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Abstract
This paper addresses automated discrimination of textile materials into natural and synthetic fiber types from
visible-spectrum microscope images using deep learning. We curate and release an open dataset of 3,107 images
(1,547 natural; 1,560 synthetic) captured from face and reverse fabric sides and under mild deformations, and
benchmark Vision Transformer (ViT-B/16), ConvNeXt-Tiny, and EfficientNet-B0 within a unified training and
evaluation protocol, with interpretability provided via Grad-CAM and occlusion sensitivity. On the validation split,
ViT and ConvNeXt achieve accuracy 0.9984 with 𝐹1-score 0.9984 and recall 1.0000, while EfficientNet-B0 attains
accuracy 0.9968, indicating consistent, near-perfect performance across architectures. Error analysis reveals
residual confusions on ribbed and striped patterns where cross-class visual similarities persist, motivating further
dataset diversification and multi-scale modeling. Compared with reported results on related tasks, the proposed
approach yields accuracy improvements of at least 0.0054 and up to 0.0384 while preserving transparency and
reproducibility through open data access; these outcomes support scalable textile sorting pipelines aligned with
circular-economy practices.
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1. Introduction

The increase in textile waste is one of our time’s most serious environmental threats [1]. According to
the European Environment Agency, more than 5 million tons of textile waste are generated annually
in the European Union alone, much of which cannot be reused or recycled due to the lack of effective
sorting mechanisms [2].

Existing systems are mainly based on manual labour, which is not only resource-intensive but also
an insufficiently accurate method of classifying materials by fibre type [3]. Inefficient sorting leads
to the mixing of natural and synthetic fabrics, which makes high-quality processing impossible and
significantly reduces the environmental value of the textile raw material flow [4].

In this context, the development of automated, technologically efficient methods for recognising tissue
types is an extremely urgent task. The application of such approaches contributes to the implementation
of circular economy principles [5], reducing the burden on solid waste landfills, and achieving the UN
Sustainable Development Goals, in particular Goal 12 – “Responsible Consumption and Production,”
which directly relates to supporting the processes of sorting and reusing materials [6].

This study proposes an automated method for classifying fabrics as natural or synthetic using deep
learning technologies. The approach aims to improve accuracy, a key factor in effectively processing
textile waste and minimising its environmental impact. The contributions of the paper are:

• Creation of an open dataset for classifying textile materials by fibre type (natural/synthetic),
taking into account images of fabrics from the front and back sides, as well as artefacts (creases,
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twists, overlaps).
• Improving classification accuracy by using a modified dataset and applying transfer learning to

the Vision Transformer model.
• Visual explainability of the obtained solutions through the use of heat maps.

2. Related works

Traditional methods of textile waste sorting are mostly based on manual identification, which is
resource-intensive and does not ensure high accuracy of material classification. In industrial conditions,
physicochemical methods are used, in particular near-infrared spectroscopic probing and hyperspectral
imaging [7] and thermogram analysis [8].

Although these methods demonstrate high accuracy in laboratory conditions [9], they have a number
of limitations [10]: they require expensive and complex equipment, significant energy consumption, and
specialised calibration. This significantly limits their scalability and use in industrial sorting conditions
[11].

In this regard, methods based on the analysis of images in the visible spectrum, which are potentially
less costly and easier to implement, are attracting increasing attention [12]. Recent advances in computer
vision and deep learning, particularly the use of convolutional neural networks and transformer
architectures, are paving the way for the automation of textile classification based on structure, texture,
and colour [8].

The paper [13] is devoted to the development of a classification system for the sensory properties
of fabrics based on drapeability and tactile characteristics, in particular softness. The c-means fuzzy
cluster analysis method was used for classification, and the results were confirmed by expert evaluation.
Further prediction of the belonging of fabrics to classification groups was carried out according to
mechanical properties using an artificial neural network trained on 534 samples. The system achieved
a prediction accuracy of 83.5% on validation data, which indicates its effectiveness for the objective
assessment of subjective characteristics of fabrics.

The research [14] and [15] are focused on automating the detection and classification of fabric defects
in textile manufacturing using machine learning and image processing technologies. The first paper
applies the YOLOv10 model to determine fabric types and detect tears using a specialised annotated
dataset with various fabric samples, achieving 85.6% accuracy and surpassing previous versions of
YOLO in speed and accuracy. The second paper describes the creation of a prototype defect inspection
system based on Google Teachable Machine, integrated with Raspberry Pi 3B for image processing
and fabric rewinding control. The system classifies defects into two categories – slap and sparse – and
demonstrated 98.4% accuracy with an average speed of 4.85 frames/s. Both approaches demonstrate the
effectiveness of deep learning and hardware solutions for improving the automation of fabric quality
control in manufacturing processes.

The paper [16]is devoted to the analysis of the composition of animal fibres in textile products to
ensure quality control and detect possible commercial counterfeiting. To identify cashmere, mohair, yak,
camel, alpaca, vicuna, llama, and sheep wool fibres, the Fourier transform infrared spectroscopy (ATR
FT-IR) method was used in combination with scanning electron microscopy. For alpaca, vicuna, llama,
and sheep wool, Fourier transform infrared spectroscopy (ATR FT-IR) was used in combination with
scanning electron microscopy and chemometric tools, in particular partial least squares discriminant
analysis (PLS-DA). The models built allowed us to effectively distinguish between the fibres of eight
animal species and determine the origin of cashmere from different regions, achieving a classification
accuracy of 87% and an explained variance of 94.88%, confirming the effectiveness of the approach for
fibre identification in the textile industry.

Research [17] proposes an approach to automatic fabric classification using ResNet50, optimized by
the particle swarm method. The authors demonstrate an accuracy of 98.32%, but the dataset used is
closed, making it impossible to verify and reproduce the results.

A similar approach is presented in [18], which uses transfer learning based on ResNet-50. An



accuracy of 99.3% was achieved, but the authors work on their own dataset, which is also not available
for independent testing. In addition, the research focuses exclusively on tissue structures and does not
address the issue of fibre type classification, a key factor for environmentally friendly recycling.

An analysis of current research shows that, despite significant achievements in the application of
deep neural networks and transfer learning for tissue classification, several problems remain unresolved:

• lack of open datasets for model verification;
• insufficient attention to classification by fibre type, rather than just weave structure;
• limited reproducibility and explainability of existing research.

These factors justify the need to develop new approaches to automated tissue classification that
combine high accuracy, low hardware requirements, and openness of methodology.

3. Problem statement

Despite significant progress in the application of deep learning methods for automated tissue classifica-
tion, there is a scientific contradiction between the high accuracy demonstrated in a number of studies
[17] and the limited reproducibility of results due to the closed datasets used.

Most research primarily targets the recognition of fabric weave structures, while the identification of
the type of fibre – whether synthetic or natural – remains underexplored. This distinction is critically
important for the ecological sorting and subsequent processing of textile waste.

The complexity of the problem is also exacerbated by the variability of the visual characteristics
of fabrics (creases, overlaps, and different sides of the material), which complicates the formation of
noise-resistant models.

Therefore, the current task is to develop an open dataset and create a deep learning model capable of
ensuring high accuracy of fibre type classification based on image analysis in the visible spectrum. The
results must be reproducible and transparent.

4. Method design

Textile materials are characterised by a variety of structures, components, and surface properties that
directly affect their visual characteristics. Natural fibres (cotton, linen, wool, silk) are formed by natural
biopolymers such as cellulose or keratin, which causes irregularity in the shape of the fibres, the
presence of microdefects, and surface heterogeneity. This creates characteristic textural features: a
fibrous structure, chaotic arrangement of elements, natural variation in colour and fibre thickness [19].

On the other hand, synthetic fabrics like polyester, nylon, or acrylic are man-made and produced in
controlled conditions. They’re more consistent, have a smooth surface, and have a regular thread shape.
Synthetic materials often have a glossy surface, clear fibre boundaries, and a repetitive microstructure,
which significantly distinguishes them from their natural counterparts [20].

Such morphological differences can be captured using optical and digital imaging methods, including
microscopy. Analysis of high-resolution images allows the detection of characteristic texture patterns,
orientation, and fibre thickness, which creates the conditions for automated recognition using computer
vision and deep learning algorithms [21]. The diagram of the deep learning-driven fabric classification
method is shown in Figure 1.

The input data for the method consists of a fabric sample for analysis, a microscope that allows
visualisation of the material’s structure, and a trained neural network capable of performing binary
classification. In stage 1, an image of the fabric is obtained using a microscope, which provides a detailed
picture of its microstructural characteristics. In stage 2, the obtained image is prepared for further
analysis, which includes pre-processing procedures aimed at adapting it to the requirements of the
input image for neural network analysis. At stage 3, the prepared image is sent to the input of the
neural network, which classifies the fabric sample into the categories “natural” or “synthetic” and also
generates an explanation of the decision made, providing additional interpretation of the results.



Figure 1: Deep learning-based fabric classification method.

The input data for the method is a defined fabric class (natural or synthetic) and a visualised explana-
tion of the decision made by the neural network. This not only automates the classification process
but also increases confidence in the analysis results thanks to the transparency of the decision-making
mechanism.

4.1. Dataset creation

Within the scope of the research, a proprietary dataset of fabric images [22] was created, comprising
two classes: natural fibres and synthetic fibres. The total number of examples is 3,107 images, of which
1,547 belong to the natural class and 1,560 to the synthetic class. The dataset formation scheme is shown
in Figure 2.

Figure 2: Dataset formation diagram.

The purpose of data collection was to ensure representativeness [23], sufficient diversity of fabric
samples, and to record the characteristic textural and morphological features of fibres that distinguish
natural and synthetic fabrics.

The image was obtained using a Delta Smart MP5 Pro USB microscope [24] with a working distance
of 6.5 cm from the sample to the lens. A system of five built-in LEDs was used for illumination, providing
uniform and stable illumination of the fabric sample surface. The light intensity was 400–420 lux, which
ensured sufficient brightness for the visibility of fine textural details of the fabrics. The microscope
camera took pictures with a resolution of 1024×1024 pixels in JPEG/PNG format, with manually adjusted
white balance and exposure to ensure colour stability and contrast between samples. 3107 images were
collected, including 1547 images of natural and 1560 images of synthetic fabrics. Examples of fabric
samples and their microscope-enlarged photos are shown in Figure 3.

This approach provides sufficient detail for further automated classification and can be scaled in
industrial applications for sorting textile waste.

For further processing, the dataset was structured in two directories (synthetic and natural), each
containing the corresponding images. All files were pre-renamed and standardised to ensure compatibil-
ity with deep learning algorithms. Additionally, the data was divided into train and validation subsets
in an 80/20 ratio to test the generalisation ability of the models adequately.



Figure 3: Images of fabric samples obtained using a microscope and under normal conditions.

During the formation of the dataset, artificial variation in the state of the fabrics was additionally
introduced: the fabric samples were subjected to slight twisting, stretching, and deformation. This
approach allows the model to recognise a fabric’s textural and structural features even under non-
standard or deformed conditions, bringing the training data closer to real-world usage scenarios. This
makes the dataset more representative and resistant to changes in the shape and tension of the fibres.

4.2. Pipeline distinguishing natural and synthetic materials

Figure 4. shows a pipeline for distinguishing natural and synthetic materials.
After forming the dataset, all images were resized to a single size of 224× 224 pixels and normalised

by mean and standard deviation:

𝐼 ′ =
𝐼 − 𝜇

𝜎
, (1)

where 𝐼 is the input image, 𝜇 and 𝜎 are the mean and standard deviation of the channels, respectively.
To improve the generalisation ability of the models, augmentations were applied: random horizontal
reflection, image rotation by a random angle [−10∘, 10∘], and random scaling. This avoids overfitting
and improves the stability of the algorithm.

The proposed automated fabric classification pipeline consists of several key stages. The first stage
involves the formation and structuring of the dataset, which includes the collection of images, their
preliminary processing, and distribution into training and test samples. To improve the quality of
training, augmentation methods are used to account for possible variations in the fabric’s appearance,
simulating real-world conditions.

The second stage involves training deep learning models that receive images as input data and
generate a class prediction (“natural” or “synthetic” fabrics). Training is based on optimising the loss
function and updating the model’s weight coefficients.

The third stage involves evaluating the quality of the classification. Performance metrics are used to
do this: accuracy, recall, precision, and 𝐹1-score. This allows for a comprehensive assessment of the
effectiveness of the approach.

A separate critical stage is the implementation of artificial intelligence explainability methods. They
ensure transparency of decision-making by the model and allow us to investigate which visual features
[25] most significantly influence the classification result. In particular, heat maps of attention and



occlusion sensitivity analysis provide additional insight into which areas of the image the algorithm
focuses on.

Figure 4: Pipeline distinguishing natural and synthetic materials.

Thus, the research methodology combines the formation of a representative dataset, training of classi-
fication models, evaluation of results, and explainability tools, which allows for creating a comprehensive
system for analysing and sorting textile materials.

5. Experiment

Unified parameters were used to train the models, ensuring the correct comparison of results from
different architectures. The input images were pre-scaled to 224×224 pixels, which corresponds to
the standard parameters of most modern deep neural network models. Training was performed using
batch size = 32, with AdamW [26], which is a modification of the classic Adam algorithm and allows
effective control of the weight norm through the weight decay parameter (1×10−2). Cross-entropy, the
standard for two-class classification tasks, was used as the loss function. Regularisation was additionally
supported by applying dropout=0.1. Training lasted 10 epochs, with the dataset divided 80/20 into
training and validation samples.

An NVIDIA [27] GeForce RTX 3050 Laptop GPU (CUDA 12.1, 4GB VRAM) graphics card was used
for the experiments, providing sufficient performance for training medium-scale models.

Three architectures representing different computer vision paradigms were used in the research.
Vision Transformer (ViT-B/16) [28] implements a transformer-based approach [29] with a self-attention
mechanism that allows the model to detect global dependencies between image fragments effectively.
EfficientNet-B0 [30], as a representative of convolutional neural networks, is based on the concept
of compound scaling, which optimally balances the network’s depth, width, and resolution while
maintaining high accuracy. ConvNeXt-Tiny [31] combines the properties of classic CNNs and modern



transformer-based architectures, using large convolution kernels (7×7), layer normalisation, and a
simplified structure, which makes it competitive in image classification tasks.

An explainable artificial intelligence approach was used in this work to increase the transparency of
the classification and validation process. It aims to identify the visual features that most significantly
influence the model’s decisions. This allows the evaluation of the quality of the neural network using
standard metrics and understanding whether the fabric classification is actually based on relevant
textile characteristics. The research used several complementary methods: Grad-CAM and Occlusion
Sensitivity Analysis.

Gradient-weighted Class Activation Mapping uses gradients from the model’s output layer to calculate
the weight coefficients of neurons in the last convolutional or transformer blocks [32]. The resulting
coefficients allow us to build heatmaps that visualise the spatial areas of the image that the model focuses
on when making decisions. In the context of fabric classification, Grad-CAM allows us to confirm that
the model analyses the textural and structural features of the material rather than background factors.

Occlusion Sensitivity Analysis is based on sequentially covering certain parts of an image and
observing changes in classification probability [33]. If excluding a specific region significantly reduces
the model’s confidence, this indicates the high importance of this area for decision-making. Thus,
Occlusion Sensitivity Analysis allows you to experimentally confirm the correctness of the model’s
visual attention and exclude the possibility of “false correlations”.

The application of XAI methods [34] demonstrates that the models are indeed focused on the
characteristic properties of textiles – fibre density, weave structure, and surface defects. This provides
additional validation of the architectures and forms the basis for the practical implementation of the
proposed approach in automated textile waste sorting systems [35].

To evaluate the results of the proposed methodology, a software application based on the Tkinter
library was created (Figure 5).

Figure 5: Interface of the implemented software application.

The implemented software application allows viewing the original image, Grad-CAM analysis results,
and occlusion map.



6. Result and discussion

The research found that the best results were achieved for natural and synthetic materials with a similar
structure, with apparent visual differences between classes. This result is reasonably expected, since
convolutional and transformer-based models used for image classification are good at identifying global
patterns without significant variations. A comparison of the training results of the Vit, efficientnet_b0,
and ConvNeXt neural network models is shown in Table 1.

Table 1
Results of fabric classification using trained models

ViT EfficientNet_b0 ConvNeXt

Accuracy 0.9984 0.9968 0.9984
Precision 0.9968 0.9936 0.9968
Recall 1.0000 1.0000 1.0000
𝐹1-score 0.9984 0.9968 0.9984

All three models demonstrated results exceeding 99% across all key metrics in the experiments
conducted. The most effective were the Vision Transformer and ConvNeXt architectures, which showed
identical accuracy values of 0.9984, recall of 1.0000, precision of 0.9968, and 𝐹1-score of 0.9984. This
demonstrates their ability to generalise features effectively even when there is a high similarity between
classes. In contrast, the EfficientNet-b0 model showed only slightly lower results, with an accuracy of
0.9968, precision of 0.9936, and 𝐹1-score of 0.9968, which confirms its effectiveness, albeit with less
clarity than the other two architectures.

The results of the Vision Transformer model training process are shown in Figure 6 and Figure 7. In
particular, the graphs of the loss function and accuracy values (Figure 6) on the training and validation
samples during the training epochs show a rapid decrease in losses and an increase in accuracy to
almost maximum values already at the initial stages of training. The insignificant difference between
the training and validation curves indicates minimal manifestations of overfitting, which do not affect
the overall generalization ability of the model. The ROC curve and error matrix are also presented
(Figure 7).

Figure 6: Accuracy and loss function change graph for ViT model.

The error matrix shows almost perfect agreement between the predicted and true classes, confirming
the high accuracy of the model. The ROC curve is characterized by an area under the curve (AUC) of
1.0, indicating the excellent ability of the model to discriminate between classes.

Compared to other works in textile material classification, the proposed approach demonstrates
higher efficiency. Thus, in the work [17] results were obtained with an accuracy metric ranging from 0.58
for CNN to 0.9567 for VGG16 and 0.96 for ResNet50. Accordingly, the proposed approach outperforms
the considered one by at least 0.0384.



(a) (b)
Figure 7: Additional graphs of the ViT model training: (a) confusion matrix; (b) ROC curve

In the paper [18] where deep convolutional neural networks were used to recognise fabric patterns,
significant classification results were also achieved – 0.993 according to the Accuracy metric. However,
the developed approach showed even higher results, exceeding these values by 0.0054. A comparison of
the results obtained with existing analogues is shown in Table 2.

Table 2
Comparison of the results obtained with existing analogues

Study Model Dataset Accuracy

Conducted study ViT Implemented dataset 0.9984
ConvNeXt Implemented dataset 0.9984

Akram et al. [17] CNN Dataset A 0.58
CNN Dataset B 0.65

DenseNet121 Dataset A 0.86
DenseNet121 Dataset B 0.92

VGG16 Dataset B 0.9567
ResNet50 Dataset B 0.96

Iqbal Hussain et al. [18] ResNet-50 0.993

Thus, the experiments’ results confirm that modern transformer-type architectures not only increase
accuracy but also improve the system’s generalisation ability. This is especially important for prac-
tical use in the automatic sorting of textile waste, where even a slight reduction in the number of
misclassifications can significantly impact the efficiency of the recycling process.

Therefore, ViT and ConvNeXt are optimal architectures for automated textile classification, as they
provide the best possible performance on the formed dataset. At the same time, it is essential to note
that practical implementation requires further testing of models on more diverse datasets, particularly
those with complex textures and lighting variations, to confirm their superiority over other approaches
definitively.

Analysis of explainability visualisations revealed difficulties in classifying samples with expressed
ribbed or striped patterns. When classifying natural fabric with a striped pattern, the model incorrectly
assigns the image to the class of natural fabrics. This is because during the dataset formation and
training, the sample contained a large proportion of natural fabrics with a striped pattern and ribbed
texture (Figure 8). In other words, the model focuses primarily on local repetitive texture elements
rather than on more complex features that could distinguish between artificial and natural fibres.

This effect reveals one of the key problems of automated fabric classification – overlapping visual
characteristics between classes, leading to errors in assigning samples to categories. For the model, such
fabrics are “borderline cases” where basic texture features do not provide sufficient distinguishability.



(a) (b)
Figure 8: Fabrics classification with ribbed pattern: (a) incorrect classification; (b) correct classification

This is confirmed by Grad-CAM visualisations, which show that the model’s attention is focused
primarily on linear structures. At the same time, other material properties, such as gloss, weave density,
or surface microdefects, remain outside the analysis.

Thus, the strength of the proposed approach is the recognition of fabrics with a clearly defined
homogeneous texture. On the other hand, its weakness is its sensitivity to complex structural patterns
repeated in different classes, particularly striped patterns. This limitation can be overcome by expanding
the training sample to include more fabric samples with similar characteristics, using multi-scale analysis
mechanisms, or integrating additional descriptors that consider the material’s colour, gloss, and other
physical properties. In addition, combining visual features extracted by a neural network with traditional
texture analysis methods is promising, as it can improve the system’s ability to distinguish between
fabrics that are similar in pattern but different in origin.

Overall, the obtained results demonstrate the model’s potential in practical application and outline
areas for its improvement. Striped and ribbed fabrics can be considered as “critical cases” for further
research, which will allow the formation of a more universal and robust system for fabric classification
in automated recognition of textile materials.

7. Conclusion

The study aimed to develop and validate an approach for automated fabric classification into natural
and synthetic using deep learning technologies. The developed approach made it possible to increase
accuracy by at least 0.0054 (compared to known analogues), which is a key factor in ensuring the
effective processing of textile waste and minimising its negative impact on the environment.

Accordingly, within the scope of the study, an open dataset was created for fabric classification by
fibre type (natural/synthetic), taking into account images of fabrics from the front and back sides, as
well as with artefacts (creases, twists, overlaps), available for download from the Kaggle platform. The
total number of samples is 3,107 images, of which 1,547 belong to the “natural” class and 1,560 to the
“synthetic” class.

The proposed neural network solution, which allows classification with an accuracy of 0.9984 through
the use of a modified dataset and transfer learning for the Vision Transformer model, has the added
benefit of visual explainability of the obtained solutions, which also contributes to understanding the



strengths and weaknesses of the proposed neural network classification.
Additional analysis of the results revealed that the most significant difficulties arise in cases of fabric

classification with a strong striped or ribbed structure. Synthetic samples with similar patterns are
often confused by the model with natural fabrics that have similar patterns. This indicates a limitation
of the current approach, as the model focuses primarily on repetitive textural elements, ignoring other
material, visual and physical characteristics.

To overcome these limitations, it is necessary to expand further and balance the dataset, particularly
by including a larger number of fabric samples with different textures and structural variations, which
will be done in future studies.

Thus, the study’s results are significant in the context of computer vision development and the
broader perspective of sustainable development. Automated classification and further processing of
textile waste reduce the burden on the environment, optimise resources, and implement the principles
of the circular economy. This, in turn, opens up opportunities for forming more environmentally
responsible and technologically oriented production that meets global sustainable development goals.
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