant areas, reducing false positives and emphasizing critical structures. Among the models
tested, DeepLabv3 achieved the highest performance, with a Dice score of 94.31% and an IoU of 92.10%,
while TransUNet’s strong results underscore the potential of hybrid convolutional-transformer designs.
The proposed two-stage framework significantly enhances breast ultrasound lesion segmentation,
achieving a Dice score of 94.31% and reducing diagnostic variability by minimizing manual delineations.

Looking ahead, future work will aim to enhance the clinical adaptability and generalization of this
framework through several directions:
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Figure 6: Comparison of segmentation contours: Ground truth (Green) vs. Predictions (Red) using DeepLabV3
on breast ultrasound images.

«+ Extending the pipeline to process full ultrasound sequences or volumes, allowing the model to
capture contextual continuity between consecutive frames.

+ Integrating multimodal ultrasound data—such as Doppler or elastography—to enrich lesion
characterization and improve segmentation accuracy.

« Validating the model across additional ultrasound datasets and acquisition protocols to ensure
robustness and broad applicability.

« Collaborating with clinicians for user-centered evaluations, assessing the tool’s utility in routine
diagnostic workflows.

+ Optimizing the pipeline for real-time inference and deploying it on edge devices to support
point-of-care ultrasound applications.
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