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Abstract

Immunohistochemical (IHC) studies allow obtaining additional information about the state of tissues, in
particular the presence of a tumor process. Methods of computer analysis of color digital images make it
possible to reduce or even completely eliminate the subjectivity of the study, as well as obtaining reliable
quantitative data, which makes IHC studies more objective when solving, for example, diagnostic,
prognostic and research tasks. In that connection, the goal of our study was to develop a method for
objective analysis of IHC in order to improve the interpretation of the obtained results. The authors
propose a two-stage, colorimetry-grounded pipeline for objective analysis of immunohistochemical slides.
Images are acquired with a light microscope and processed in MATLAB; RGB values are converted to CIE
XYZ and then to CIE Lab, after which K-means clustering is applied first to segment marker, background,
nuclei, and membranes, and then to stratify expression by lightness into weak, medium, and strong levels.
The approach argues for hardware-independent color description and uses AE as the clustering metric,
yielding a scalar “S” intended to reduce observer subjectivity. Qualitative comparisons indicate that
grayscale and raw RGB segmentations confound marked and unmarked tissues, whereas Lab-space
segmentation isolates immunopositive regions and grades expression on testicular tumor exemplars.
Suggested algorithm when first stage applies K-means clustering in CIE Lab space to split an image into
four classes, second stage 2 re-segments the “marker” class by lightness L* into three expression bands
using fixed L* thresholds, and reports the relative positive area S as the quantitative readout
(implementation is in MATLAB and relies on an RGB-XYZ-Lab conversion and Euclidean AE in Lab as the
distance metric) allows to obtain objective data about IHC microspecimen.
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1. Introduction

Morphological research has been a crucial part of medicine for many vyears [1].
Immunohistochemical studies (IHCS) allow obtaining additional information about the state of
tissues, in particular the presence of a tumor process [2, 3]. Modern treatment protocols require
objective interpretation of microscopic preparations, especially in relation to the genitals [4, 5].

Methods of computer analysis of color digital images make it possible to reduce or even
completely eliminate the subjectivity of the study, as well as obtaining reliable quantitative data,
which makes IHCS more objective when solving, for example, diagnostic, prognostic and research
tasks [6, 7]. However, there are also problems of quantitative assessment of digital images, which
are associated with the limitations of IHCS preparation techniques [8, 9]. This is the quality of the
camera and microscope, and the different thickness of tissue sections, and the time of visualization
reaction, which is always selected empirically, and the lack of standardized indicators and
parameters for quantitative assessment of IHCS [10, 11].

The main differences between the images are as follows: the expression of markers can be
determined in different cellular and tissue structures (nuclei, cytoplasm of cells, intercellular
substance, membrane structures), and the Relative area (S) of marker expression, as well as its
lightness (L), in different tumors can vary significantly. It is obvious that the immunopositive areas
in the images have different sizes, the labeled areas are characterized by different structural and
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color properties, and the only constant feature of such areas remains the “brown color” in the
subjective perception.

It should be noted that a feature of digital color images of histological preparations is the
significant instability of their color content. It is explained by the fact that in different preparations
under the influence of the same markers, chemical reactions proceed differently and the properties
of tissue structures in different preparations differ from each other, and these differences lead to
slightly different results of tissue reactions to markers. Therefore, in different digital images, the
color coordinates of the same types of tissues differ significantly. In addition, in the areas stained
with the marker, it is necessary to distinguish different levels of expression - from the lightest to
the darkest, and determine the level L of these areas. Automated methodic could be useful in that
area as it is developed with other medical aspects [12-15].

Based on the above, the goal of our study was to develop a method for objective analysis of
immunohistochemical micropreparations in order to improve the interpretation of the obtained
results.

2. Methods

The proposed method allows to separate the areas of labeled and unlabeled tissues in the image by
color features and to determine the levels of marker expression intensity. The color is encoded in
the coordinates of the CIE Lab space, which is designed according to the principles of the human
visual system. Therefore, the representation of the colors of labeled and unlabeled tissues in such
coordinates is similar to human visual perception. Unlike the representation in grayscale or RGB
values, the proposed method at the first stage of segmentation allows to separate the areas of
labeled and unlabeled tissues in the image, and during repeated segmentation — to separate the
labeled areas by the levels of marker expression precisely by the CIE Lab color coordinates. The use
of the automatic mode of digital image segmentation at the first and second stages allows to avoid
the subjective factor during the morphometric study, and at the same time accelerates the process
of obtaining the result, and also allows to reduce the number of errors associated with the
subjectivity of the researcher's perception, to develop clear morphometric criteria for evaluating
the results of the expression of certain markers.

For segmentation of color digital images, the most widely used hierarchical method is the k-
means clustering method [16, 17].

At its core, the k-means algorithm is based on minimizing an objective function that is equal to
the sum of the squares of the distances from all points of a cluster to its center. The objective
function, which is based on the sum of the least squares criterion, is defined as follows (1):
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where Cg; means the center of the cluster, K is the number of clusters, W(C ) weight of point c,

IC—C, Si||2 expression of the quadratic norm for calculating the distance between points.

In classical segmentation methods [15], local features are smoothed and represented as vectors
in a metric space, thus describing each image region by an averaged feature vector (center). The
square of the (weighted) Euclidean distance is most often used as a measure of difference in this
approach.

Given a dataset X, the K-means algorithm minimizes the objective function iteratively. This
process consists of several steps:

Step 1. Select K initial centers C,,Cs,,...,C,.
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Step 2. At the t-th iterative step, distribute the elements of the set X between K clusters taking
into account the relation (2):
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for all j=1,2,...,K, j#i, where Sf denotes the set of points for which C, si is the center of the
cluster. In other words, the cluster S; is filled with points for which the condition (3)
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Step 3. Based on the results of step 2, new cluster centers are calculated C[S:-rl such that the

objective function decreases. New centers are formed according to the relation (4):
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Step 4. If all cluster centers have not changed as the iteration step increases, the procedure
stops. Go to step 2.

The behavior of this algorithm strongly depends on the value of K, the choice of cluster centers,
and the geometric properties of the input data. Nevertheless, the simplicity of the method has
provided it with wide application in pattern recognition, image processing, and machine vision
problems. An overview of the capabilities of the method and algorithms for its implementation can
be found, for example, in the work of S.M.A. Burney, H. Tariq [18].

One of the main criteria of homogeneity for a group of pixels in a cluster when performing
image segmentation is color. Historically, the earliest approaches relied on the use of the RGB
space to describe color data [19, 20]. However, this color space poorly describes the features of
human color vision, so its application for segmentation problems is not always effective.
Consequently, many alternative color spaces have been proposed and applied [21-24].

Among the color spaces used are HSV, YTQ', XYZ, L*U*V*, and LAB. Due to their different
features, they are all used in segmentation and further analysis of medical images. It should be
noted that the color coordinates of the HSV, YTQ’ spaces are derived from the RGB values of the
brightness of the image pixels [24]. RGB is a hardware-dependent space, that is, the values of the
RGB color coordinates depend on the type of device that reproduces the color. Therefore, the use of
the HSV, YTQ’ spaces reduces the accuracy of segmentation methods. The hardware-independent
color spaces XYZ, L*U*V*, and LAB do not have this drawback - they are constructed on
descriptions of the properties of a standard observer in the form of color matching functions and
are associated only with the features of the human visual system.

XYZ values are calculated from spectrometric measurements of visual stimuli and, in turn, are
the basis for calculating the color coordinates L*U*V* and LAB. For color specification, the most
widespread is the LAB space, the coordinates of which are calculated using the following formulas
(5-7) [25]:
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where X, Y, Z are the coordinates of the specified colors; X0, Y0, Z0 are the coordinates of the
nominal white color stimulus of the standard lighting source.

In this space, the difference between color stimuli is calculated using the Euclidean metric (8)
[25]:
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This formula has undergone multiple improvements and modifications since its introduction in
1976, but in its current form it remains the principal standard in modern colorimetric technology
and is widely used to assess the accuracy of color reproduction. Therefore, the use of this color
difference formula as a metric in the color segmentation algorithm is natural and justified.

3. Results

The method is carried out as follows. IHC-stained histological sections of the studied tissues are
recorded using a microscope and a digital camera. The obtained images are processed in the Matlab
software package using standard digital image processing tools. First, the auxiliary CIE XYZ color
coordinates are calculated based on the brightness values of the RGB color channels in each pixel
of the original image, and then the CIE Lab color coordinates. Thus, the original digital image
corresponds to a three-dimensional array of CIE Lab color coordinates, one of which is L, the
values of which can vary within 0-100. Next, the primary automatic segmentation is performed
using the K-means method with the calculation of the values of the color differences between the
image pixels and the selection of areas of marker expression, background, nuclei and membranes.
After that, these areas are visually assessed to determine in which regions the target marker color
is present. At the second stage of repeated automatic segmentation for the selected area using the
K-means method, the values of the differences between pixels in the CIE Lab color space are
calculated, due to which the marked area is divided into three levels of marker expression: weak,
medium, and strong, with the determination of the marker expression value (S). For morphometric
measurement of S, which is occupied by immunopositive structures, the ratio of the number of
pixels of the digital image of the immunopositive reaction area to the total number of pixels in the
image, expressed as a percentage, is automatically calculated in the selected area.

Each pixel of the image in each of the three color channels of red — R, green — G and blue - B
has 256 possible intensity values, ranging from 0 (darkest) to 255 (lightest). To calculate the color
characteristics of each pixel of the image in the CIE Lab color space, the following steps are
performed:

1. Auxiliary CIE XYZ color coordinates are calculated using formulas (9-11):
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Where the coordinates X,, Yo, Z, correspond to the reference white color and are given as:
X0=95.04; Y,=100; Z,=108.89;

3. Using the K-means method, automatic segmentation of the digital image into four areas is
performed. Each area combines pixels that differ significantly in color, represented in CIE Lab
coordinates. These areas correspond to the marker, background, nuclei, and membranes in the
image. The areas are displayed on the screen for observation.

4. The observer visually evaluates these areas and determines which one contains the desired
marker color; this group of pixels will then undergo further secondary segmentation and analysis;

5. At the second stage (secondary automatic segmentation), the identified image area with
labeled tissues is further segmented using the K-means method based on lightness (L) into three
expression levels: L=0-40 corresponds to a strong marker expression level; L=40-50 corresponds to
a medium marker expression level; L=50-100 corresponds to a weak marker expression level;

6. The identified pixel groups are displayed on the screen as images of areas with different
marker expression levels.

To illustrate the effectiveness of the proposed approach, sets of images (digital photographs) of
various histological types of testicular tumors are presented. These images show the results of
staining of histological sections with different IHC markers. Photography was performed using an
Olympus BX-41TF microscope with the Olympus DP-Soft software (Version 3.1). Some images
contained structures marked by the markers, and the S of these structures varied across different
images. Examples of the original images are shown in Fig. 1.

As already noted, the main differences between the images are as follows: the expressed
markers may be identified in different cellular and tissue structures; the S value of the marker, as
well as its L value, may also vary significantly across different tumors.

It is evident that the objects in the images vary in size, while the marked areas are characterized
by different structural and color properties. The only consistent feature of such areas remains the
“brown color” in subjective perception. The proposed two-stage segmentation algorithm using K-
means in the Lab space, as well as single-stage K-means segmentation with grayscale and RGB
image representations, were applied to the analyzed images (Fig. 2-6).

The presented example shows that the use of grayscale representation does not allow the
separation of marked tissues from unmarked ones (Fig. 2, 3). The RGB representation leads to
segmented image components that, although differing in brightness (and consequently in L), still
contain a mixture of marked and unmarked tissues (Fig. 4).



Figure 1: Examples of the original images.

a

Figure 2: Examples of the original images.
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Figure 3: Results of one-step grayscale image segmentation (a — objects in cluster 1; b — objects in
cluster 2; ¢ — objects in cluster 3; d — objects in cluster 4).

In contrast, the proposed algorithm, at the first stage of segmentation, makes it possible to
separate marked and unmarked tissue areas in the image (Fig. 5), while at the secondary
segmentation stage, it allows the division of marked regions according to marker expression levels
(Fig. 6). As a result, the determined S of the marker expression areas provides an objective
assessment of the main biological properties of different tumors and other pathological processes
[2-11].



Figure 4: Results of image segmentation in RGB representation (a — objects in cluster 1; b — objects
in cluster 2; ¢ — objects in cluster 3; d — objects in cluster 4).

Figure 5: Results of primary image segmentation using K-means in the Lab color space (a — objects
in cluster 1; b — objects in cluster 2; ¢ — objects in cluster 3; d — objects in cluster 4).
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Figure 6: Initial image for secondary segmentation and its results with highlighted areas according
to marker expression levels (a — image for secondary segmentation, S of the marker 11.29%; b — Lab
coordinates of the marker 29.49; 12.64; 13.52, S of the marker 3.08%; ¢ — Lab coordinates of the
marker 38.85; 8.47; 16.22. S of the marker 3.60%; d — Lab coordinates of the marker 38.90; 11.84;
24.67. S of the marker 4.61%.

Practical examination of suggested algorithm with comparison and estimation obtained result
by pathologists was realized in objective consensus about peculiarities of investigated
microspecimen.

4. Conclusions

Suggested algorithm when first stage applies K-means clustering in CIE Lab space to split an image
into four classes, second stage 2 re-segments the “marker” class by lightness L* into three



expression bands using fixed L* thresholds, and reports the relative positive area S as the
quantitative readout (implementation is in MATLAB and relies on an RGB-XYZ-Lab conversion
and Euclidean AE in Lab as the distance metric) allows to obtain objective data about THC
micropreparations.
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