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Abstract
Cardiovascular  diseases  (CVD)  remain  one  of  the  leading  causes  of  mortality  in  the  world,  which 
emphasizes  the  need  to  create  accurate,  interpretable  and  effective  diagnostic  systems.  
Electrocardiography is a key non-invasive method that provides critical information about the functional 
state of the heart. In this work, an information technology for automated diagnosis of CVD based on the 
time rhythm function taking into account the extreme amplitudes of the characteristic electrocardiogram 
(ECG) waves (P, Q, R, S, T) was proposed. A dataset of 924 samples from the open PhysioNet databases 
was formed, covering four diagnostic categories (conditional norm, norm with a pacemaker, arrhythmias 
and morphological  pathologies).  Ten statistical  descriptors (Mean, Median, Mode, Standard Deviation,  
Sample  Variance,  Kurtosis,  Skewness,  Range,  Minimum,  Maximum)  were  used  to  describe  temporal 
variability.  The  EvalML  AutoML  framework  was  used  to  build  the  models,  which  automatically 
determined the optimal data processing. The Extra Trees Classifier algorithm turned out to be the best, 
achieving an average classification accuracy of about 96.5% for four classes and an AUC of more than 0.92, 
which  confirms  its  generalization  capabilities.  To  ensure  the  transparency  of  the  results,  the  SHAP 
method was  used,  which showed that  the  most  significant  features  are  Skewness  and Kurtosis.  The  
integration of AutoML and Explainable AI methods provided high accuracy and reliability of diagnostics  
while maintaining interpretability, which makes the proposed approach promising for clinical application 
and analysis of other biomedical signals.
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1. Introduction

In recent decades, cardiovascular diseases (CVD) have become one of the most serious challenges 
for the global healthcare system. According to the World Health Organization, they account for 
almost a third of all deaths in the world. Such statistics indicate the extreme relevance of research 
in the field of cardiology and the search for effective methods of early diagnosis, monitoring and 
prevention.  Timely  detection  of  pathological  changes  in  cardiac  activity  allows  significantly 
reducing the risk of complications and saving the lives of millions of patients.

One of the key tools in this area is electrocardiography — a non-invasive method that provides a 
safe  and  relatively  simple  registration  of  the  electrical  activity  of  the  heart.  The  ECG signal 
contains multilayered information about the functional state of the myocardium, which is reflected 
in the shape, amplitude and time parameters of the characteristic P, Q, R, S, T waves, as well as the  
intervals and segments between them. It is the analysis of the morphology of these components 
that allows us to detect a wide range of pathologies — from rhythm and conduction disorders to 
signs of ischemic disease or structural changes in the heart muscle. Due to this, the ECG remains 
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an indispensable method in modern clinical practice, serving as the basis for both routine medical  
examinations and specialized scientific research.

Despite significant progress in digital processing of ECG signal, there remains a gap between 
the complexity of the temporal organization of the heart rhythm and the methods for its analysis. 
Existing approaches often ignore interwave temporal variability or consider it in isolation from 
amplitude  characteristics.  This  limits  the  ability  to  detect  complex  arrhythmias,  early  signs  of 
ischemia,  or conduction disorders,  which may manifest  themselves precisely in changes in the 
temporal structure of individual ECG signal components.

Therefore,  there is  a  need to use approaches that  can overcome the limitations of  classical  
methods. In this context, modern machine learning (ML) methods are of particular importance, as 
they are a universal tool for working with large data sets, providing the ability to find hidden 
dependencies  where traditional  approaches are  powerless.  ML is  actively used in  the financial 
sector to predict risks and optimize investment strategies [1,2], in transport to develop intelligent 
control systems and road safety [3,4], in medicine to create intelligent decision-making support  
systems  and  predict  the  course  of  diseases  [5,6],  in  materials  science  to  model  the  structural 
properties and durability of materials [7,8], in energy to assess consumption and improve resource 
efficiency [9,10], as well as in cybersecurity to detect anomalies in network traffic and prevent 
attacks [11,12]. Due to their ability to adapt to different types of data and conditions, ML methods 
have  become  the  basis  for  creating  systems  that  provide  accurate  predictions,  high  speed  of 
analysis, and scalability in various application contexts.

Recent advances in ML for ECG signal analysis demonstrate significant progress in automated 
diagnosis  of  cardiovascular  diseases.  Based  on  a  comprehensive  review of  publications  in  the 
Scopus database, the following analysis presents advances in ML methods for the analysis of heart 
rate variability and cardiac signals.

Classical ML algorithms remain powerful tools for ECG signal classification. A hybrid approach 
that combines Dual-Tree Complex Wavelet Transform (DTCWT) with ML classifiers to detect six 
classes of cardiac arrhythmias was proposed [13]. Such methodology, tested on the full 48-record 
MIT-BIH Arrhythmia  Database,  demonstrates  the  effectiveness  of  combining  advanced  feature 
extraction methods with traditional classifiers. A comprehensive approach to ECG classification 
using wavelet scattering to extract low-variability features was developed [14]. Using the MRMR 
(Minimum Redundancy and Maximum Relevance) algorithm for feature selection, it was achieved 
an outstanding accuracy of 99.84% using a cubic SVM model among twenty tested ML models. 
Optimized ensemble methods for ECG anomaly detection were investigated, and the optimized 
XGBoost model using Bayesian hyperparameter optimization achieved 100% accuracy, significantly 
outperforming modified gradient boosting with an accuracy of 96.58% and SVM with 91.69% [15].

The  revolutionary  impact  of  deep  learning  on  cardiac  signal  analysis  is  evident  through 
numerous  innovative  architectures.  The  study  [16]  presented  an  advanced  approach  to  ECG 
classification  by  integrating  adaptive  segmentation  of  heart  beats  with  relative  heart  rate 
information in a deep learning network. This methodology achieved a sensitivity of 99.81% for  
normal beats,  99.08% for premature ventricular beats,  and 97.83% for premature atrial  beats.  A 
hybrid model combining a convolutional neural network (CNN) with a Vision Transformer (ViT) 
was proposed for analyzing 12-lead ECG recordings [17]. The model achieved an average accuracy 
of 74% for five-class and 80% for four-class classification on the PTB-XL dataset, demonstrating the 
potential of transformer architectures in cardiac diagnostics. A CNN model for automatic diagnosis 
of  multiple  heart  diseases  from  phonocardiographic  signals  was  developed  [18].  Using  data 
augmentation techniques to improve robustness in noisy environments, the model achieved 98.60% 
accuracy on the test set, highlighting the effectiveness of deep learning for non-invasive diagnosis.  
The  integration of  deep learning paradigms has  fundamentally  transformed the  capabilities  of 
cardiac  signal  analysis.  The  application  of  WaveGRU-Net  for  non-contact  ECG reconstruction 
using  millimeter-wave  technology  with  multiple  inputs  and  outputs  was  pioneered  [19].  This 
innovative approach successfully distinguishes respiratory and cardiac components in the time-
frequency  domain  while  maintaining  robust  semantic  representation  capabilities.  A  significant 



architectural  advance has been made with the development of  a  frequency-guided hierarchical 
shifted  window  (FG-HSWIN)  transformer  incorporating  inter-frequency  attention  mechanisms 
[20].  This  architecture  demonstrates  exceptional  classification  performance,  achieving  98.72% 
accuracy  on  the  MIT-BIH  arrhythmia  dataset  through  frequency-stratified  window  attention 
mechanisms.  The  integration  of  frequency-aware  positional  encoding  (FAPE)  and  lightweight 
multiscale feature fusion (LMFF) represents a significant methodological contribution to the field. 
The neuro-fuzzy paradigm exemplifies the trend towards hybrid architectures, where a multimodal 
feature  fusion  framework  combining  transformer-based  processing  with  neuro-fuzzy  systems 
achieves  98.46%  accuracy  and  99.1%  F1-score,  demonstrating  the  effectiveness  of  integrated 
computational approaches [21]. A sophisticated three-phase framework incorporating change point 
detection  via  autoencoder  architectures,  facilitating  real-time processing  of  sequential  data  for 
cardiac anomaly detection, has been presented [22].

Combining different cardiac signal modalities improves diagnostic accuracy. A cardiovascular 
disease  prediction  system  integrating  ECG  and  phonocardiogram  using  Hidden  Semi-Markov 
Model was developed [23]. The proposed HSMM achieved sensitivity of 0.952, specificity of 0.92, F-
score of 0.94, accuracy of 0.91, and AUC of 0.96. A multimodal approach to emotion recognition by  
combining ECG signals with facial features was presented [24]. Using LightGBM, Bagged Decision 
Trees,  Linear  SVM,  and  Gaussian  Naive  Bayes,  the  combined  model  achieved  an  accuracy  of 
93.80%, demonstrating the effectiveness of multimodal analysis. Researchers in [25] demonstrated 
the effectiveness of hybrid approaches by integrating a dual tree complex wavelet transform with 
traditional ML classifiers. Their methodology successfully distinguishes six different classes of ECG 
beats, highlighting the continued relevance of traditional signal processing methods combined with 
modern classification algorithms. The ResNet-34 architecture proposed in [26], improved through 
transfer  learning  mechanisms,  further  confirms the  effectiveness  of  deep  residual  networks  in 
analyzing  cardiac  signals  in  the  time-frequency  domain.  The  integration  of  multiple  sensory 
modalities improves diagnostic complexity. Scientists [27] developed a device with the support of 
fog computing that integrates phonocardiography, ballistocardiography and seismocardiography to 
estimate systolic blood pressure, achieving a mean absolute error of 3.5 mm Hg. This multimodal 
approach  uses  additional  information  from  mechanical  and  electrical  cardiac  signals.  The 
MDD2DG-IRA methodology presented by the researchers in [28] is an example of sophisticated 
multi-channel processing via dynamic graph convolution, achieving 99.94% classification accuracy 
for myocardial infarction localization. This approach demonstrates the potential of graph-based 
representations to capture inter-channel dependencies in multi-lead ECG analysis.

Computational  efficiency remains  paramount for  real-time and embedded applications.  This 
challenge was addressed by analyzing the reconstructed phase space with optimized delay state 
networks,  achieving  99.3%  accuracy  while  reducing  hardware  requirements  by  an  order  of  
magnitude [29]. An ensemble compression technique combining CEEMD with LSTM autoencoder 
architectures achieves compression ratios of 38.26 with minimal signal distortion (PRD=0.37) [30]. 
The  development  of  AutoML greatly  simplifies  the  process  of  developing  models  for  medical 
diagnostics. The prospects of automated ML in biomedical signal processing, namely automation 
for practical implementation in clinical practice, are relevant [31]. A study demonstrated improved 
ECG-based stress classification using optimization techniques [32]. By applying genetic algorithms, 
artificial  bee colony and improved particle  swarm optimization to tune Multi-kernel  SVM, the 
authors achieved an average accuracy of 98.93%, precision of 96.83%, completeness of 96.83% and 
specificity of 96.72%.

The  aim  of  our  study  is  to  develop  and  experimentally  test  information  technology  for 
automated diagnosis of cardiovascular pathologies based on the time function of the rhythm taking 
into account the extreme amplitude values  of the characteristic waves of the ECG signal, using 
AutoML and Explainable AI methods to increase the accuracy and reliability of the diagnosis of  
cardiovascular diseases.



2. Methods and Models

2.1. Feature Extraction and Dataset Construction

To construct datasets suitable for  ML algorithms, the ECG signals were processed using a time 
rhythm function taking into account extreme values of the amplitude of the characteristic waves of 
the ECG signal, which include extreme values of the amplitude of the characteristic waves (P, Q, R,  
S, and T) [33].

The discrete mathematical model of the time rhythm function taking into account the extreme 
values of the amplitude of the characteristic waves of the ECG signal [33] is represented by the 
function  T Ak(m ),  which  takes  into  account  the  extreme  values  of  the  amplitude  of  the 

characteristic waves of the ECG signal (P, Q, R, S and T):

T Ak (m )= t Ak (m ) - t Ak (m -1) , k ∈ {P ,Q , R , S ,T } ,m∈ Z (1)

where  t Ak(m ) – the moment of reaching the peak of the k-type wave in the m-th cardiac cycle  

(с), t Ak(m -1) – time of peak k-wave in the previous cardiac cycle (m-1) (с), T Ak(m ) – the value of 

the  time  rhythm  function  taking  into  account  the  extreme  values  of  the  amplitude  of  the 
characteristic waves of the ECG signal, reflecting the time interval between the peaks of the k-type 
waves  in  the  current  m  and  the  previous  cardiac  cycle  (m-1),  k ∈ {P ,Q , R , S ,T } –  type  of 
characteristic wave, m∈ Z  – cycle number.

The data source was publicly available databases from the PhysioNet repository. The primary 
dataset [34] contained 12-lead electrocardiographic recordings from 45 152 subjects, digitized at a  
sampling rate of 500 Hz. This comprehensive collection covers a variety of cardiac arrhythmias and 
cardiovascular  pathologies,  with  expert-verified  annotations  to  ensure  diagnostic  accuracy. 
Additionally, the study included data [35] obtained from extended electrocardiographic monitoring 
of 15 individuals diagnosed with progressive congestive heart failure, including 11 men (age range: 
22–71 years) and 4 women (age range: 54–63 years). The third dataset [36] provided over 100 two-
lead  electrocardiographic  recordings,  each  covering  15-minute  intervals.  These  recordings 
contained  detailed  morphological  annotations  delineating  the  temporal  boundaries  of  cardiac 
waveform components — specifically the onset, peak, and termination of P waves, QRS complexes, 
T waves, and, when applicable, U waves — for a representative sample of 30 to 50 cardiac cycles per 
recording.

For each ECG signal recording, the values of the time rhythm function were determined taking 
into account the extreme values of the amplitude of the characteristic ECG signal waves. Examples 
of the time rhythm function taking into account the extreme values of the R wave amplitude are 
shown in Figure 1.

(a) (b)

Figure 1: Examples of the time rhythm function taking into account extreme values of the R wave 
amplitude: incomplete blockade of the right bundle branch block (mb) (a), extrasystole (es) (b).



For quantitative description of the function  T Ak(m ),  a statistical processing method is used, 

which allows calculating the following statistical parameters:
• Mean (arithmetic mean) is a measure of the central tendency of a distribution of temporal 

variability.
• Median is a robust measure of central tendency that is robust to outliers.
• Mode is the most frequently occurring value of temporal variability.
• Standard Deviation is a measure of dispersion about the mean.
• Sample Variance is the square of the standard deviation, which reflects variability.
• Kurtosis is a measure of the skewness of the distribution.
• Skewness is a measure of the asymmetry of the distribution.
• Range is the difference between the maximum and minimum values.
• Minimum is the smallest value of the time variability.
• Maximum is the largest value of the time variability.

The compiled dataset contained 924 samples. The following conventions were introduced into 
the dataset:  Mean -  Mean_t,  Median -  Med_t,  Mode -  Mo_t,  Standard Deviation-StD_t,  Sample 
Variance-SV_t, Kurtosis-Kur_t, Skewness-Sk_t, Range-Ra_t, Minimum-Min_t, Maximum-Max_t.

The  classification  was  carried  out  according  to  four  diagnostic  categories.  The  first  class 
represented patients without detected pathologies (conditional norm). The second class included 
individuals with normal cardiac function, but with installed pacemakers. The third class combined 
various forms of cardiac rhythm disorders. The fourth class covered pathologies associated with 
structural changes in the heart muscle and conduction system, manifested as stable changes in the 
morphology of ECG complexes. The last category also included the consequences of a previous 
myocardial infarction with the formation of scar tissue, violations of intraventricular conduction of  
varying degrees, an increase in the mass of the myocardium of individual heart departments and 
various forms of cardiomyopathies.

The development environment for building and testing ML models was Python, which provided 
the necessary tools for data preprocessing, sample partitioning, and training ML algorithms. To 
train and test the model, the original dataset was divided into training and test sets. The size of the 
test set was 20% of the total data, while the remaining 80% was used to train the model. To ensure  
reproducibility  of  the  results,  the  initial  value  of  the  random  number  generator  was  fixed 
(random_state = 22). Since the problem is multi-class, the stratify=y parameter was used, which 
guaranteed  the  preservation  of  the  initial  class  ratio  in  both  the  training  and  test  sets.  This 
approach avoided biases in the class distribution and ensured the representativeness of the model  
evaluation.

2.2. Machine Learning Methods

Automated machine learning (AutoML) is a concept aimed at eliminating the need for manual  
execution of routine tasks that accompany model building. Traditionally, the process of creating a 
model  includes  the  stages  of  data  preprocessing,  feature  selection,  algorithm  selection, 
hyperparameter  optimization  and  validation  of  the  obtained  results.  Performing  these  tasks 
requires significant experience and time, which limits the widespread use of ML. AutoML offers an 
approach that automatically combines data processing, model selection and optimization methods, 
reducing the influence  of  the human factor  and ensuring the stability  of  the  obtained results. 
Thanks to the use of optimization algorithms, the search for parameters is more efficient than in  
classical  brute  force,  and  integrated  evaluation  mechanisms  guarantee  the  objectivity  and 
reproducibility of the models.

One of the modern implementations of AutoML is the EvalML library [37]. It is available in 
Python and provides a full cycle of automation, starting from data preprocessing and ending with 
obtaining  a  ready-made  pipeline  for  practical  application.  EvalML  automatically  generates  a 
sequence of operations, which includes missing value imputation, coding of categorical variables, 
scaling and selection of the optimal classification or regression algorithm. Using the AutoMLSearch 



module, the model and parameter space is explored, and the results are presented in the form of a  
ranked list ordered by the selected quality metric. The system allows to extend the pipeline with  
custom models and transformers, which makes it suitable for both scientific research and industrial 
applications.  Thanks  to  compatibility  with  the  Woodwork  library  and  support  for  exporting 
pipelines, EvalML can be easily integrated into a production environment. EvalML embodies the 
principles  of  AutoML  in  a  practical  tool  that  allows  you  to  quickly  obtain  reproducible  and 
competitive models. This makes it particularly useful in tasks that require testing a large number of 
combinations of algorithms and data preprocessing procedures.

2.3. Model Evaluation and Interpretation

The evaluation of the effectiveness of classification models is carried out on the basis of indicators 
calculated  from  the  confusion  matrix.  It  reflects  the  ratio  between  the  correct  and  incorrect  
predictions  of  the  model  for  individual  samples  and  consists  of  four  main  components.  True 
Positives (TP) corresponds to the number of samples of the positive class correctly classified as 
positive. True Negatives (TN) characterizes the number of samples of the negative class correctly  
classified as negative. False Positives (FP) means the number of samples of the negative class that 
the model mistakenly classified as positive. False Negatives (FN) reflects the number of samples of 
the positive class that were incorrectly classified as negative. Based on these values, the metrics 
Accuracy, Recall, Specificity, Precision, F1-score and G-Mean are calculated (Table 1) [38].

Table 1
Performance metrics of classification models

Metric Formula Interpretation

Accuracy
TP+TN

TP+TN+FP+FN

Proportion of correctly 
classified samples among all 

observations.

Recall
TP

TP+FN

Ability of the model to 
correctly identify positive 

samples.

Specificity
TN

TN+FP

Ability of the model to 
correctly identify negative 

samples.

Precision
TP

TP+FP

Proportion of correctly 
classified positive samples 

among all predicted 
positives.

F1-score 2×
Precision×Recall
Precision+Recall

Harmonic mean of 
Precision and Recall, 

reflecting their balance.

G-Mean √Recall×Specificity
Geometric mean of Recall 

and Specificity, used to 
assess classification balance.

Taken together,  these metrics provide a holistic  view of the performance of a classification 
model, allowing to evaluate not only the overall accuracy, but also the recognition efficiency of  
each class and the balance of the classification.



Interpreting ML results is an important part of modern research, as it allows not only to assess 
the quality of the prediction, but also to understand the contribution of each feature to the model’s  
decision-making.  One  of  the  most  common  approaches  is  the  SHapley  Additive  exPlanations 
(SHAP) method, based on the concept of Shapley values from cooperative game theory [39]. In the  
classical formulation, Shapley values describe the contribution of each player to the overall win of  
the coalition. In the context of ML, the “players” are the features, the “coalition” is their set, and the 
“win” is the model’s prediction. The idea is to fairly distribute the predicted outcome among all  
features  depending on  their  contribution.  The  Shapley  value  for  feature   is  calculated  as  the𝑖  
average marginal contribution of this feature to all possible subsets of features.

SHAP has a number of desirable properties: local accuracy (the explanation corresponds to a 
specific prediction), additivity (the contributions of features are summed to the prediction), fairness 
(features with the same influence have the same values), which makes the method universal for 
interpreting different types of models. Due to this, SHAP provides not only a global interpretation, 
when the average influence of features in the entire sample is analyzed, but also a local one, which  
allows explaining an individual decision for a specific sample.  This opens up the possibility of 
simultaneously  evaluating  generalized  patterns  and  controlling  the  behavior  of  the  model  on 
individual cases.

3. Results and Discussion

The  work  of  the  AutoML algorithm,  implemented  in  the  EvalML library,  made  it  possible  to  
automatically select the optimal data processing pipeline and classification algorithm for the task. 
The AutoMLSearch function was used for training. Accuracy multiclass was chosen as the target 
function, which served as the main optimization criterion. The maximum number of model search 
iterations was set at 25, which allowed, on the one hand, to save computational resources, and on 
the  other  hand,  to  ensure  sufficient  coverage  of  the  space  of  possible  models.  The  parameter 
n_jobs=-1 ensured the use of all available processor cores, increasing the efficiency of calculations.  
The  initial  value  of  the  random  number  generator  (random_seed=22)  guaranteed  the 
reproducibility of the experiment.

In the AutoML search process,  K-fold stratified cross-validation was applied to the training 
subsample.  The  number  of  folds  corresponded  to  the  default  parameters  of  the  framework  (5 
stratified splits).  At  each fold,  all  stages of  data  preprocessing and the selected classifier were  
trained on the training part, after which their effectiveness was checked on the validation part. For 
each pipeline, the target metric (accuracy multiclass) was calculated and averaged over the results  
of all folds, forming the mean_cv_score indicator. It was this average CV score that determined the  
model's place in the ranking (Figure 2).



Figure 2: AutoML (EvalML) model leaderboard.

The best model was selected according to the performance values and used for further analysis.  
The optimal pipeline generated by EvalML consisted of four sequential steps of preprocessing and 
classification.  The  first  stage  used  the  Label  Encoder,  which  provided  encoding  of  categorical 
variables into a numerical format required for further processing. The next component was the 
Imputer,  which performed validation and,  if  necessary,  filled  in  missing values.  For  numerical 
features, the median filling strategy was used. The third step was the Select Columns Transformer,  
which selected a subset of the most relevant features for modeling. The final stage was the Extra  
Trees Classifier, which belongs to the family of ensemble methods based on random trees [40].  
EvalML automatically selected the hyperparameters:  the number of trees n_estimators=997, the 
maximum depth max_depth=10, the feature number selection strategy max_features=log2, as well 
as the default settings for the partitioning parameters and node weights.

Figure  3  presents  the  evaluation  results  of  the  Extra  Trees  Classifier  model,  including  the 
normalized confusion matrix (%) and multi-class ROC curves.

(a) (b)
Figure 3: Normalized confusion matrix (%) (a) and multiclass ROC curves (b) for the Extra Trees 
Classifier model on the test dataset.



The confusion matrix shows that  the model  provides a  high level  of  correct  classifications,  
ranging from 89.13% to 95.74%. The lowest rate is observed for the third class,  where 8.70% of  
examples were incorrectly assigned to the first class, while for other classes the proportion of false 
predictions does not exceed 4.35%. On average, the classification accuracy is about 96.5%, which 
indicates  a  balanced  quality  of  recognition  between  classes.  The  ROC curves  reflect  the  ratio 
between the frequency of true positive and false positive classifications when changing the model  
threshold. High values of the area under the curve (AUC > 0.92) were recorded for all four classes. 
The curves are located significantly above the random guess line, which confirms the stable ability 
of the model to distinguish positive and negative examples. 

In order to get a more complete picture of the model's performance, the model performance  
indicators were calculated. The obtained values are given in Table 2.

Table 2
Performance indicators of the Extra Trees Classifier model

Class Accuracy Recall Specificity Precision F1-Score G-Mean

1 (conditional norm) 0.9459 0.9130 0.9568 0.8750 0.8936 0.9346

2 (conditional norm with 
an implanted pacemaker)

0.9729 0.9574 0.9782 0.9375 0.9473 0.9677

3 (arrhythmia) 0.9567 0.8913 0.9784 0.9318 0.9111 0.9338

4 (morphological 
diseases)

0.9837 0.9565 0.9928 0.9777 0.9670 0.9744

The set of obtained values of these metrics confirmed the high efficiency of the constructed 
model, which not only demonstrated high overall accuracy, but also maintained the proper balance 
between positive class detection, correct negative class recognition, and prediction reliability.

To  interpret  the  model's  performance,  the  SHAP method  was  used  in  the  KernelExplainer 
variant for the multi-class classification task. The choice of this particular method is explained by 
the fact  that the resulting pipeline can contain various preprocessing steps and classifiers,  not 
limited  to  tree  algorithms.  KernelExplainer,  being model-agnostic,  ensures  the  correctness  and 
stability  of  the  obtained  explanations  in  such  conditions.  To  construct  the  explanations,  a 
background distribution was formed based on the training subsample. Using the training data as 
the  background prevented information leakage from the  test  set,  preserving the  purity  of  the 
evaluation. Next, a subset of test examples was formed for analysis, limited to 50 samples. This  
provided  a  balance  between  reducing  computational  complexity  and  preserving  the  statistical  
representativeness of the test data.  The resulting subset was used to calculate local and global 
SHAP values,  allowing us to estimate the contribution of  each feature to the class probability 
prediction.

Figure 4 presents a global SHAP bar plot that displays the mean absolute SHAP values for all 
features, averaged across classes.



Figure 4: Global SHAP bar plot with mean absolute feature contributions.

This visualization allows us to assess the relative contribution of each feature to the decision-
making process  of  the  model.  The most  influential  feature  was the  Skewness  indicator  (Sk_t), 
which indicates its greatest contribution to prediction and a decisive role in class differentiation. In 
second place in importance is the Kurtosis (Kur_t), which also plays a significant role in decision-
making. The next most important are Range (Ra_t) and Maximum (Max_t), which demonstrate a 
moderate impact on the classification results. The features Mean (Mean_t), Median (Med_t), Mode 
(Mo_t), Standard Deviation (StD_t) and Minimum (Min_t) have close values of the average absolute 
impact,  which  indicates  their  additional  role  in  the  prediction  process.  The  value  of  Sample 
Variance (SV_t) practically did not demonstrate a noticeable contribution to the model's work.

Figure 5 shows a force plot for sample #35, which reflects the local explanation of the model's 
prediction when assigning the sample to class 4.

Figure 5: SHAP force plot for sample #35, class 4. 

The horizontal scale shows the deviation of the forecast from the base value, which was 0.1676.  
The final value for class 4 is 0.94, which corresponds to the high confidence of the model in the  
correct classification of this sample. The visualization shows how individual features affected the 
forecast bias. According to the explanation given, for this sample the most significant predictors 
were the Skewness (Sk_t) and Kurtosis (Kur_t), which is consistent with the global results of the  
SHAP analysis, where these features also took leading positions. Thus, the SHAP analysis confirms 
that the model forecast for sample #35 is well-founded. Key features (Sk_t, Kur_t, Max_t, Mean_t) 



provided a confident assignment to class 4, while their role in the forecasts for other classes was 
minimal or even negative (Table 3).

Table 3
SHAP values for the selected sample (#35) across classes and features

Feature Class 1 Class 2 Class 3 Class 4

Mean_t +0.000645 -0.020046 -0.024696 +0.044083

Med_t +0.001635 -0.007396 -0.026408 +0.032154

Mo_t +0.001970 +0.003808 -0.016280 +0.010488

StD_t +0.000770 -0.000953 -0.023727 +0.023896

SV_t -0.000900 -0.003858 +0.001194 +0.003549

Kur_t +0.000738 -0.133105 -0.067439 +0.199792

Sk_t -0.275653 -0.021847 -0.027707 +0.325192

Ra_t +0.001428 +0.022491 -0.060836 +0.036903

Min_t +0.000000 -0.020272 -0.012103 +0.032504

Max_t -0.000632 -0.009310 -0.051998 +0.061926

Base value 0.270010 0.252381 0.310000 0.167608

Predicted sum 0.000011 0.061893 0.000000 0.938095

Thus,  the SHAP analysis  not  only confirmed the accuracy of  the results  obtained,  but  also 
ensured the transparency of the model's operation, which is an important factor for its scientific 
substantiation and practical application.

4. Conclusion

The paper proposed and implemented an approach to diagnosing cardiovascular diseases based on 
the time function of the rhythm, taking into account extreme amplitude values of characteristic  
ECG waves. The use of the AutoML library EvalML allowed to form an optimal preprocessing and 
classification pipeline, where the Extra Trees Classifier algorithm showed the best results with an 
average accuracy of about 96.5% and high AUC indicators (>0.92) for all classes.

Interpretation of  the model  using SHAP confirmed the transparency of  the predictions and 
identified  the  key  features  (Skewness,  Kurtosis,  Range,  Maximum)  that  most  influenced  the 
classification  results.  The  obtained  results  indicate  that  the  combination  of  AutoML  and 
Explainable AI provides high efficiency and reliability in the analysis of ECG signals, opening up 
prospects  for  the  practical  implementation  of  such  systems  in  clinical  diagnostics  and  their 
adaptation for other biomedical analytics tasks.



Acknowledgements

The authors would like to thank the ERASMUS-EDU-2025-CBHE project “Digital Transformation 
and Curriculum Development for Healthcare Teams” (Digi-CHange - 101233888 – GAP-101233888) 
for the idea, inspiration and funds that made this work possible.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to grammar and spell  
check, and improve the text readability. After using the tool, the authors reviewed and edited the  
content as needed to take full responsibility for the publication’s content. 

References

[1] S. Ahmed, M. M. Alshater, A. E. Ammari, H. Hammami, Artificial intelligence and machine 
learning  in  finance:  A  bibliometric  review,  Res.  Int.  Bus.  Financ.  61  (2022)  101646. 
doi:10.1016/j.ribaf.2022.101646.

[2] P.-F. Tsai, C.-H. Gao, S.-M. Yuan, Stock Selection Using Machine Learning Based on Financial 
Ratios, Mathematics 11.23 (2023) 4758. doi:10.3390/math11234758.

[3] X. Tao, L. Cheng, R. Zhang, W. K. Chan, H. Chao, J. Qin, Towards Green Innovation in Smart 
Cities: Leveraging Traffic Flow Prediction with Machine Learning Algorithms for Sustainable 
Transportation Systems, Sustainability 16.1 (2023) 251. doi:10.3390/su16010251.

[4] T.  Yuan,  W. Rocha Neto,  C.  E.  Rothenberg,  K.  Obraczka,  C.  Barakat,  T.  Turletti,  Machine 
learning  for  next‐generation  intelligent  transportation  systems:  A  survey,  Trans.  Emerg. 
Telecommun. Technol. 33.4 (2021). doi:10.1002/ett.4427.

[5] S. O. Nykytyuk, A. S. Sverstiuk, S. I. Klymnyuk, D. S. Pyvovarchuk, Y. B. Palaniza, Approach to 
prediction and receiver operating characteristic analysis of a regression model for assessing 
the severity of the course Lyme borreliosis in children, Rheumatology 61.5 (2023) 345–352.  
doi:10.5114/reum/173115.

[6] M. Herasymiuk, A. Sverstiuk, I.  Kit, Multifactor regression model for prediction of chronic 
rhinosinusitis recurrence, Wiadomosci Lek. 76.5 (2023) 928–935. doi:10.36740/wlek202305106.

[7] O. Yasniy,  I.  Didych,  D. Tymoshchuk, P.  Maruschak, V. Demchyk,  Prediction of structural 
elements lifetime of titanium alloy using neural network, Procedia Struct. Integr. 72 (2025) 
181–187. doi:10.1016/j.prostr.2025.08.090.

[8] O. Yasniy, D. Tymoshchuk, I. Didych, R. Zolotyi, V. Tymoshchuk, Modeling of shape memory 
alloys hysteresis behavior considering the loading cycle frequency, Procedia Struct. Integr. 72 
(2025) 188–194. doi:10.1016/j.prostr.2025.08.091.

[9] E.  Aguilar  Madrid,  N.  Antonio,  Short-Term  Electricity  Load  Forecasting  with  Machine 
Learning, Information 12.2 (2021) 50. doi:10.3390/info12020050.

[10] W. Pannakkong, V. T. Vinh, N. N. M. Tuyen, J. Buddhakulsomsiri, A Reinforcement Learning 
Approach for Ensemble Machine Learning Models in Peak Electricity Forecasting, Energies 
16.13 (2023) 5099. doi:10.3390/en16135099.

[11] Tymoshchuk,  D.,  Yasniy,  O.,  Mytnyk,  M.,  Zagorodna,  N.,  Tymoshchuk,  V.  Detection  and 
classification  of  DDoS  flooding  attacks  by  machine  learning  method.  CEUR  Workshop 
Proceedings, 2024, 3842, pp. 184 – 195

[12] B. Lypa, I.  Horyn, N. Zagorodna, D. Tymoshchuk, T.  Lechachenko, Comparison of feature 
extraction tools for network traffic data, CEUR Workshop Proceedings, 3896, 2024, pp. 1-11.

[13] H.  K.  P.  Katamreddi,  T.  K.  Battula,  A  hybrid  approach  for  machine  learning  based  beat  
classification of ECG using different digital differentiators and DTCWT, Comput. Biol. Med. 
194 (2025) 110426. doi:10.1016/j.compbiomed.2025.110426.

https://doi.org/10.1016/j.compbiomed.2025.110426.
https://doi.org/10.3390/en16135099.
https://doi.org/10.3390/info12020050.
https://doi.org/10.1016/j.prostr.2025.08.091.
https://doi.org/10.1016/j.prostr.2025.08.090.
https://doi.org/10.36740/wlek202305106.
https://doi.org/10.5114/reum/173115.
https://doi.org/10.1002/ett.4427.
https://doi.org/10.3390/su16010251.
https://doi.org/10.3390/math11234758.
https://doi.org/10.1016/j.ribaf.2022.101646.


[14] K.J.K., Sree Janani, K. Janani Kuralnatham; R.S., Sabeenian, R. S., Machine Learning-based ECG 
Classification using Wavelet Scattered Features, AIUB J. Sci. Eng. (AJSE) 23.2 (2024) 168–176. 
doi:10.53799/ajse.v23i2.821.

[15] A. Mohapatra, A. Dastidar, S. K. Mohapatra, M. N. Mohanty, Abnormal ECG Detection using 
Optimized Boosting Tree Classifier, in: 2022 OITS International Conference on Information 
Technology (OCIT), IEEE, 2022. doi:10.1109/ocit56763.2022.00012.

[16] J. Lim, D. Han, M. Pirayesh Shirazi Nejad, K. H. Chon, ECG classification via integration of 
adaptive beat segmentation and relative heart rate with deep learning networks, Comput. Biol. 
Med. 181 (2024) 109062. doi:10.1016/j.compbiomed.2024.109062.

[17] D. E. P. Moghaddam, M. Razavi, B. Aazhang, Cardiac Condition Classification Using 12-Lead 
ECG Recordings,  in:  2024 58th Asilomar Conference on Signals,  Systems,  and Computers,  
IEEE, 2024, pp. 1349–1353. doi:10.1109/ieeeconf60004.2024.10942637.

[18] N. Baghel, M. K. Dutta, R. Burget, Automatic diagnosis of multiple cardiac diseases from PCG 
signals  using  convolutional  neural  network,  Comput.  Biomed.  197  (2020)  105750. 
doi:10.1016/j.cmpb.2020.105750.

[19] D. Xu, Y. Xu, K. Xu, Z. Hu, M. Xing, F. Gini, M. S. Greco, WaveGRU-Net: Robust Non-contact  
ECG Reconstruction via MIMO Millimeter-Wave Radar and Multi-Scale Semantic Analysis, 
Signal Process. (2025) 110108. doi:10.1016/j.sigpro.2025.110108.

[20] S. Lamba, S. Kumar, M. Diwakar, A Novel Frequency-Stratified Transformer Framework with 
Cross-Frequency Attention for Reliable Cardiac Arrhythmia Classification, Knowledge-Based 
Syst. (2025) 114250. doi:10.1016/j.knosys.2025.114250.

[21] X. Lyu, S. Rani, S. Manimurugan, C. Maple, Y. Feng, A Deep Neuro-Fuzzy Method for ECG Big 
Data Analysis via Exploring Multimodal Feature Fusion, IEEE Trans. Fuzzy Syst. (2024) 1–13. 
doi:10.1109/tfuzz.2024.3416217.

[22] M. Gupta, R. Wadhvani, A. Rasool, Deep learning-based real-time diagnosis of cardiac diseases 
through  behavioral  changes  in  ECG  signals,  Biomed.  Signal  Process.  Control  104  (2025) 
107532. doi:10.1016/j.bspc.2025.107532.

[23] P.  B.  Patil,  V.  B.  Reddy,  A.  P.  S.,  Prediction  of  Cardiovascular  Diseases  by  Integrating 
Electrocardiogram (ECG) and Phonocardiogram (PCG) Multi-Modal  Features  using Hidden 
Semi  Morkov  Model,  Int.  J.  Recent  Innov.  Trends  Comput.  Commun.  10.10  (2022)  32–44.  
doi:10.17762/ijritcc.v10i10.5732.

[24] A. Dua, Emotion Detection Using Machine Learning, ECG Signals and Facial Features, in: 2024 
2nd International Conference on Intelligent Data Communication Technologies and Internet 
of Things (IDCIoT), IEEE, 2024. doi:10.1109/idciot59759.2024.10467415.

[25] H.  K.  P.  Katamreddi,  T.  K.  Battula,  A  hybrid  approach  for  machine  learning  based  beat  
classification of ECG using different digital differentiators and DTCWT, Comput. Biol. Med. 
194 (2025) 110426. doi:10.1016/j.compbiomed.2025.110426.

[26] S. Mavaddati, ECG arrhythmias classification based on deep learning methods and transfer 
learning  technique,  Biomed.  Signal  Process.  Control  101  (2025)  107236. 
doi:10.1016/j.bspc.2024.107236.

[27] P.  Salas,  J.-M.  Mejia-Muñoz,  R.  Gonzalez-Landaeta,  Fog-Enabled  Multimodal  Chest-Worn 
Device  for  Systolic  Blood  Pressure  Monitoring,  IEEE  Access  (2025)  1. 
doi:10.1109/access.2025.3571829.

[28] X.  Yang,  G.  Jiang,  Z.  Zhu,  D.  Wu,  A.  He,  J.  Wang,  MDD2DG-IRA:  Multivariate  Degree 
Distribution  to  Dynamic  Graph  With  Inter-Channel  Relevance  Attention  Mechanism  for 
Multi-Channel  Myocardial  Infarction  ECG Analysis,  IEEE  J.  Biomed.  Inform.  (2025)  1–12. 
doi:10.1109/jbhi.2025.3554309.

[29] B. B. Purkayastha, S. Barma, M. J. Saikia, A Resource-Efficient Cardiac Arrhythmia Detection 
Using Nonlinear Dynamics in Optimized Delay State Networks,  IEEE Trans.  Biomed.  Eng. 
(2025) 1–13. doi:10.1109/tbme.2025.3605297.

https://doi.org/10.1109/tbme.2025.3605297.
https://doi.org/10.1109/jbhi.2025.3554309.
https://doi.org/10.1109/access.2025.3571829.
https://doi.org/10.1016/j.bspc.2024.107236.
https://doi.org/10.1016/j.compbiomed.2025.110426.
https://doi.org/10.1109/idciot59759.2024.10467415.
https://doi.org/10.17762/ijritcc.v10i10.5732.
https://doi.org/10.1016/j.bspc.2025.107532.
https://doi.org/10.1109/tfuzz.2024.3416217.
https://doi.org/10.1016/j.knosys.2025.114250.
https://doi.org/10.1016/j.sigpro.2025.110108.
https://doi.org/10.1016/j.cmpb.2020.105750.
https://doi.org/10.1109/ieeeconf60004.2024.10942637.
https://doi.org/10.1016/j.compbiomed.2024.109062.
https://doi.org/10.1109/ocit56763.2022.00012.
https://doi.org/10.53799/ajse.v23i2.821.


[30] M.  N.  Mohanty,  S.  Baliarsingh,  P.  K.  Panda,  An  Ensemble  Technique  for  Cardiac  Data 
Compression in Smart Healthcare System, SN Comput. Sci. 6.1 (2025). doi:10.1007/s42979-024-
03605-7.

[31] L. M. Lopez-Ramos, Future Perspectives on Automated Machine Learning in Biomedical Signal 
Processing, in: Communications in Computer and Information Science, Springer International 
Publishing, Cham, 2022, pp. 159–170. doi:10.1007/978-3-031-10525-8_13.

[32] V.  Malhotra,  M.  Sandhu,  Improved  ECG  based  Stress  Prediction  using  Optimization  and 
Machine Learning Techniques, ICST Trans. Scalable Inf. Syst. (2018) 169175. doi:10.4108/eai.6-
4-2021.169175.

[33] L. Mosiy, A. Sverstiuk. Information technology for electrocardiographic signal analysis based 
on mathematical models of temporal and amplitude variability. Comput. Syst. Inf. Technol. (2) 
(2025) 36–44. doi:10.31891/csit-2025-2-4

[34] J. Zheng, H. Guo, H. Chu. A large scale 12-lead electrocardiogram database for arrhythmia 
study (Version 1.0.0), PhysioNet (2022). doi:10.13026/WGEX-ER52

[35] D.S. Baim, W.S. Colucci, E.S. Monrad, H.S. Smith, R.F. Wright, A. Lanoue, D.F. Gauthier, B.J. 
Ransil, W. Grossman, E. Braunwald. Survival of patients with severe congestive heart failure  
treated  with  oral  milrinone.  J.  Am.  Coll.  Cardiol.  7(3)  (1986)  661–670.  doi:10.1016/s0735-
1097(86)80478-8

[36] P. Laguna, R.G. Mark, A. Goldberg, G.B. Moody, A database for evaluation of algorithms for 
measurement of QT and other waveform intervals in the ECG, in: Computers in Cardiology 
1997, IEEE. doi:10.1109/cic.1997.648140

[37] Automated  Machine  Learning  (AutoML)  Search  —  EvalML  0.84.0  documentation.  URL: 
https://evalml.alteryx.com/en/stable/user_guide/automl.html.

[38] Classification  performance  metrics  and  indices.  URL: 
https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html.

[39] GitHub - shap/shap: A game theoretic approach to explain the output of any machine learning 
model. URL: https://github.com/shap/shap.

[40] ExtraTreesClassifier. URL:  https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. 
ExtraTreesClassifier.html.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble
https://github.com/shap/shap
https://adriancorrendo.github.io/metrica/articles/available_metrics_classification.html
https://evalml.alteryx.com/en/stable/user_guide/automl.html
https://doi.org/10.1109/cic.1997.648140
https://doi.org/10.1016/s0735-1097(86)80478-8
https://doi.org/10.1016/s0735-1097(86)80478-8
https://doi.org/10.13026/WGEX-ER52
https://doi.org/10.31891/csit-2025-2-4
https://doi.org/10.4108/eai.6-4-2021.169175.
https://doi.org/10.4108/eai.6-4-2021.169175.
https://doi.org/10.1007/978-3-031-10525-8_13.
https://doi.org/10.1007/s42979-024-03605-7.
https://doi.org/10.1007/s42979-024-03605-7.

	1. Introduction
	2. Methods and Models
	2.1. Feature Extraction and Dataset Construction
	2.2. Machine Learning Methods
	2.3. Model Evaluation and Interpretation

	3. Results and Discussion
	4. Conclusion
	Acknowledgements
	Declaration on Generative AI
	References

