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Abstract
Immunohistochemical (IHC) studies allow obtaining additional information about the state of tissues, in 
particular the presence of a tumor process. Methods of computer analysis of color digital images make it  
possible to reduce or even completely eliminate the subjectivity of the study, as well as obtaining reliable 
quantitative  data,  which  makes  IHC  studies  more  objective  when  solving,  for  example,  diagnostic, 
prognostic and research tasks. In that connection, the goal of our study was to develop a method for 
objective analysis of  IHC in order to improve the interpretation of the obtained results.  The authors 
propose a two-stage, colorimetry-grounded pipeline for objective analysis of immunohistochemical slides.  
Images are acquired with a light microscope and processed in MATLAB; RGB values are converted to CIE  
XYZ and then to CIE Lab, after which K-means clustering is applied first to segment marker, background, 
nuclei, and membranes, and then to stratify expression by lightness into weak, medium, and strong levels. 
The approach argues for hardware-independent color description and uses ΔE as the clustering metric,  
yielding  a  scalar  “S”  intended  to  reduce  observer  subjectivity.  Qualitative  comparisons  indicate  that  
grayscale  and  raw  RGB  segmentations  confound  marked  and  unmarked  tissues,  whereas  Lab-space 
segmentation  isolates  immunopositive  regions  and  grades  expression  on  testicular  tumor  exemplars. 
Suggested algorithm when first stage applies K-means clustering in CIE Lab space to split an image into 
four classes, second stage 2 re-segments the “marker” class by lightness L* into three expression bands  
using  fixed  L*  thresholds,  and  reports  the  relative  positive  area  S  as  the  quantitative  readout 
(implementation is in MATLAB and relies on an RGB-XYZ-Lab conversion and Euclidean ΔE in Lab as the 
distance metric) allows to obtain objective data about IHC microspecimen.
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1. Introduction

Morphological  research  has  been  a  crucial  part  of  medicine  for  many  years  [1]. 
Immunohistochemical  studies  (IHCS)  allow obtaining additional  information about  the state of 
tissues, in particular the presence of a tumor process [2, 3]. Modern treatment protocols require  
objective interpretation of microscopic preparations, especially in relation to the genitals [4, 5].

Methods  of  computer  analysis  of  color  digital  images  make  it  possible  to  reduce  or  even 
completely eliminate the subjectivity of the study, as well as obtaining reliable quantitative data, 
which makes IHCS more objective when solving, for example, diagnostic, prognostic and research 
tasks [6, 7]. However, there are also problems of quantitative assessment of digital images, which 
are associated with the limitations of IHCS preparation techniques [8, 9]. This is the quality of the 
camera and microscope, and the different thickness of tissue sections, and the time of visualization 
reaction,  which  is  always  selected  empirically,  and  the  lack  of  standardized  indicators  and 
parameters for quantitative assessment of IHCS [10, 11]. 

The main differences between the images are as follows:  the expression of  markers can be  
determined  in  different  cellular  and  tissue  structures  (nuclei,  cytoplasm  of  cells,  intercellular 
substance, membrane structures),  and the Relative area (S) of marker expression, as well as its  
lightness (L), in different tumors can vary significantly. It is obvious that the immunopositive areas 
in the images have different sizes, the labeled areas are characterized by different structural and 
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color properties,  and the only constant feature of such areas remains the “brown color” in the 
subjective perception. 

It  should  be noted that  a  feature  of  digital  color  images  of  histological  preparations  is  the 
significant instability of their color content. It is explained by the fact that in different preparations 
under the influence of the same markers, chemical reactions proceed differently and the properties 
of tissue structures in different preparations differ from each other, and these differences lead to  
slightly different results of tissue reactions to markers. Therefore, in different digital images, the 
color coordinates of the same types of tissues differ significantly. In addition, in the areas stained 
with the marker, it is necessary to distinguish different levels of expression - from the lightest to  
the darkest, and determine the level L of these areas. Automated methodic could be useful in that  
area as it is developed with other medical aspects [12-15].

Based on the above, the goal of our study was to develop a method for objective analysis of  
immunohistochemical micropreparations in order to improve the interpretation of the obtained 
results.

2. Methods

The proposed method allows to separate the areas of labeled and unlabeled tissues in the image by 
color features and to determine the levels of marker expression intensity. The color is encoded in  
the coordinates of the CIE Lab space, which is designed according to the principles of the human  
visual system. Therefore, the representation of the colors of labeled and unlabeled tissues in such 
coordinates is similar to human visual perception. Unlike the representation in grayscale or RGB 
values,  the proposed method at the first stage of  segmentation allows to separate the areas of 
labeled and unlabeled tissues in the image, and during repeated segmentation – to separate the 
labeled areas by the levels of marker expression precisely by the CIE Lab color coordinates. The use 
of the automatic mode of digital image segmentation at the first and second stages allows to avoid 
the subjective factor during the morphometric study, and at the same time accelerates the process 
of  obtaining  the  result,  and  also  allows  to  reduce  the  number  of  errors  associated  with  the 
subjectivity of the researcher's perception, to develop clear morphometric criteria for evaluating 
the results of the expression of certain markers.

For segmentation of color digital images, the most widely used hierarchical method is the k-
means clustering method [16, 17]. 

At its core, the k-means algorithm is based on minimizing an objective function that is equal to 
the sum of the squares of the distances from all points of a cluster to its center. The objective 
function, which is based on the sum of the least squares criterion, is defined as follows (1):
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where C̄ Si means the center of the cluster, K is the number of clusters,  w (C ) weight of point c, 

‖C−C̄ Si‖
2 expression of the quadratic norm for calculating the distance between points.

In classical segmentation methods [15], local features are smoothed and represented as vectors 
in a metric space, thus describing each image region by an averaged feature vector (center). The 
square of the (weighted) Euclidean distance is most often used as a measure of difference in this  
approach.

Given a dataset X, the K-means algorithm minimizes the objective function iteratively. This 
process consists of several steps:

Step 1. Select K initial centers C̄ S1 , C̄ S2 , ... , C̄ Si.



Step 2. At the t-th iterative step, distribute the elements of the set X between K clusters taking 
into account the relation (2):
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for all j=1,2 , ... , K , j≠i, where Si
t denotes the set of points for which C̄ Si is the center of the 

cluster. In other words, the cluster Si
t is filled with points for which the condition (3)
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for all j=1,2 , ... , K , j≠i.
Step 3. Based on the results of step 2, new cluster centers are calculated  ¯C Si

t+1 such that the 
objective function decreases. New centers are formed according to the relation (4):

 

 
1

t
i

i

t
i

C St
S

C S

w C C

C
w C













(4)

Step 4. If  all  cluster centers have not changed as the iteration step increases, the procedure 
stops. Go to step 2.

The behavior of this algorithm strongly depends on the value of K, the choice of cluster centers, 
and the geometric properties of the input data.  Nevertheless,  the simplicity of the method has  
provided it with wide application in pattern recognition, image processing, and machine vision 
problems. An overview of the capabilities of the method and algorithms for its implementation can 
be found, for example, in the work of S.M.A. Burney, H. Tariq [18].

One of the main criteria of homogeneity for a group of pixels in a cluster when performing 
image segmentation is color.  Historically, the earliest approaches relied on the use of the RGB 
space to describe color data [19, 20]. However, this color space poorly describes the features of 
human  color  vision,  so  its  application  for  segmentation  problems  is  not  always  effective.  
Consequently, many alternative color spaces have been proposed and applied [21-24].

Among the color spaces used are HSV, YʼIʼQʼ,  XYZ, L*U*V*, and LAB. Due to their different 
features, they are all used in segmentation and further analysis of medical images. It should be 
noted that the color coordinates of the HSV, YʼIʼQʼ spaces are derived from the RGB values of the 
brightness of the image pixels [24]. RGB is a hardware-dependent space, that is, the values of the 
RGB color coordinates depend on the type of device that reproduces the color. Therefore, the use of  
the HSV, YʼIʼQʼ spaces reduces the accuracy of segmentation methods. The hardware-independent 
color  spaces  XYZ,  L*U*V*,  and  LAB  do  not  have  this  drawback  –  they  are  constructed  on 
descriptions of the properties of a standard observer in the form of color matching functions and 
are associated only with the features of the human visual system.

XYZ values are calculated from spectrometric measurements of visual stimuli and, in turn, are 
the basis for calculating the color coordinates L*U*V* and LAB. For color specification, the most 
widespread is the LAB space, the coordinates of which are calculated using the following formulas 
(5-7) [25]:
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where X, Y, Z are the coordinates of the specified colors; X0, Y0, Z0 are the coordinates of the  
nominal white color stimulus of the standard lighting source.

In this space, the difference between color stimuli is calculated using the Euclidean metric (8)  
[25]:

  2/1222 baLE 
(8)

This formula has undergone multiple improvements and modifications since its introduction in 
1976, but in its current form it remains the principal standard in modern colorimetric technology 
and is widely used to assess the accuracy of color reproduction. Therefore, the use of this color 
difference formula as a metric in the color segmentation algorithm is natural and justified.

3. Results

The method is carried out as follows. IHC-stained histological sections of the studied tissues are 
recorded using a microscope and a digital camera. The obtained images are processed in the Matlab 
software package using standard digital image processing tools. First, the auxiliary CIE XYZ color 
coordinates are calculated based on the brightness values of the RGB color channels in each pixel 
of the original image, and then the CIE Lab color coordinates. Thus, the original digital image 
corresponds to a three-dimensional array of CIE Lab color coordinates,  one of which is L,  the 
values  of which can vary within 0–100. Next, the primary automatic segmentation is performed 
using the K-means method with the calculation of the values of the color differences between the 
image pixels and the selection of areas of marker expression, background, nuclei and membranes. 
After that, these areas are visually assessed to determine in which regions the target marker color 
is present. At the second stage of repeated automatic segmentation for the selected area using the 
K-means method,  the values of  the differences between pixels  in  the CIE Lab color  space are  
calculated, due to which the marked area is divided into three levels of marker expression: weak, 
medium, and strong, with the determination of the marker expression value (S). For morphometric 
measurement of S, which is occupied by immunopositive structures, the ratio of the number of 
pixels of the digital image of the immunopositive reaction area to the total number of pixels in the 
image, expressed as a percentage, is automatically calculated in the selected area.

Each pixel of the image in each of the three color channels of red – R, green – G and blue – B  
has 256 possible intensity values, ranging from 0 (darkest) to 255 (lightest). To calculate the color  
characteristics  of  each pixel  of  the  image in  the  CIE Lab color  space,  the  following steps  are 
performed:

1. Auxiliary CIE XYZ color coordinates are calculated using formulas (9-11):
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Where the coordinates X₀,  Y₀,  Z₀ correspond to the reference white color and are given as: 
X0=95.04; Y0=100; Z0=108.89;

3.  Using the K-means method, automatic segmentation of the digital image into four areas is 
performed.  Each area combines pixels that differ significantly in color,  represented in CIE Lab 
coordinates.  These areas correspond to the marker,  background,  nuclei,  and membranes in the 
image. The areas are displayed on the screen for observation.

4.  The observer visually evaluates these areas and determines which one contains the desired 
marker color; this group of pixels will then undergo further secondary segmentation and analysis;

5.   At the second stage (secondary automatic segmentation),  the identified image area with 
labeled tissues is further segmented using the K-means method based on lightness (L) into three 
expression levels: L=0–40 corresponds to a strong marker expression level; L=40–50 corresponds to 
a medium marker expression level; L=50–100 corresponds to a weak marker expression level;

6.  The identified pixel groups are displayed on the screen as images of areas with different 
marker expression levels.

To illustrate the effectiveness of the proposed approach, sets of images (digital photographs) of  
various histological types of testicular tumors are presented. These images show the results of  
staining of histological sections with different IHC markers. Photography was performed using an 
Olympus BX-41TF microscope with the Olympus DP-Soft software (Version 3.1).  Some images 
contained structures marked by the markers, and the S of these structures varied across different  
images. Examples of the original images are shown in Fig. 1.

As  already  noted,  the  main  differences  between  the  images  are  as  follows:  the  expressed 
markers may be identified in different cellular and tissue structures; the S value of the marker, as  
well as its L value, may also vary significantly across different tumors.

It is evident that the objects in the images vary in size, while the marked areas are characterized  
by different structural and color properties. The only consistent feature of such areas remains the 
“brown color” in subjective perception. The proposed two-stage segmentation algorithm using K-
means in the Lab space, as well as single-stage K-means segmentation with grayscale and RGB 
image representations, were applied to the analyzed images (Fig. 2–6).

The  presented  example  shows  that  the  use  of  grayscale  representation  does  not  allow the 
separation of marked tissues from unmarked ones (Fig.  2,  3).  The RGB representation leads to 
segmented image components that, although differing in brightness (and consequently in L), still  
contain a mixture of marked and unmarked tissues (Fig. 4).



Figure 1: Examples of the original images.

Figure 2: Examples of the original images.



Figure 3: Results of one-step grayscale image segmentation (a – objects in cluster 1; b – objects in 
cluster 2; c – objects in cluster 3; d – objects in cluster 4).

In contrast,  the proposed algorithm, at  the first stage of  segmentation,  makes it  possible to  
separate  marked  and  unmarked  tissue  areas  in  the  image  (Fig.  5),  while  at  the  secondary  
segmentation stage, it allows the division of marked regions according to marker expression levels 
(Fig.  6).  As  a  result,  the  determined  S  of  the  marker  expression  areas  provides  an  objective 
assessment of the main biological properties of different tumors and other pathological processes  
[2-11].



 

 

Figure 4: Results of image segmentation in RGB representation (a – objects in cluster 1; b – objects 
in cluster 2; c – objects in cluster 3; d – objects in cluster 4).

Figure 5: Results of primary image segmentation using K-means in the Lab color space (a – objects  
in cluster 1; b – objects in cluster 2; c – objects in cluster 3; d – objects in cluster 4).



Figure 6: Initial image for secondary segmentation and its results with highlighted areas according 
to marker expression levels (a – image for secondary segmentation, S of the marker 11.29%; b – Lab  
coordinates of the marker 29.49; 12.64; 13.52, S of the marker 3.08%; c – Lab coordinates of the 
marker 38.85; 8.47; 16.22. S of the marker 3.60%; d – Lab coordinates of the marker 38.90; 11.84;  
24.67. S of the marker 4.61%.

Practical examination of suggested algorithm with comparison and estimation obtained result 
by  pathologists  was  realized  in  objective  consensus  about  peculiarities  of  investigated 
microspecimen.

4. Conclusions

Suggested algorithm when first stage applies K-means clustering in CIE Lab space to split an image 
into  four  classes,  second  stage  2  re-segments  the  “marker”  class  by  lightness  L*  into  three 



expression  bands  using  fixed  L*  thresholds,  and  reports  the  relative  positive  area  S  as  the 
quantitative readout (implementation is in MATLAB and relies on an RGB-XYZ-Lab conversion 
and  Euclidean  ΔE  in  Lab  as  the  distance  metric)  allows  to  obtain  objective  data  about  IHC 
micropreparations.
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