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Abstract
Artificial neural networks are typically initialized using mathematically defined techniques that do not 
reflect biological systems' structural and functional diversity. While conventional methods ensure training 
stability, they overlook the natural mechanisms of synaptic connectivity formation. This study proposes a 
biologically inspired approach to weight initialization based on stochastic patterns derived from empirical  
movement  data  collected  in  a  controlled  biological  environment.  The  data  are  preprocessed  through 
smoothing, normalization, and scaling to generate biologically informed weight values, which are then  
used to initialize a feedforward neural network. The effectiveness of the proposed method is evaluated  
against conventional initialization strategies using three benchmark datasets:  MNIST, Fashion-MNIST, 
and  Gas  Sensor  Array  Drift.  Experimental  results  demonstrate  that  the  biologically  inspired  method 
achieves comparable performance across all evaluation metrics, including training accuracy, validation 
accuracy, convergence speed, class-wise recall, and macro-averaged F1 score. The approach contributed to 
faster  convergence  while  maintaining  classification  quality  in  several  cases.  Although  it  does  not 
consistently  outperform  standard  methods,  this  biologically  grounded  strategy  introduces  structured 
stochasticity into the training process. It provides a promising foundation for further exploration in more  
complex architectures and biologically motivated learning models.
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1. Introduction

The effectiveness of artificial neural network training depends on the selection of initial weight  
values.  Weight  initialization  influences  gradient  propagation,  convergence  behavior,  and  the 
overall learning dynamics of the model. Improper initialization can lead to vanishing or exploding 
gradients,  complicating the training process and reducing the model's generalization capability. 
Various  innovative  weight  initialization  strategies  have  emerged  to  tackle  these  challenges 
effectively. They aim to ensure stable signal propagation and effective learning by maintaining 
statistical characteristics between the network layers [1].

Conventional  approaches  typically  rely  on  mathematically  defined  distributions,  such  as 
Gaussian or uniform sampling, combined with heuristic assumptions about network depth and 
activation functions. While these methods have substantially improved training stability and speed, 
they  remain  disconnected  from  the  biological  principles  underlying  neural  development  [2]. 
Artificial initialization strategies often ignore the spatial structure, sparsity, and stochastic growth 
dynamics that characterize synapse formation in biological neural systems.

In contrast, natural neural systems develop through growth-based mechanisms that integrate 
stochastic  processes  and  environmental  influences.  Synaptic  connections  in  biological  systems 
emerge via axonal growth and spatially directed formation, resulting in sparse and functionally 
adaptive  connectivity  patterns  [3].  These  biological  phenomena  offer  a  valuable  paradigm for 
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rethinking  artificial  neural  net-work  initialization,  introducing  structural  diversity  and  natural 
randomness instead of purely statistical heuristics.

Recent studies have emphasized the potential of biologically inspired approaches to enhance 
neural  computation,  primarily  through  models  that  mimic  natural  plasticity  and  learning 
mechanisms [4]. Such models aim to improve performance and in-crease the interpretability and 
robustness of artificial systems by grounding design choices in neurobiological observations.

This  study  follows  the  trajectory  of  bio-inspired  modeling  by  proposing  a  stochastic 
initialization method for  artificial  neural  networks  based on the data  obtained from biological 
systems. This approach builds on growth-based connectivity frame-works, simulating stochastic 
growth processes to generate initial weights. Unlike traditional fully connected architectures, this 
method yields sparse and structured initial connectivity, potentially improving learning dynamics 
and computational efficiency.

The object of this research is the initialization process of artificial neural network weights using 
a  biologically  inspired  approach  based  on  stochastic  patterns  derived  from  real  movement 
trajectories from biological systems. The subject of the study is the weight initialization method 
formulated through a stochastic  growth model  in-formed by data obtained from the biological 
systems, reflecting mechanisms under-lying synaptic development in natural neural systems. This 
work  examines  the  theoretical  foundations  and  practical  implementation  of  this  biologically 
inspired initialization method and assesses its effectiveness in enhancing training dynamics and 
model performance compared to standard techniques.

2. Problem Statement

Despite  considerable  advancements  in  neural  network  training  methodologies,  the  problem of 
effective  and  biologically  meaningful  weight  initialization  remains  unresolved.  Existing 
initialization  techniques  are  predominantly  based  on  mathematical  formulations  designed  to 
maintain the statistical stability of activations and gradients across network layers. Approaches 
such  as  Xavier  and  orthogonal  initialization  have  proven  effective  in  preventing  gradient 
instability,  improving  convergence  rates,  and  enhancing  training  behavior.  However,  these 
methods rely on abstract probabilistic assumptions and do not reflect biological systems' structural  
or functional characteristics.

In  contrast,  neural  connectivity  in  biological  systems  does  not  emerge  from  uni-form  or 
symmetric  statistical  distributions.  Instead,  it  arises through inherently stochastic  and spatially 
constrained  processes  shaped  by  local  interactions,  develop-mental  dynamics,  and  adaptive 
responses to environmental stimuli. Biological synaptic formation is governed by sparsity, locality, 
and plasticity, resulting in diverse and heterogeneous connectivity patterns that are not typically  
replicated in artificial models. Empirical findings in neuroscience suggest that such variability plays 
a critical role in learning efficiency, signal diversity, and overall system adaptability.

Artificial neural networks, however, seldom incorporate biologically grounded variability into 
their initialization procedures. Most existing strategies treat initialization as a purely mathematical 
operation independent of empirical biological data. As a result, artificial models may miss potential 
benefits  from  structured  natural  randomness,  including  improved  training  dynamics,  better 
generalization behavior, and in-creased robustness under data variability or drift.

The central problem addressed in this study is the lack of a practical and reproducible method 
for  introducing  empirically  derived  biological  variability  into  artificial  neural  network 
initialization.  While biologically inspired mechanisms have been widely recognized in machine 
learning, most approaches do not utilize real-world biological processes as structured sources for 
generating initial weight distributions.

This study addresses this gap by proposing a biologically inspired initialization method based 
on  displacement  patterns  obtained  from  biological  systems.  By  trans-forming  natural  motion 
trajectories into structured initialization weights, the proposed method aims to enhance training 
stability,  support  efficient  convergence,  and  explore  whether  integrating  biologically  derived 



variability can positively influence network performance. The approach is particularly relevant for 
tasks involving non-uniform input distributions, dynamic environments, or domains that benefit 
from biologically interpretable model design. More broadly, the method contributes to the ongoing 
effort  to  bridge  the  conceptual  divide  between  artificial  learning  models  and  the  principles 
observed in natural neural systems.

3. Review of the Literature

Weight initialization continues to be a decisive factor in the practical training of artificial neural 
networks, particularly in deep architectures where improper initialization can lead to vanishing or  
exploding gradients. Initialization directly influences the flow of gradients through the network 
during backpropagation, affecting learning stability, convergence speed, and model generalization. 
One widely used approach is orthogonal initialization, which preserves the norm of input signals 
and  has  demonstrated  effectiveness  in  stabilizing  gradient  flow  across  layers.  Beyond  its 
mathematical robustness, this technique has also been explored from a biological standpoint, where 
orthogonal connectivity patterns are hypothesized to support stable signal propagation in natural 
neural circuits [5].

Several alternative strategies have emerged in recent years that aim to introduce structured 
randomness into the initialization process. Chaos-based initialization methods utilize deterministic 
chaotic maps to generate diverse weight values, breaking symmetry in early training stages and 
enhancing  representational  diversity.  Such  approaches  have  shown  improved  convergence 
properties and classification performance in various neural network configurations, particularly in 
non-convex optimization landscapes where initialization can significantly influence the learning 
trajectory [6].

Unlike  artificial  models  that  often  rely  on  abstract  mathematical  distributions,  bio-logical 
systems develop through stochastic yet functionally structured growth processes. In these systems, 
synaptic  connectivity  emerges  through  spatial  organization,  local  competitive  dynamics,  and 
activity-dependent adaptation mechanisms. Studies in neuroscience have demonstrated that such 
processes give rise to sparse, modular, and highly adaptable network structures, suggesting that 
biologically  inspired  initialization  strategies  could  play  a  critical  role  in  enhancing  artificial 
network performance [7].

Fluctuation-driven  initialization  represents  one  such  biologically  inspired  approach.  This 
method introduces  stochastic  variability  by simulating synaptic  noise  and excitatory-inhibitory 
balance, reflecting natural fluctuations observed in biological synapses and spiking neural circuits. 
It aligns with the principle that biological networks maintain learning robustness through noise 
modulation  and  dynamic  responsiveness.  It  has  been  associated  with  improved  convergence 
behavior and enhanced capacity for representation learning [8].

In addition to biologically motivated distribution patterns, optimization-oriented initialization 
methods  have  also  attracted  attention.  Some  researchers  have  proposed  using  evolutionary 
algorithms  and  nature-inspired  heuristics  to  fine-tune  initial  weight  distributions,  allowing 
adaptation to the learning task before training begins.  Such approaches demonstrate improved 
flexibility  and  adaptability,  leveraging  stochastic  variation  to  guide  the  search  for  efficient 
parameter spaces, particularly in regression tasks and reinforcement learning domains [9].

Model architecture design has also incorporated biological elements such as synaptic noise and 
stochastic  sampling.  A  notable  example  is  the  neural  sampling  machine,  which  integrates 
multiplicative  synaptic  noise  into  weight  initialization  and  computation,  enabling  probabilistic 
inference and brain-like learning behavior. This model highlights the computational potential of 
stochasticity as an inherent component of initialization and training dynamics [10].

Foundational research in training theory emphasizes the importance of aligning initialization 
strategies with the underlying optimization process. Efficient backpropagation relies not only on 
the gradient flow properties of the network but also on the scale and distribution of initial weights. 
Misaligned initializations can delay convergence or push the model toward suboptimal solutions. 



Therefore, a well-structured initialization scheme remains central to achieving training efficiency 
and stability [11].

Studies in complex systems modeling reinforce the idea that initialization plays a pivotal role in 
system performance. When analytical or predictive tasks are executed in structured domains, the 
configuration of  initial  parameters can have long-term effects on model  behavior,  convergence 
dynamics, and interpretability. Intelligent analysis of such processes shows that initial structural  
conditions  often  determine  the  success  of  downstream  learning  objectives  [12].  In  parallel, 
semantic  modeling  of  subject  areas  emphasizes  the  need  for  logically  grounded  rule-based 
representations  that  define  the  boundaries  of  knowledge  domains.  Such  formalized  semantic 
synthesis enables more robust parameter initialization by clarifying the structure and dependencies 
within data models [13].

Recent  developments  in  biologically  plausible  learning  dynamics  have  extended  this 
understanding  by  introducing  differential  learning  rules  grounded  in  neurophysiological 
observations. For instance, learning rules based on delayed activity correlation have been explored 
in stochastic neural networks, reflecting mechanisms such as Hebbian plasticity and spike-timing-
dependent  synaptic  adaptation.  These  approaches  underscore  the  value  of  incorporating 
biologically grounded mechanisms into learning algorithms and initialization processes [14].

Interval-based initialization strategies have also demonstrated promising results. By assigning 
distinct initialization intervals to individual neurons or layers, these methods introduce controlled 
variability  and  enable  better  symmetry  breaking.  Such  schemes  have  been  associated  with 
improved convergence speed and excellent learning stability, particularly in feed-forward network 
architectures [15].

From an application-oriented perspective, the significance of robust initialization becomes even 
more pronounced in high-impact domains such as computer vision, natural language processing, 
and biomedical signal analysis. Advances in convolutional neural networks have shown that initial 
weight  distributions  substantially  influence  model  performance,  particularly  in  tasks  involving 
complex visual data and limited supervision. In medical imaging and remote sensing, initialization 
methods affect the sensitivity and reliability of pattern recognition, making this design choice a  
critical component of model development [16].

Insights from adaptive behavior modeling in intelligent systems also contribute to the broader 
understanding of initialization. In such models, behavioral variability is often driven by structured 
randomness, enabling context-sensitive responses to external stimuli and allowing agents to adjust 
their  strategies  over  time based on evolving conditions [17].  These principles  have analogs in 
neural network design, where initializing weights with structured variability can promote diversity 
in  model  behavior  and  improve  performance  in  dynamic  and  unpredictable  environments. 
Similarly, re-search in predictive modeling for Internet of Things (IoT) systems has shown that 
initialization of signal parameters strongly affects the forecasting of environmental indicators in 
smart  homes,  emphasizing  the  role  of  properly  configured  initial  conditions  in  enhancing 
prediction stability and accuracy [18].

In  addition  to  biologically  motivated  distribution  patterns  and  algorithmic  heuristics, 
application-driven data preprocessing has shown promise in improving model initialization and 
robustness.  For  example,  in  biomedical  systems  such  as  rhinomanometry,  deep  convolutional 
neural  networks  have  been  successfully  integrated  into  signal  preprocessing  pipelines  to 
automatically  identify  and  correct  measurement  anomalies,  ultimately  enhancing  data  quality 
before neural processing begins [19]. Similarly, in three-dimensional data analysis, the use of fuzzy 
transformation-based filtering of point clouds has proven effective in removing structural noise and 
optimizing  spatial  representation.  Based  on  F-transform smoothing  with  fuzzy  partitions,  this 
approach offers an efficient means of preserving geometric integrity while enhancing signal clarity. 
This property can be highly beneficial when initializing neural network models from structured 
spatial input [20].

In summary, a wide range of research has established that initialization is not just a preparatory 
step  but  a  crucial  design  choice  influencing  the  entire  training  process.  Despite  these 



advancements, most existing approaches remain grounded in abstract mathematical theory and do 
not leverage the structured variability inherent in biological systems. Few methods have explored 
the direct use of empirical biological data as a functional input for weight generation. The present 
study seeks to bridge this gap by proposing an initialization method informed by natural motion 
patterns,  offering  a  novel  perspective  on  integrating  biologically  meaningful  stochasticity  into 
artificial  learning systems.  This  contribution  aligns  artificial  networks  more  closely  with  their 
biological counterparts and provides a new road for improving training dynamics through data-
driven initialization strategies.

4. Materials and Methods

The proposed method for weight initialization in artificial neural networks is based on utilizing 
motion trajectories obtained from biological systems. Displacement data were collected from video 
recordings of biological specimens in a controlled aquatic environment. Recordings were conducted 
using a fixed overhead camera with a resolution of 1080p and a frame rate of 30 frames per second. 
The  movement  of  the  biological  specimens  was  tracked  frame by  frame using  OpenCV-based 
contour detection, resulting in a sequence of two-dimensional coordinates  (x t , y t) at each time 

step t .
To  quantify  motion  intensity,  the  displacement  between consecutive  frames  was  calculated 

using the Euclidean distance:

d t=√(x t−x t−1)
2+( y t− y t−1)

2 , (1)

where  d t is the displacement at the time step  t ,  x t and  y t are the coordinates in the current 

frame, x t−1and y t−1 represent the coordinates from the previous frame.
A two-stage signal smoothing procedure was applied to suppress short-term fluctuations and 

reduce high-frequency noise. First, a moving average filter with a window size of five frames was 
used. Then, a Gaussian filter with a standard deviation  σ=1 was applied to further refine the 
signal. These parameters were selected to ensure a balance between effective noise suppression and 
preservation of biological variability in motion patterns.

After  smoothing,  the  displacement  signal  was  normalized  using  Z-score  normalization, 
calculated as:

zt=
d t−μ
σ

,
(2)

where zt is the normalized displacement value, μ is the mean of all displacement values, and σ  
is the standard deviation.

This transformation ensures that the resulting signal has a mean of zero and unit variance,  
preventing extreme values from affecting the initialization process.

To adapt the normalized values for neural network initialization and maintain stable activation 
variance, the values were scaled using the formula:

w scaled=zt×
1

√nin+nout
,

(3)

where w scaled is the final scaled weight value,  nin is the number of input neurons in the layer, 

and nout is the number of output neurons.
The resulting one-dimensional array of weights was transformed into a two-dimensional weight 

matrix using a positional mapping operation:

w i , j=w scaled [i×nout+ j ] , (4)



where w i , j represents the weight between input neuron i and output neuron j.
This  procedure  follows  a  row-major  order  to  maintain  matrix  structure  compatible  with 

standard neural network implementations.
To integrate the proposed initialization method within a neural network frame-work, a model 

architecture consisting of an input layer, one hidden layer, and an output layer was defined. The 
illustrative configuration included 100 input neurons, 64 hidden neurons, and 10 output neurons 
corresponding to classification categories. The biologically derived weight matrix was applied to 
initialize the connections be-tween the input and hidden layers. Weights for the remaining layers 
were initialized using standard methods to ensure compatibility for comparative analysis.

The  activation  functions  used  in  the  network  were  selected  to  introduce  nonlinearity  and 
support effective signal transformation and gradient propagation. The hidden layer employed the 
Rectified Linear Unit (ReLU) activation function, defined as:

f (x)=max (0 , x) , (5)

where x is the input to the neuron.
ReLU was chosen due to its computational efficiency, ability to promote sparse activation, and 

robustness against vanishing gradients.
The output layer utilized the sigmoid activation function, which maps the output to the interval  

[0,1], allowing for probabilistic interpretation in classification tasks. It is defined as:

f (x)= 1

1+e−x
,

(6)

where e−x is the exponential of the negative input.
The described methodology enables a biologically grounded and statistically consistent process 

for initializing artificial neural networks. By incorporating natural variability into initial parameter 
generation,  the method supports  improved network diversity  and offers  a  new perspective for 
biologically  inspired  machine  learning  design.  The  effectiveness  of  this  approach  is  further 
examined in the subsequent experimental evaluation.

5. Experiments

The  experimental  evaluation  of  the  proposed  method  was  conducted  using  a  fully  connected 
feedforward neural network implemented in the PyTorch framework. These experiments analyzed 
the proposed initialization strategy's training dynamics and performance characteristics compared 
to other methods under controlled and reproducible conditions.  By systematically isolating the 
influence of the initialization process, the experiments aimed to assess the practical relevance of 
incorporating biologically derived stochastic patterns into artificial neural network training.

Model training was performed using the Adam optimization algorithm, which combines the 
benefits of adaptive learning rate adjustment and momentum-based acceleration. A learning rate of 
0.001  was  selected  to  balance  convergence  speed  and  stability,  while  a  mini-batch  size  of  64 
ensured effective weight updates without excessive computational  overhead.  Each training run 
consisted of 30 epochs, allowing the model sufficient time to stabilize and reach high classification 
performance.  The  training  objective  was  defined  using  the  CrossEntropyLoss  function,  which 
provides  a  suitable  framework  for  multiclass  classification  and  directly  reflects  the  model's 
predictive  accuracy  in  probabilistic  terms.  To  prevent  overfitting  and  promote  generalization, 
dropout layers with a rate of 0.25 were inserted after each hidden layer.

All  architectural,  training,  and  optimization  parameters  were  held  constant  to  en-sure 
comparability across experimental conditions, with only the weight initialization method varied 
across  trials.  The  proposed  biologically  inspired  initialization  was  compared  with  Xavier, 
orthogonal,  chaos-based,  and  fluctuation-driven  initialization.  Each  configuration  was  trained 
under  identical  random  seeds  and  computational  environments  to  ensure  that  the  resulting 



performance differences could be attributed to the initialization process rather than uncontrolled 
external factors.

Experimental evaluation used three publicly available benchmark datasets to provide a balanced 
representation of different data modalities and complexities. The MNIST dataset [21], containing 
70,000 grayscale images of  handwritten digits,  was used to assess the model's  performance on 
structured  visual  classification  tasks  with  low  intraclass  variance  and  well-separated  decision 
boundaries. This dataset served as a baseline for evaluating convergence behavior and learning 
efficiency in a simplified classification scenario. The second dataset, Fashion-MNIST [22], maintains 
the same format and structure but presents a more complex visual classification challenge. The 
images, representing clothing items such as shirts, trousers, and shoes, exhibit higher inter-class 
similarity and visual ambiguity, offering a more demanding task that emphasizes the network's 
capacity to learn fine-grained patterns. The third dataset, Gas Sensor Array Drift [23], comprises 
time-series data collected from chemical gas sensors over several months. Due to sensor aging and 
environmental  fluctuations,  the dataset  exhibits  a  gradual  temporal  drift in input distributions, 
making  it  particularly  suitable  for  evaluating  initialization  methods  under  data  instability  and 
concept-drift  conditions.  The  experiments  in  this  work  preserved  the  chronological  order  of 
samples as defined in the dataset's original protocol, ensuring that training and testing respected 
the natural temporal progression of drift.

Including static image-based datasets and dynamic time-series data provides a comprehensive 
test environment that challenges both short-term pattern recognition and long-term adaptation. 
This  experimental  design  allows  for  a  deeper  investigation  into  the  impact  of  initialization 
strategies under varying degrees of task complexity and data nonstationarity.

Each experimental  configuration was independently  repeated five times to  ac-count  for  the 
inherent stochasticity of training processes and to reduce the variance of outcome metrics. All runs  
averaged the results to provide stable and statistically meaningful conclusions. The evaluation used 
a set of core performance metrics to reflect different dimensions of model quality and learning 
behavior.  Training  accuracy  measured  the  model's  ability  to  learn  from  labeled  data,  while  
validation  accuracy  reflected  the  generalization  capacity  to  unseen  data.  Convergence  speed 
quantified as the number of epochs required to achieve 95 percent training accuracy, provided a  
direct measure of initialization efficiency. The class-wise recall assessed the model's sensitivity to 
each class, highlighting performance consistency across categories. The macro-averaged F1 score, 
calculated  as  the  harmonic  mean  of  precision  and  recall  across  all  classes,  served  as  a 
comprehensive  indicator  of  balanced  classification  performance,  especially  under  conditions  of 
class imbalance.

All experiments were executed in a consistent computational environment using standardized 
software  libraries  to  eliminate  variability  introduced  by  hardware  differences  or  software 
configurations. The experimental protocol was designed to support full reproducibility and enable 
direct comparisons with future studies adopting similar initialization strategies.

This extended experimental framework evaluates the immediate performance of the biologically 
inspired initialization method and establishes a foundation for its integration into broader machine 
learning pipelines.

6. Results

The  outcomes  of  the  experiments  are  presented  below,  highlighting  the  performance  of  each 
weight  initialization  method  across  various  evaluation  metrics.  The  results  include  training 
accuracy, validation accuracy, convergence speed, class-wise recall, and macro-averaged F1 score 
for  three  different  datasets,  evaluating  multi-dimensional  initialization  strategy  comparison, 
accounting for accuracy and learning dynamics across diverse data domains.

An overview of  training accuracy is  presented in  Table 1,  indicating how well  each model 
performed on its training data. All methods achieved high accuracy on the MNIST dataset, with 
slightly more variation on the more complex Fashion-MNIST and Gas Sensor Drift datasets. The  



biologically  inspired  initialization  performed  consistently  with  the  other  techniques  across  all 
datasets.

Table 1
Test accuracy (%)

Dataset Xavier Orthogonal Chaos-Based Fluctuation-Driven Bio-Inspired

MNIST 99.2 99.1 99.0 98.9 99.2

Fashion-MNIST 94.8 95.0 94.4 94.6 94.9

Gas Sensor Drift 91.4 91.7 90.5 90.9 91.6

Table 2 presents the validation accuracy, which measures how well the model per-forms on data 
not seen during training. The results indicate that all methods maintained strong generalization 
capabilities,  with  minor  differences.  The  biologically  inspired  method  demonstrated  consistent 
performance, closely matching that of Xavier and orthogonal initializations.

Table 2
Validation accuracy (%)

Dataset Xavier Orthogonal Chaos-Based Fluctuation-Driven Bio-Inspired

MNIST 97.8 97.7 97.6 97.5 97.7

Fashion-MNIST 89.9 90.1 89.5 89.7 90.1

Gas Sensor Drift 88.3 88.6 87.7 88.0 88.5

The  convergence  speed,  measured  as  the  number  of  training  epochs  needed  to  reach  95% 
accuracy,  is  presented  in  Table  3.  Faster  convergence  indicates  more  efficient  learning.  The 
biologically inspired method generally required fewer or equal epochs than the other methods, 
particularly on MNIST and Fashion-MNIST.

Table 3
Epochs to convergence

Dataset Xavier Orthogonal Chaos-Based Fluctuation-Driven Bio-Inspired

MNIST 13 14 15 16 14

Fashion-MNIST 17 16 18 17 16

Gas Sensor Drift 21 20 23 22 21

Table 4 provides the average values across all classes in each dataset regarding class-wise recall.  
This  metric  shows  the  model's  ability  to  correctly  identify  instances  from  each  class.  The 
biologically  inspired  method  performed  consistently  with  other  methods,  without  sacrificing 
classification reliability at the class level.

Table 4
Class-wise recall

Dataset Xavier Orthogonal Chaos-Based Fluctuation-Driven Bio-Inspired



MNIST 0.980 0.978 0.976 0.975 0.979

Fashion-MNIST 0.891 0.894 0.885 0.888 0.892

Gas Sensor Drift 0.873 0.875 0.865 0.870 0.874

A broader  view of  classification  performance  is  provided  by  the  macro-averaged  F1  score, 
shown in Table 5. This metric combines precision and recall, offering a balanced perspective on 
model performance across all classes, particularly valuable in scenarios with class imbalance or 
varying  class  difficulty.  The  biologically  inspired  initialization  once  again  yielded  comparable 
results, demonstrating its reliability across tasks and its ability to maintain consistent classification 
quality without favoring specific categories.

Table 5
Macro-averaged F1 score

Dataset Xavier Orthogonal Chaos-Based Fluctuation-Driven Bio-Inspired

MNIST 0.978 0.977 0.976 0.975 0.977

Fashion-MNIST 0.889 0.892 0.884 0.887 0.890

Gas Sensor Drift 0.871 0.874 0.864 0.868 0.873

The results confirm that the biologically inspired initialization method performs consistently 
across all metrics and datasets. In some cases, it contributed to faster learning without reducing 
classification accuracy, supporting its potential as a viable alter-native to traditional initialization 
strategies.

7. Discussion

The experimental results provide insight into the practical behavior of the biologically inspired 
initialization  method  compared  to  established  alternatives.  Across  all  datasets  and  evaluation 
metrics,  the  procedure  performed  on  par  with  conventional  techniques  such  as  Xavier  and 
orthogonal  initialization.  This  consistency  suggests  that  incorporating  biologically  derived 
variability  into  the  weight  initialization  process  does  not  negatively  affect  model  training  or 
classification performance. It indicates that structured randomness inspired by natural systems can 
serve as a viable basis for neural network initialization.

In terms of training and validation accuracy, the proposed method achieved nearly identical 
results to the other initialization approaches, indicating that the stochastic patterns derived from 
biological systems are sufficient to support stable learning and effective generalization. Although 
grounded in  empirical  biological  trajectories,  the  data-driven  initialization  process  successfully 
maintained compatibility with the statistical dynamics of artificial training processes. This validates 
the hypothesis that variability obtained from the biological systems can be functionally transferred 
to computational systems without degrading learning efficacy.

One of the most noticeable observations lies in the convergence speed. The biologically inspired 
method often required fewer training epochs to reach the 95% accuracy threshold, particularly in 
the MNIST and Fashion-MNIST tasks. Although the differences were modest, this may indicate a 
more favorable initial weight distribution that helps the network reach effective learning states  
more quickly. The smooth-er convergence curves observed in some experiments suggest that the  



natural variability embedded in the initialization process may help the model avoid suboptimal flat 
regions of the error surface in early training stages.

The method also showed stable behavior regarding class-wise recall  and macro-averaged F1 
score, indicating that it does not introduce any bias toward specific classes and performs reliably 
even  in  class  imbalance  scenarios.  These  results  are  particularly  relevant  for  real-world 
applications, where uniform classification performance across all categories is critical. In practical 
deployments,  models  that  generalize  well  across  diverse  input  categories  without  favoring 
dominant classes are preferred, and the proposed method satisfies this requirement.

Another important aspect is the potential robustness of this approach to data distribution shifts 
and non-stationary learning environments. Since the biological movement patterns used for weight 
generation inherently contain structured stochasticity and temporal dynamics, such initialization 
may  be  better  suited  for  environments  where  task  distributions  evolve  over  time.  While  this  
hypothesis was not tested in this study, it presents a compelling direction for future research.

Theoretically, the method contributes to ongoing discussions on biologically plausible machine 
learning. Most traditional initialization methods are derived from optimization theory rather than 
biological observation. In contrast, this approach aligns with neurophysiological principles such as 
sparsity, noise propagation, and spatial variability in synaptic formation. Even though the learning 
algorithm remains artificial, introducing a biologically inspired structure at the initialization stage 
moves to-ward a more biologically coherent neural model.

Furthermore, the proposed method could be a foundation for hybrid architectures that combine 
stochastic biological initialization with other biologically plausible mechanisms such as dropout 
regularization, noise-driven learning rules, or event-based computation. This layered integration of  
biological  elements  could  enhance  model  performance  and  the  interpretability  of  artificial 
networks.

While  the  biologically  inspired  approach  did  not  significantly  outperform  conventional 
methods,  it  demonstrated its  robustness,  reproducibility,  and applicability.  Most  importantly,  it 
introduced a new perspective on how natural sources of randomness could be integrated into the 
training  process  without  compromising  model  quality.  The  value  of  this  method  lies  not  in 
surpassing existing techniques in isolated benchmarks but in broadening the conceptual toolkit 
available for designing neural systems with increased structural realism and functional diversity.

8. Conclusions

This study introduced a biologically inspired method for weight initialization in artificial neural  
networks, developed based on stochastic patterns extracted from empirical movement trajectories 
of biological systems. The technique offers a structured and data-driven alternative to conventional 
initialization  strategies  by  incorporating  natural  variability  into  the  initialization  process.  The 
approach  involves  transforming  displacement  data  into  normalized  and  scaled  weight  values, 
which were integrated into a standard feedforward neural network for experimental evaluation.

Comparative  analysis  was  conducted  against  four  established  initialization  techniques, 
including Xavier, orthogonal, chaos-based, and fluctuation-driven methods. Experimental results 
across multiple benchmark datasets demonstrated that the pro-posed method achieves performance 
comparable to conventional strategies regarding classification accuracy, convergence speed, class-
wise recall, and macro-averaged F1 score. The biologically inspired initialization periodically led to 
slightly faster convergence while preserving model generalization and training stability.

The scientific contribution of this work lies in introducing a biologically grounded source of 
structured  randomness  into  neural  network  training.  Unlike  traditional  approaches  based  on 
abstract statistical distributions, this method reflects real-world biological variability and offers a 
new perspective on the design of neural network initialization mechanisms. The approach bridges 
the gap between biological principles and computational techniques, contributing to the broader 
field of biologically plausible machine learning.



The practical relevance of the method is demonstrated by its successful application in standard 
network architectures  without compromising learning performance,  confirming its  viability for 
integration into conventional deep learning pipelines, particularly in contexts where natural signal 
structure and biological diversity are meaningful.

Future  work  may  investigate  the  extension  of  this  method  to  more  complex  net-work 
architectures, such as deep or recurrent models, and explore its interaction with other biologically 
inspired components, including noise-driven learning rules or event-based computation. Further 
research could also assess the method's potential to enhance training robustness and efficiency in  
real-world  scenarios  characterized  by  data  uncertainty,  temporal  drift,  or  non-stationary 
environments.
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