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Abstract

Voice-based control represents an efficient way to interact with IoT devices and autonomous systems, but
its use is often limited by privacy, security, and hardware constraints. The present study explores the
open-source Python library Resemblyzer for on-device speaker authentication using short voice
commands, focusing on offline operation in resource-constrained environments. Experiments with
datasets of different audio quality, duration, and size, covering both same-speaker and cross-speaker
cases, used cosine similarity to detect false positives, false negatives, and threshold results. We found that
reliable authentication is possible with recordings as short as 2.63 seconds and at least 495 KB in size,
while shorter clips (1-1.5 seconds) are less dependable, especially against high-quality references. These
results show that Resemblyzer can run effectively without cloud access, offering practical guidance on
minimal audio requirements for secure, real-time voice verification in IoT and robotic systems.

Keywords
voice-based control, speaker authentication, Resemblyzer, short voice commands, Internet of Things (IoT),
resource-constrained devices, voice verification, voiceprint, cosine similarity

1. Introduction

A wide range of portable and connected devices, such as mobile phones, laptops, e-readers,
smartwatches, wireless earbuds, robotic vacuum cleaners, smart air conditioners etc., has become
ubiquitous in modern life. This list could be extended considerably, however, it is an indisputable
fact that the Internet of Things (IoT) has already become an integral component of contemporary
society, and that robots, in the broad sense of the term, now serve as indispensable assistants in our
daily activities [1-3]. In this context an important arises: how can users effectively interact with
such assistants? One of the approaches involves the use of control interfaces, which may range
from keyboards and touch panels to specialized devices capable of transmitting commands via
radio frequency or infrared channels as well as through voice-based commands [4,5]. Among these,
interaction via voice commands represents the most natural and straightforward way for issuing
instructions, requesting actions, or retrieving information. In addition, this modality does not
require specific skills or additional efforts associated with the utilization of specific input devices,
and it typically offers the fastest way of communication [6]. However, voice-based interaction is
accompanied by a range of technical and practical challenges [8,9]. For instance, background noise
can significantly decrease voice recognition accuracy, while variations in dialects, speech rate,
pronunciation, and accents further complicate reliable interpretation. More critically, voice-
controlled systems raise substantial privacy and security concerns. Beyond the inherent risk that
speaking aloud may inadvertently disclose sensitive information (e.g., passwords, PIN codes, or
message content), it becomes critically important in contexts involving more sensitive systems than
a coffee machine. Whether issuing commands to a mobile device, an industrial robot, or even a
combat drone, it is essential to ensure that the system can reliably authenticate the speaker and
respond exclusively to authorized individuals.
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In the present work we evaluated the potential of publicly available Python library Resemblyzer
for user authentication based on short voice commands [10]. Specifically, the main goal was to
determine empirically the minimal audio conditions under which short voice commands can be
used for robust user authentication with Resemblyzer.

2. Methodology

We focused on Resemblyzer library as the core speaker embedding tool due to its strong
performance in voiceprint-related tasks, public availability and active maintaining by community,
compatibility with Python’s scientific ecosystem (e.g., NumPy, Pandas, scikit-learn) and ability to
operate in both batch and near real-time contexts [10]. It leverages a pretrained model based on the
GE2E (Generalized End-to-End) architecture, which was introduced by Google for speaker
verification, enabling it to generate compact, 256-dimensional speaker embeddings that generalize
well even for short utterances. Once the embedding is computed, only the small vector (1 KB)
needs to be stored or compared - not the full audio. The pretrained model is stored as a
PyTorch .pt file and can be located locally, it is reasonably small (~15-20MB) depending on the
version. The size of the model is significantly lighter than transformer-based models like Whisper,
ECAPA-TDNN, or wav2vec.
Comparison of popular solutions and their pretrained models by size can be found in Table 1.

rSriTe)lceorlnparison for selected speaker embedding and speech processing models
Non-English or Math Frequency
Resemblyzer (GE2E) ~15
ECAPA-TDNN (SpeechBrain) 50-100+
Wav2Vec2 (Facebook) 300+
Whisper (OpenAl) small ~70
SpeakerNet ~25-60

As can be seen from this table, Resemblyzer model is the smallest one. This advantage plays an
important role taking into consideration that it should be used in resource-constrained devices.
Moreover, authentication based on voiceprint analyses in Resemblyzer library works purely on-
device with no need to send audio to cloud services. In other words, no network communication is
required.

The implementation of the work involved a set of tests with short audio records designed to
emulate voice commands for a combat drone. All audio records were saved in .wav format and
produced with a standard computer microphone by ‘Sound Recorder’ application which is available
at any Windows OS. We deliberately avoided high quality devices with a purpose to simulate the
real-life conditions.

Two types of voices, male and female, were included into the experiments. Information about
audio records used and identification of the corresponding input sets are summarized below
(Tables 2-5).



Table 2
Dataset #1. Voice: male

File name

Text in audio

Length of audio (seconds)

Analyze.wav

Attack.wav

Authentication.wav

Autopilot.wav
Check.wav
Defence.wav
Destroy.wav
Find.wav
Follow.wav
Freeze.wav
Go.wav
Home.wav
Identity.wav
Listen.wav
Stop.wav
Wait.wav

Watch.wav

Analyze
Attack
Authentication
Autopilot
Check
Defence
Destroy
Find
Follow
Freeze
Go
Home
Identity
Listen
Stop
Wait

Watch

1,16

1,34

1,50

1,42

1,29

1,48

1,53

1,46

1,42

1,40

1,42

1,34

1,59

1,20

1,02

Table 3
Dataset #2. Voice: male

File name

Text in audio

Length of audio (seconds)

Al-m.waw The Adventures of Sherlock Holmes" by Arthur 15,78
Conan Doyle is a collection of detective stories
written during the late 19th century. The book

introduces the legendary detective Sherlock

Holmes and his loyal companion, Dr. John Watson




Table 4
Dataset #3. Voice: female

File name

Text in audio

Length of audio (seconds)

Analyze.wav

Attack.wav

Authentication.wav

Autopilot.wav
Check.wav
Defence.wav
Destroy.wav
Find.wav
Follow.wav
Freeze.wav
Go.wav
Home.wav
Identity.wav
Listen.wav
Stop.wav
Wait.wav

Watch.wav

Analyze
Attack
Authentication
Autopilot
Check
Defence
Destroy
Find
Follow
Freeze
Go
Home
Identity
Listen
Stop
Wait

Watch

1,49

1,24

1,84

1,84

1,19

1,52

1,33

1,37

1,38

0,55

1,2

1,42

1,48

1,47

1,15

Table 5
Dataset #4. Voice: female

File name

Text in audio

Length of audio (seconds)

Al-f-waw The Adventures of Sherlock Holmes" by Arthur 12,99
Conan Doyle is a collection of detective stories
written during the late 19th century. The book

introduces the legendary detective Sherlock

Holmes and his loyal companion, Dr. John Watson




Table 6
Dataset #5. Voice: male

File name

Text in audio

Length of audio (seconds)

Gltm-Analyze.wav Ginger, listen to me, 3,16
Analyze
Gltm-Attack.wav Ginger, listen to me, 3,07
Attack
Gltm-Authentication.wav Ginger, listen to me, 3,64
Authentication
Gltm-Autopilot.wav Ginger, listen to me, 3,02
Autopilot
Gltm-Check.wav Ginger, listen to me, 3,21
Check
Gltm-Defence.wav Ginger, listen to me, 3,03
Defence
Gltm-Destroy.wav Ginger, listen to me, 3,16
Destroy
Gltm-Find.wav Ginger, listen to me, 2,68
Find
Gltm-Follow.wav Ginger, listen to me, 3,89
Follow
Gltm-Freeze.wav Ginger, listen to me, 2,86
Freeze
Gltm-Go.wav Ginger, listen to me, Go 2,63
Gltm-Home.wav Ginger, listen to me, 2,73
Home
Gltm-Identity.wav Ginger, listen to me, 2,92
Identity
Gltm-Listen.wav Ginger, listen to me, 2,95
Listen
Gltm-Stop.wav Ginger, listen to me, 2,78
Stop
Gltm-Wait.wav Ginger, listen to me, 2,68
Wait
Gltm-Watch.wav Ginger, listen to me, 2,86
Watch

For each audio recording, a voiceprint was generated using the Resemblyzer library, producing
a 256-element array of floating values. Each array was saved in a separate .csv file, named
identically to its corresponding original audio file.

The Python code used to perform this operation is provided below:

import pandas as pd

from resemblyzer import VoiceEncoder, preprocess_wav
import numpy as np

from pathlib import Path

import os

def calculate_n_save_voiceprint(audio_record: str, output_folder: str, csv_separator: str = ";", csv_decimal_symbol: str
=,

"""Calculation of voiceprint for the passed audio file and saving it to a CSV file.

Args:
audio_record (str): Path to the audio record (.wav file).



output_folder (str): Path to the output folder where the CSV file will be saved.

Raises:
ValueError: If the audio record path is invalid or not a .wav file.
audio_record_path = Path(audio_record)
if not audio_record_path.exists() or audio_record_path.suffix.lower() != ".wav":
raise ValueError(f'Invalid .wav file path: {audio_record_path}")

output_folder_path = Path(output_folder)
output_folder_path.mkdir(parents=True, exist_ok=True)

# Load and process audio
preprocessed_wav_data = preprocess_wav(audio_record_path)

# Generate embedding
encoder = VoiceEncoder()
embedding = encoder.embed_utterance(preprocessed_wav_data)

# Create output CSV path: same filename, different folder, .csv extension
output_csv_path = output_folder_path / (audio_record_path.stem + ".csv")

# Save embedding with comma as decimal separator
df = pd.DataFrame([embedding])
df.to_csv(output_csv_path, sep=csv_separator, decimal=csv_decimal_symbol, header=False, index=False,
float_format="%.8f")

print(f"Voiceprint for {audio_record_path.name} was saved to: {output_csv_path}")

def calculate_n_save_voiceprints(input_folder: str, output_folder: str, csv_separator: str = ";", csv_decimal_symbol: str

oy,
=" )

"""Calculate and save voiceprints as separate csv file for all .wav files in the input folder.

Args:
input_folder (str): Path to the folder containing .wav files.
output_folder (str): Path to the folder where voiceprints will be saved.
csv_separator (str, optional): Separator for the output CSV files. Defaults to ";".
csv_decimal_symbol (str, optional): Symbol for decimal point in the output CSV files. Defaults to ",".
for file_name in os.listdir(input_folder):
if file_name.lower().endswith(".wav"):
print(f"Processing: {file_name}")
file_path = os.path.join(input_folder, file_name)
try:
calculate_n_save_voiceprint(file_path, output_folder, csv_separator, csv_decimal_symbol)
except ValueError as e:
print(e)
except Exception as e:
print(f"An error occurred while processing {file_name}: {e}")

An example of abridged output voiceprint data in single .csv file may be illustrated as:

0,13736048;0,00000000;0,16476172;0,00000000;0,00000000;0,00000000;0,00000000;0,00000000;0,06845610;0,21822383;0,04
552145;0,00026178;0,08779779;0,09342065;0,00000000;...
0,02555513;0,00000000;0,00000000;0,00000000;0,00000000;0,00000000;0,00000000;0,00602875;0,11488174;0,07095279;0,07308
850;0,00000000;0,12232912;0,14700639;0,00000000;0,07068025;0,12317624;0,00709428;0,00000000;0,00000000;0,00000000;0,03
307733;0,08165727;0,00000000;0,06436168;0,00000000

The authentication process and evaluation of similarity between two voiceprints can be
quantified using cosine similarity, a widely used metric in speaker verification systems:



. . . _ AxB (1)
Similarity TAlB]

Cosine similarity yileds a value between -1.0 and +1.0, indicating how closely two voiceprint
vectors align in the embedding space. Specifically, +1.0 value means almost identical voices, 0.0
indicates no similarity, and —1.0 value represents complete opposition, an outcome unlikely in the
context of our work. Heuristic or empirical result equal or greater than 0.75 means successful
authentication. In speaker verification systems using cosine similarity, typical same-speaker scores
fall around 0.8-0.95, different-speaker scores often fall around 0.3-0.6, so 0.75 is commonly used as a
default threshold in prototyping or academic examples.

Python code which compares two voiceprints and calculates the similarity can be found in the
listing below:

"o

def compare_2_voiceprints(voiceprint_csv_filel: str, voiceprint_csv_file2: str, csv_separator: str = "},
csv_decimal_symbol: str = ",") -> float:

nun

Compare two voiceprints and return the similarity score.

Args:
voiceprint_csv_filel (str): Path to the first voiceprint CSV file.
voiceprint_csv_file2 (str): Path to the second voiceprint CSV file.

nn

df1 = pd.read_csv(voiceprint_csv_filel, sep=csv_separator, decimal=csv_decimal_symbol, header=None)
df2 = pd.read_csv(voiceprint_csv_file2, sep=csv_separator, decimal=csv_decimal_symbol, header=None)

if df1.shape[1] != df2.shape[1]:

raise ValueError("Voiceprints must have the same number of dimensions.")

# Calculate cosine similarity
embedding1 = dfl.iloc[0].values
embedding?2 = df2.iloc[0].values

similarity = np.dot(embedding1, embedding?2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding?2))

return similarity
3. Results and Discussion

3.1. Experiment 1: calculating the similarity for the short audio records produced
by the same person

In our first experiment we compare voiceprints received from dataset #1 between each other. The
algorithm was the following:
1. Selection of the first .csv with voiceprint from the target folder (e.g. analyze.csv).
2. Comparison of this voiceprint with those voiceprints stored in all other .csv files in the
same target folder
3. Record the calculated similarity scores in the results.csv file as a new row. The header of
this file includes names of files taking part in comparison operation (all csv files found in
the target folder) referred to here as destination files. The first column contains the names
of source file, and each subsequent column stores the value of calculated similarity between
the source and destination files.
4. Repetition of the process for the next .csv file with voiceprint.

The format and structure of result.csv file allows us to import easily these data into Excel and
utilize more sophisticated tools for the analysis.
An example of output result.csv file received during this experiment can be found below:



ch

;analyze;attack;authentication;autopilot;check;defence;destroy;find;follow;freeze;go;home;identity;listen;stop;wait;wat

analyze;1,0;0,74;0,72;0,65;0,67;0,79;0,69;0,8;0,81;0,78;0,79;0,85;0,79;0,86;0,72;0,83;0,8
attack;0,74;1,0;0,67;0,75;0,71;0,69;0,63;0,75;0,73;0,71;0,71;0,64;0,73;0,75;0,84;0,81;0,8
authentication;0,72;0,67;1,0;0,66;0,58;0,8;0,7;0,77;0,64;0,65;0,61;0,62;0,81;0,77;0,58;0,64;0,62
autopilot;0,65;0,75;0,66;1,0;0,62;0,63;0,67;0,71;0,75;0,67;0,69;0,64;0,71;0,6;0,7;0,7;0,7
check;0,67;0,71;0,58;0,62;1,0;0,57;0,65;0,72;0,78;0,76;0,81;0,67;0,62;0,64;0,74;0,81;0,75
defence;0,79;0,69;0,8;0,63;0,57;1,0;0,72;0,82;0,68;0,68;0,66;0,69;0,79;0,82;0,64;0,67;0,63
destroy;0,69;0,63;0,7;0,67;0,65;0,72;1,0;0,75;0,74;0,75;0,77;0,76;0,8;0,75;0,65;0,73;0,7
find;0,8;0,75;0,77;0,71;0,72;0,82;0,75;1,0;0,76;0,79;0,79;0,74;0,84;0,83;0,7;0,8;0,72
follow;0,81;0,73;0,64;0,75;0,78;0,68;0,74;0,76;1,0;0,82;0,89;0,82;0,71;0,73;0,77;0,87;0,83
freeze;0,78;0,71;0,65;0,67;0,76;0,68;0,75;0,79;0,82;1,0;0,86;0,84;0,81;0,81;0,78;0,86;0,84
£0;0,79;0,71;0,61;0,69;0,81;0,66;0,77;0,79;0,89;0,86;1,0;0,87;0,75;0,72;0,82;0,88;0,83
home;0,85;0,64;0,62;0,64;0,67;0,69;0,76;0,74;0,82;0,84;0,87;1,0;0,73;0,8;0,76;0,85;0,83
identity;0,79;0,73;0,81;0,71;0,62;0,79;0,8;0,84;0,71;0,81;0,75;0,73;1,0;0,84;0,7;0,76;0,73
listen;0,86;0,75;0,77;0,6;0,64;0,82;0,75;0,83;0,73;0,81;0,72;0,8;0,84;1,0;0,68;0,79;0,79
stop;0,72;0,84;0,58;0,7;0,74;0,64;0,65;0,7;0,77;0,78;0,82;0,76;0,7;0,68;1,0;0,84;0,85
wait;0,83;0,81;0,64;0,7;0,81;0,67;0,73;0,8;0,87;0,86;0,88;0,85;0,76;0,79;0,84;1,0;0,93
watch;0,8;0,8;0,62;0,7;0,75;0,63;0,7;0,72;0,83;0,84;0,83;0,83;0,73;0,79;0,85;0,93;1,0

Python code which does comparison and produces result.csv can be found below:

"o

def calculate_voiceprints_similarity(input_folder: str, output_csv: str, csv_separator: str = ";", csv_decimal_symbol: str

= " "):

5

"""Calculate the similarity matrix for voiceprints.
Args:
input_folder (str): Path to the folder containing voiceprint CSV files.
output_csv (str): Path to the output CSV file for the similarity matrix.
csv_separator (str, optional): Separator for the output CSV file. Defaults to ";".
csv_decimal_symbol (str, optional): Decimal symbol for the output CSV file. Defaults to
Raises:
ValueError: If the input folder is invalid or contains no CSV files.
folder = Path(input_folder)
if not folder.is_dir():
raise ValueError(f'{input_folder} is not a valid folder.")

csv_files = sorted(folder.glob("*.csv"))

if not csv_files:
print("No CSV files found in the folder.")
return

file_names = [f.stem for f in csv_files]
file_paths = {f.stem: str(f) for f in csv_files}

# Initialize with NaN to ensure float dtype
df_result = pd.DataFrame(np.nan, index=file_names, columns=file_names)

for a in file_names:
for b in file_names:

ifa==b:
df_result.loc[a, b] = 1.0
else:

similarity = compare_2_voiceprints(
file_paths[a],
file_paths[b],
csv_separator=csv_separator,
csv_decimal_symbol=csv_decimal_symbol,
)

df_result.loc[a, b] = round(similarity, 2)

df_result.index.name =
df_result.to_csv(output_csv, sep=csv_separator, decimal=csv_decimal_symbol)

print(f"Similarity matrix saved to {output_csv}")



The results of comparison for dataset # 1 are summarized in Table 7.

Table 7
Comparison for dataset # 1

<7} 5 § @ > 2
s |8 |2 I|EB |5 |8 |8 |& |2 |& |9 |2 |= |2 |8 |¢8]:t
analyse 1 0,74 | 0,72 | 0,65 | 0,67 | 0,79 | 0,69 | 0,8 0811|078 1|0,79 0851079 0,86 | 0,72 | 0,83 | 0,8
attack 0,74 | 1 0,67 | 0,75 ( 0,71 { 0,69 | 0,63 | 0,75 | 0,73 | 0,71 | 0,71 | 0,64 | 0,73 | 0,75 | 0,84 | 0,81 | 0,8
auth-tion | 0,72 | 0,67 | 1 0,66 | 0,58 | 0,8 0,7 0,77 | 0,64 | 0,65 | 0,61 | 0,62 | 0,81 | 0,77 | 0,58 | 0,64 | 0,62
autopilot 0,651 0,751 0,66 | 1 0,62 | 0,63 | 0,67 | 0,71 | 0,75 | 0,67 | 0,69 | 0,64 | 0,71 | 0,6 0,7 0,7 0,7
check 0,67 | 0,71 | 0,58 | 0,62 | 1 0,57 | 0,65 | 0,72 | 0,78 | 0,76 | 0,81 | 0,67 | 0,62 | 0,64 | 0,74 | 0,81 | 0,75
defence 0,79 | 0,69 | 0,8 0,63 | 057 |1 0,72 | 0,82 | 0,68 | 0,68 | 0,66 | 0,69 | 0,79 | 0,82 | 0,64 | 0,67 | 0,63
destroy 0,69 | 0,63 | 0,7 0,67 | 0,651 0,72 | 1 0,751 0,74 | 0,75 | 0,77 | 0,76 | 0,8 0,75 1] 0,65 | 0,73 | 0,7
find 0,8 0,75 0,77 { 0,71 | 0,72 |1 0,82 | 0,75 | 1 0,76 | 0,79 | 0,79 | 0,74 | 0,84 | 0,83 | 0,7 0,8 0,72
follow 0811|073 |0,64|075] 0,78 | 0,68 |0,74 | 0,76 | 1 0,82 1089 (0821 0,711| 0,73 | 0,77 | 0,87 | 0,83
freeze 0,78 | 0,71 | 0,65 | 0,67 | 0,76 | 0,68 | 0,75 | 0,79 | 0,82 | 1 0,86 | 0,84 | 0,81 | 0,81 | 0,78 | 0,86 | 0,84
go 0,79 | 0,71 | 0,61 | 0,69 | 0,81 | 0,66 | 0,77 | 0,79 | 0,89 | 0,86 | 1 0,871 0,75 | 0,72 | 0,82 | 0,88 | 0,83
home 0,85 1| 0,64 | 0,62 | 0,64 | 0,67 | 0,69 | 0,76 | 0,74 | 0,82 | 0,84 | 0,87 | 1 0,73 |1 0,8 0,76 | 0,85 | 0,83
identity | 0,79 | 0,73 | 0,81 | 0,71 | 0,62 | 0,79 | 0,8 | 0,84 | 0,71 | 0,81 | 0,75 | 0,73 | 1 0,84 | 0,7 | 0,76 | 0,73
listen 0,86 | 0,75 | 0,77 | 0,6 0,64 | 0821|0,751(0831|073]|081]|0,7210,8 0,84 | 1 0,68 | 0,79 | 0,79
stop 0,72 10,84 | 0,58 | 0,7 0,74 | 0,64 | 0,65 | 0,7 0,77 10,78 1 0,82 | 0,76 | 0,7 0,68 | 1 0,84 | 0,85
wait 0,83 | 0,81 | 0,64 | 0,7 0,81 | 0,67 | 0,73 | 0,8 0,87 0,86 (0,88 | 085076079 (0,84 |1 0,93
watch 0,8 0,8 0,62 | 0,7 0,75 | 0,63 | 0,7 0,72 10,83 |0,84 |083]083]|073|0,791(0,85]093]|1

Given that all audio recordings were produced by the same speaker, we expect that all similarity
scores would exceed 0,8. However, the results revealed numerous cases with values below this
threshold, and in some instances, even below 0,6. In the context of our, scores below 0.6 can be
considered false negatives, the range between 0,6 and 0,8 represents an uncertain or threshold
zone, and values above 0,8 indicate a successful match. To better understand the distribution of
results, we calculated the proportion of scores falling within each range. The following Python
function performs this calculation:

"o

def analyze_similarity_matrix(similarities_csv_file: str, failedRange: float, succeedRange: float, csv_separator: str = ";",
csv_decimal_symbol: str = ","):
Reads a similarity matrix from CSV and calculates percentage of values
falling into failed, threshold, and succeed categories.

Args:
similarities_csv_file (str): Path to the similarity matrix CSV.
failedRange (float): Upper bound for failed values (exclusive).
succeedRange (float): Lower bound for succeed values (inclusive).

Returns:
dict: Percentages of failed, threshold, and succeed values.

nun

df = pd.read_csv(similarities_csv_file, sep=csv_separator, decimal=csv_decimal_symbol, index_col=0)

# Extract all similarity values except diagonal (self-comparisons)
values = [

float(value)

for i, row in df.iterrows()

for j, value in row.items()

ifil=j
]

# Classification counters




failed_count = sum(1 for v in values if v < failedRange)
succeed_count = sum(1 for v in values if v >= succeedRange)
threshold_count = len(values) - failed_count - succeed_count

total_count = len(values)
if total_count ==
return {"total count": 0, "failed": 0.0, "threshold": 0.0, "succeed": 0.0}

# Percentages

return {
"total count": total_count,
"failed": round(failed_count / total_count * 100, 2),
"threshold": round(threshold_count / total_count * 100, 2),
"succeed": round(succeed_count / total_count * 100, 2)

Resulting score is as follows (Table 8):

Table 8
Resulting scores
Range Percentage (%) Description
[0:0,6] 2,94 Failed scenario
(0,6:0,8) 66,91 Threshold scenario
[0,8:1] 30,15 Succeed scenario

Total number: 272

Let’s do the same experiment for dataset #3 — analogous short audio records recorded by female.
The results of comparison for dataset # 3 are given in Table 9.

Table 9
Comparison for dataset #3
% g |2 g |z B
slE 2|8 2|25 = |2 |3 e 1218|535 |%
5|8 |R|R |5 |8 |8 |& |2 |& |8 |2 |2 |2 |8 |% |5
analyse 1 [ 08 |078] 08 [076]079]079] 087 [072]072]067 071077078076 073]0,75
attack 08 | 1 [086[092] 08608808 |08 | 08 | 08 |073]076] 086|082 08408l 08
auth-tion | 0,78 [ 086 | 1 | 09 | 083088 | 084|084 076|078 | 07 | 073|091 082081 | 08 | 077
autopilot 08 [092] 09| 1 |08 |08 084085 [079] 08 | 071073086 081|082 081 | 0,79
check 0,76 | 0,86 | 083 | 0,8 | 1 | 086 087 | 08 | 087 | 086 | 0,8 | 0,86 | 0,84 | 0,86 | 0,88 | 0,89 | 0,87
defence 0,79 | 0,88 | 088 [ 0,87 [ 0,86 | 1 | 092|089 | 0,75 | 0,84 | 0,76 | 0,75 | 0,92 | 0,85 | 0,82 | 0,83 | 0,81
destroy 0,79 | 0,88 | 0,84 | 0,84 | 0,87 [ 092 | 1 | 085 | 074 | 0,75 | 0,79 | 0,76 | 0,87 | 0,79 | 0,82 | 08 | 08
find 0,87 | 086 | 084 [ 085 | 0,8 | 089 |08 | 1 | 077079076077 | 085|082 08 | 081 | 0,82
follow 0,72 | 08 [ 0,76 | 079 | 0,87 | 0,75 | 0,74 [ 0,77 | 1 | 083 | 085 | 09 | 0,72 | 0,83 | 0,84 | 0,85 | 0,84
freeze 0,72 | 08 [ 078 0,8 [ 086 084 075]079[ 08| 1 |074] 08 | 082|087 | 0,81 | 0,89 | 0,87
g0 0,67 | 073 07 | 071 | 0,8 | 0,76 | 0,79 | 0,76 | 085 | 074 | 1 | 0,88 | 0,72 | 0,76 | 0,8 | 0,79 | 0,83
home 0,71 | 0,76 [ 0,73 [ 0,73 [ 0,86 | 0,75 | 0,76 | 0,77 [ 09 | 08 | 0,88 | 1 0,73 [ 08 | 088 085|086
identity | 0,77 | 0,86 | 0,91 | 0,86 | 0,84 | 0,92 | 0,87 | 0,85 | 0,72 | 0,82 | 0,72 | 0,73 | 1 0,85 | 0,79 | 0,82 | 0,79
listen 0,78 [ 0,82 [ 0,82 [ 081 [ 086 | 0,85 | 0,79 [ 082 [083 | 087 [ 076 | 0,8 | 085 | 1 084 |09 083
stop 0,76 [ 0,84 | 081 [ 082 [ 088 | 082 [ 082 |08 |084 [081 [08 |08 | 079 084 |1 084 [ 09
wait 0,73 [ 081 [08 [081 [ 089 |08 |08 |08l [085 |08 | 079|085 |08 |09 |084]1 0,87
watch 0,75 [ 08 | 0,77 [ 0,79 | 0,87 | 0,81 | 0,8 | 082 | 084 | 0,87 | 0,83 | 0,86 | 0,79 | 0,83 | 0,9 | 0,87 | 1

The resulting score for this case is presented in Table 10:




Table 10
Resulting scores

Range Percentage (%) Description
[0:0,6] 0,0 Failed scenario
(0,6:0,8) 32,35 Threshold scenario
[0,8:1] 67,65 Succeed scenario

Total number: 272

The results for dataset #3 were found to be notably better than those for dataset #1 — zero failed
cases and a threshold range less than half the size of the successful matches. To understand the
factors contributing to this improvement, at the next step of the study we compared audio
recordings from the two datasets and tried to identify the characteristics that lead to higher
similarity scores. The first step involved the detection of the cases with the largest differences
between the two resulting similarity matrices. We take the similarity matrix from dataset #3, since
it demonstrates superior performance, and subtract the corresponding matrix from dataset #1. In
this context, the resulting delta serves as a quality indicator for the comparison (Table 11).

Table 11
Difference of similarity scores between dataset #3 and dataset #1
8 § k= g 2 z
S 1% |2 |58 |2 |2 |2 |2 |2 |8 e |2 |5 | o | = |B
g g E g 5 g 3 £ 2 £ S £ | z £ g g
analyse 0 0,06 | 0,06 | 0,15 | 0,09 0 0,1 | 0,07 | 0,09 | 0,06 | 0,12 | 0,14 | 0,02 | 0,08 | 0,04 | 0,1 | 0,05
attack 0,06 0 0,19 | 0,17 | 0,5 | 0,19 | 025 | 0,11 | 0,07 | 0,09 | 0,02 | 0,12 | 0,13 | 0,07 0 0 0
auth-ton | 0,06 | 0,19 0 | 024 | 025 | 0,08 | 0,14 | 0,07 | 0,12 | 0,13 | 0,09 | 0,11 | 0,1 | 0,05 | 0,23 | 0,16 | 0,15
autopilot | 0,15 | 0,17 | 024 | 0 | 018 | 024 | 0,17 | 0,14 | 0,04 | 0,3 | 0,02 | 0,09 | 0,15 | 021 | 0,12 | 0,11 | 0,09
check 0,09 | 0,15 | 0,25 | 0,18 0 0,29 | 022 | 0,08 | 0,09 | 01 | 00l | 0,19 | 022 | 0,22 | 0,14 | 0,08 | 0,12
defence 0 0,19 | 0,08 | 0,24 | 0,29 0 02 | 007 | 0,07 | 0,06 | 01 | 0,06 | 0,13 | 0,03 | 0,18 | 0,16 | 0,18
destroy 01 | 025 | 0,14 | 0,17 | 0,22 | 02 0 0,1 0 0 | 002 0 0,07 | 0,04 | 017 | 0,07 | o1
find 0,07 0,11 0,07 0,14 0,08 0,07 0,1 0 0,01 0 -0,03 0,03 0,01 -0,01 0,1 0,01 0,1
follow -0,09 0,07 0,12 0,04 0,09 0,07 0 0,01 0 0,01 -0,04 0,08 0,01 0,1 0,07 -0,02 0,01
freeze -0,06 0,09 0,13 0,13 0,1 0,16 0 0 0,01 0 -0,12 -0,04 0,01 0,06 0,03 0,03 0,03
g0 -0,12 0,02 0,09 0,02 -0,01 0,1 0,02 -0,03 -0,04 -0,12 0 0,01 -0,03 0,04 -0,02 -0,09 0
home -0,14 0,12 0,11 0,09 0,19 0,06 0 0,03 0,08 -0,04 0,01 0 0 0 0,12 0 0,03
identity | 0,02 | 0,13 | 0,1 | 0,15 | 0,22 | 0,13 | 0,07 | 0,01 | 0,01 | 0,01 | 0,03 | 0 0 | 001 | 0,09 | 0,06 | 0,06
Tisten 008 | 007 | 0,05 | 021 | 022 | 0,03 | 0,04 | 001 ] 01 | 006 | 004 | 0 0,01 0 0,16 | 0,11 | 0,04
stop 0,04 | 0 023 | 012 | 0,14 | 018 | 017 | 01 | 007 | 003 | 0,02 | 0,12 | 0,09 | 0,16 0 0 | 005
wait 0,1 0 0,16 | 0,11 | 0,08 | 0,16 | 0,07 | 0,01 | 0,02 | 0,03 | 0,09 | 0 0,06 | 0,11 0 0 | 0,06
watch 005 | 0 0,15 | 0,09 | 0,12 | 0,18 | 01 | 01 | 0,01 | 0,03 0 | 0,03 | 0,06 | 0,04 | 0,05 | 0,06 | 0

By summing the values in each column, we obtain a cumulative weight for the corresponding
file, allowing us to identify the cases with the largest overall differences. These results are

presented in Fig. 1.
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Figure 1: Cumulative weights of similarity differences between dataset #3 and dataset #1

The physical characteristics of input files are given in Table 12.

Table 12

Physical characteristics of the input files from dataset #3 and dataset #1

Delta: Dataset #3 —

Dataset Dataset Delta: Dataset #3 — Dataset #1. Dataset #3. Dataset #1
#1. #3. Length of au- . .

File size File size ' Da_taset #1 dio track (sec- Length of audio Length of audio

(Bytes) (Bytes) File size (Bytes) onds) track (seconds) track
(seconds)

analyse 222802 286162 63360 1,16 1,49 0,33
attack 257362 238162 -19200 1,34 1,24 -0,1
auth-tion 288082 353362 65280 1,50 1,84 0,34
autopilot 272722 353362 80640 1,42 1,84 0,42
check 247762 228562 -19200 1,29 1,19 -0,1
defence 284242 291922 7680 1,48 1,52 0,04
destroy 293842 255442 -38400 1,53 1,33 -0,2
find 280402 263122 -17280 1,46 1,37 -0,09
follow 272722 265042 -7680 1,42 1,38 -0,04
freeze 268882 247762 -21120 1,40 0,55 -0,85
go 272722 230482 -42240 1,42 1,2 -0,22
home 257362 272722 15360 1,34 1,42 0,08
identity 305362 284242 -21120 1,59 1,48 -0,11
listen 230482 282322 51840 1,20 1,47 0,27
stop 195922 220882 24960 1,02 1,15 0,13
wait 226642 228562 1920 1,18 1,19 0,01
watch 236242 280402 44160 1,23 1,46 0,23

Based on the above data, no unconditional correlation can be established between file size or
audio recording length and the success of authentication. For example, in the case of the “analyse”

recording, dataset #3 contains a longer audio clip with a larger file size, yet its similarity score is
lower than that of dataset #1. To better understand these correlations, we proceed by calculating
the average delta values for file size and audio length across the entire dataset, allowing us to
assess the overall differences. It appeared that dataset #3 has bigger average file size (~10 Kb
greater) and almost the same length of audio record, but do not have false positive cases. These
findings suggest that for short audio records with the length of 1-1,5 seconds, files with acontent
size exceeding 270Kb are likely to produce voiceprint suitable for reliable person authentication
with a probability of 80%.




3.2. Experiment 2: calculating the similarity for the short audio records produced
by different person

In a previous scenario we used voiceprint received from short audio records produced by the same
person. Now we try to compare the audio records from different speakers in order to determine the
rate of false positive cases under these conditions.

We used the same datasets #1 and #3, but now we compare each file from one dataset with each

file from another dataset. The algorithm included the following steps:

1. Selection of the first .csv file containing a voiceprint from the dataset #1 folder (e.g.,
dataset1/analyse.csv).

2. Comparison of the voiceprint from datasetl/analyse.csv with all voiceprints stored in the
dataset #3 folder.

3. Recording the calculated similarity scores in results.csv as a new row. The header of
results.csv lists the filenames from dataset #3, the first column contains the name of the
source file from dataset #1, and each subsequent column stores the similarity score between
the source and each corresponding destination file.

4. Repetition of the process for the next .csv file with voiceprint.

The structure of results.csv is identical to that of the previous experiment. The Python code

used to perform these comparisons and generate results.csv is given below:

def calculate_voiceprints_similarity_matrix_by_folders(input_folder1: str,

input_folder2: str,
output_csv: str,
csv_separator: str = ";",
csv_decimal_symbol: str = ",",
suffix1: str="_1",
suffix2: str = "_3"):

folder1 = Path(input_folder1)

folder2 = Path(input_folder2)

if not folder1.is_dir() or not folder2.is_dir():
raise ValueError("One or both input folders are invalid.")

# Get common CSV files (intersection of names)

files1 = {f.name: f for f in folder1.glob("*.csv")}

files2 = {f.name: f for f in folder2.glob("*.csv")}
common_files = sorted(set(files1.keys()) & set(files2.keys()))

if not common_files:
print("No common CSV files found in both folders.")
return

# Prepare labeled names
row_labels = [f"{name}{suffix1}" for name in common_files]
col_labels = [f"{name}{suffix2}" for name in common_files]

similarity_matrix = []

for filel_name in common_files:
row_label = f"{file1_name}suffix1}"
row = [row_label] # First cell in the row is the labeled name

embl = pdread_csv(filesi[filel_name], sep=csv_separator, decimal=csv_decimal_symbol,
header=None).iloc[0].to_numpy()

for file2_name in common_files:
emb2 = pdread_csv(files2[file2_name], sep=csv_separator, decimal=csv_decimal_symbol,
header=None).iloc[0].to_numpy()



if emb1.shape[0] != emb2.shape[0]:
raise ValueError(f'Dimension mismatch between {filel_name} and {file2_name}")

similarity = np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2))
row.append(round(similarity, 2))

similarity_matrix.append(row)
# Add headers
columns = ["file"] + col_labels

df = pd.DataFrame(similarity_matrix, columns=columns)

# Save
df.to_csv(output_csv, sep=csv_separator, decimal=csv_decimal_symbol, index=False)

print(f"Similarity matrix saved to {output_csv}")

The results of comparison are given in Table 13.

Table 13
Comparison for dataset # 3 and dataset # 1
Dataset #3
c +—
o o ° (9] > >
@ v 3 = o 3 2 " £ =
|5 |2 |8 |8 | |5 |=2 |2 |8 E |2 |8 | o |2 | %2
&g £ e ] G < S & £ & & 2 = A 3 z =
analyse | 0,54 | 0,52 | 0,47 | 0,49 | 0,6 | 0,53 | 0,56 | 0,53 | 0,62 | 0,51 | 0,61 | 0,65 | 0,47 | 0,53 | 0,57 | 0,54 | 0,55
attack 0,53 | 0,56 | 0,46 | 0,46 | 0,6 | 0,49 | 0,55 | 0,48 | 0,56 | 0,5 | 0,55 | 0,55 | 0,48 | 0,57 | 0,54 | 0,55 | 0,52
auth-tion | 0,54 | 0,51 | 0,49 | 0,46 | 0,55 | 0,52 | 0,52 | 0,56 | 0,49 | 0,47 | 0,48 | 0,53 | 0,5 | 0,52 | 0,49 | 0,51 | 0,54
autopilot | 0,56 | 0,59 | 0,54 | 0,5 | 0,65 | 0,53 | 0,54 | 0,56 | 0,6 | 0,55 | 0,52 | 0,6 | 0,53 | 0,57 | 0,58 | 0,56 | 0,56
% | check 0,57 | 0,55 | 0,51 | 0,49 | 0,63 | 0,54 | 0,58 | 0,53 | 0,64 | 0,57 | 0,6 | 0,62 | 049 | 0,58 | 0,58 | 0,58 | 0,6
g [ defence | 0,47 | 039 | 0,4 | 037 | 0,46 | 045 | 0,44 | 0,46 | 0,44 | 0,43 | 045 | 0,48 | 0,41 | 0,46 | 0,42 | 0,47 | 0,46
£ | deswoy | 059 | 054 | 05 | 0,47 | 0,63 | 0,56 | 0,51 | 0,59 | 0,58 | 0,62 | 0,57 | 0,68 | 0,54 | 0,56 | 0,61 | 0,6 | 0,64
A [ind 0,54 | 051 | 0,46 | 0,42 | 0,61 | 0,53 | 0,51 | 0,54 | 0,57 | 0,53 | 0,56 | 0,6 | 0,47 | 0,53 | 0,53 | 0,54 | 0,54
follow 0,62 | 06 | 057 | 056 | 0,72 | 0,65 | 0,67 | 0,61 | 0,67 | 0,63 | 0,67 | 0,69 | 0,59 | 0,61 | 0,63 | 0,62 | 0,66
freeze 051 | 05 | 0,47 | 0,44 | 0,64 | 051 | 0,54 | 0,55 | 0,65 | 0,59 | 0,63 | 0,67 | 0,47 | 0,54 | 0,57 | 0,6 | 0,62
g0 0,53 | 0,53 | 0,52 | 0,48 | 0,7 | 0,58 | 0,61 | 0,56 | 0,68 | 0,62 | 0,69 | 0,72 | 0,52 | 0,58 | 0,64 | 0,6 | 0,64
home 05 | 052 | 047 | 0,47 | 066 | 0,53 | 0,57 | 0,51 | 0,63 | 0,57 | 0,64 | 0,71 | 0,49 | 0,52 | 0,65 | 0,57 | 0,63
identity | 0,55 | 0,52 | 0,49 | 0,45 | 0,61 | 0,53 | 0,53 | 0,58 | 0,59 | 0,51 | 0,61 | 0,67 | 0,52 | 0,53 | 0,59 | 0,57 | 0,58
listen 0,52 | 0,46 | 0,41 | 0,4 | 0,54 | 0,49 | 0,49 | 0,51 | 0,51 | 0,48 | 0,53 | 0,57 | 0,46 | 052 | 0,5 | 0,51 | 0,52
stop 0,48 | 05 | 043 | 042 | 061 | 0,47 | 0,55 | 0,45 | 0,59 | 0,52 | 0,64 | 0,62 | 045 | 053 | 0,6 | 0,55 | 0,6
wait 0,53 | 057 | 051 | 05 | 0,71 | 057 | 06 | 0,54 | 0,67 | 0,61 | 0,65 | 0,68 | 0,52 | 0,59 | 0,64 | 0,62 | 0,64
watch 0,52 | 0,54 | 0,46 | 0,46 | 0,68 | 0,53 | 0,57 | 0,51 | 0,65 | 0,59 | 0,63 | 0,67 | 0,48 | 0,58 | 0,63 | 0,61 | 0,62
The resulting score for this scenario is presented in Table 14:
Table 14
Resulting scores
Range Percentage (%) Description
[0:0,6] 77,94 Failed scenario
(0,6 :0,8) 22,06 Threshold scenario
[0,8:1] 0,0 Succeed scenario

Total number: 272
The results obtained in this test are consistent with these expectations. No successful matches
or false positive results were expected when comparing audio recordings from different speakers.




3.3. Experiment 3: calculating the similarity for the short audio records with help
of voiceprint built on audio record of good quality

In two previous scenarios we used voiceprints received from short audio records and potentially it
could affect the quality of voiceprints due to the lack of data required for the Resemblyzer
voiceprint generator to analyze. To address this, we now examine a scenario in which one of the
voiceprints in each comparison pair is derived from a longer recording. Specifically, we use dataset
#2 (male voice, 15,78 seconds) and dataset #4 (female voice, 12,88 seconds). This experiment
involves calculating similarity scores between voiceprints from dataset #1 and the voiceprint from
dataset #2, and likewise between voiceprints from dataset #3 and the voiceprint from dataset #4.

To perform the above estimates, the following algorithm was implemented:

1. Selection of the first .csv file containing a voiceprint from the target folder (e.g.,
analyze.csv).

2. Comparison of the voiceprint from analyze.csv with a good quality voiceprint (e.g., from
dataset #2).

3. Storing the similarity value in memory.

. Proceeding to the next .csv file with voiceprint and repetition of the comparison.

5. Recording the calculated similarities in the results.csv file. The header of this file lists the
names of the files involved in the comparison, and the single row (since there is only one in
this case) contains the corresponding similarity values.

The Python code used for these comparisons and for generating results.csv is:

def calculate_voiceprints_similarity_single_to_all(voiceprint_csv_file: str,
input_folder: str,
output_csv: str,
csv_separator: str = ";",
csv_decimal_symbol: str = ","):
"""Compare one voiceprint with all voiceprints in a folder and save similarity results.

Args:
voiceprint_csv_file (str): Path to the input voiceprint CSV file (one line, no header).
input_folder (str): Folder containing CSV files to compare against.
output_csv (str): Path to output CSV file (single-row result).
csv_separator (str, optional): CSV column separator. Defaults to ";".

csv_decimal_symbol (str, optional): Decimal symbol. Defaults to ",
folder = Path(input_folder)
if not folder.is_dir():

raise ValueError(f'{input_folder} is not a valid folder.")

# Load source voiceprint
df_source = pd.read_csv(voiceprint_csv_file, sep=csv_separator, decimal=csv_decimal_symbol, header=None)
source_embedding = df_source.iloc[0].to_numpy()

# Gather and prepare comparison files
csv_files = sorted(folder.glob("*.csv"))
if not csv_files:
print("No CSV files found in the folder.")
return

results = {}

for file in csv_files:
df _target = pd.read_csv(file, sep=csv_separator, decimal=csv_decimal_symbol, header=None)
target_embedding = df_target.iloc[0].to_numpy()

if source_embedding.shape[0] != target_embedding.shape[0]:
raise ValueError(f'Dimension mismatch: {file.name}")

similarity = np.dot(source_embedding, target_embedding) / (



np.linalg.norm(source_embedding) * np.linalg.norm(target_embedding)

)

results[file.stem] = round(similarity, 2)

# Create single-row DataFrame
df_result = pd.DataFrame([results])

df result.to_csv(output_csv, sep=csv_separator, decimal=csv_decimal_symbol, index=False)

print(f"Similarity results saved to {output_csv}")

Results of comparison of dataset #1 with dataset #2, and dataset #3 with dataset #4 are

illustrated in Fig. 2.
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Figure 2: Comparison of dataset #1 with dataset #2, and dataset #3 with dataset #4

The resulting scores are presented in Tables 15 and 16.

Table 15
Dataset #1 and #2
Range Percentage (%) Description
[0:0,6] 17,65 Failed scenario
(0,6:0,8) 82,35 Threshold scenario
[0,8:1] 0,0 Succeed scenario

Total number: 17

Table 16
Dataset #1 and #2
Range Percentage (%) Description
[0:0,6] 35,29 Failed scenario
(0,6 :0,8) 64,71 Threshold scenario
[0,8:1] 0,0 Succeed scenario

Total number: 17




In both cases, no successful matches were observed, with a high proportion of results falling
into the threshold and false positive categories. These findings indicate that voiceprints generated
from short audio recordings of 1-1.5 seconds are not suitable for reliable authentication when
compared against a high-quality voiceprint.

3.4. Experiment 4: calculating the similarity for the medium audio records using
the voiceprints built on audio record of high quality

In the following, we tried to increase the quality of input audio records by increasing the length of
audio records and file size to approximately twice in comparison with the original datasets #1 and
#3. Details of dataset #5 are provided in Table 17.

Table 17
Physical characteristics of dataset #5

Dataset Dataset Dataset Average Dataset | Dataset | Dataset Average
#1. #3. #5 file size #1. #3. #5 length of
File size | File size | File size increase Length Length Length audio
(Bytes) (Bytes) (Bytes) (times) of audio | of audio | of audio | records in-
track track track crease
(sec- (sec- (sec- (times)
onds) onds) onds)
analyse 222802 | 286162 | 606802 | 2,421994 1,16 1,49 3,16 2,422472
attack 257362 | 238162 | 589522 | 2,382966 1,34 1,24 3,07 2,383426
auth-tion 288082 | 353362 | 698962 | 2,202147 1,50 1,84 3,64 2,202464
autopilot 272722 | 353362 | 579922 1,883789 1,42 1,84 3,02 1,884032
check 247762 | 228562 | 616402 | 2,592375 1,29 1,19 3,21 2,592926
defence 284242 | 291922 | 581842 | 2,020069 1,48 1,52 3,03 2,020359
destroy 293842 | 255442 | 606802 2,22028 1,53 1,33 3,16 2,22065
find 280402 | 263122 | 514642 1,895639 1,46 1,37 2,68 1,89591
follow 272722 | 265042 | 554962 | 2,064382 1,42 1,38 3,89 2,779139
freeze 268882 | 247762 | 549202 | 2,129595 1,40 0,55 2,86 3,621429
go 272722 | 230482 | 505042 2,02155 1,42 1,2 2,63 2,02189
home 257362 | 272722 | 524242 1,97962 1,34 1,42 2,73 1,979924
identity 305362 | 284242 | 560722 1,904473 1,59 1,48 2,92 1,904725
listen 230482 | 282322 | 566482 | 2,232162 1,20 1,47 2,95 2,232568
stop 195922 | 220882 | 533842 | 2,570817 1,02 1,15 2,78 2,571441
wait 226642 | 228562 | 514642 2,261189 1,18 1,19 2,68 2,261644
watch 236242 | 280402 | 549202 | 2,141683 1,23 1,46 2,86 2,142054

As a first step, we repeat the initial experiment, calculating similarity scores by comparing the
voiceprints from dataset #5 with one another. The results of these comparisons are presented in
Table 18.

The resulting score is presented in Table 19.

The results were found to be very promising. Accordingly, no false positive cases were
observed, and the proportion of threshold values is minimal. Next, we repeat the experiment by
comparing dataset #5 with the high-quality voiceprint obtained from dataset #2. The results of this
comparison are presented in Fig. 3.

The resulting score is presented in Table 20.

The obtained findings indicate strong performance, suggesting that audio recordings with a
duration of at least 2.63 seconds and a file size of 495 KB or greater can produce reliable voiceprints
suitable for secure user authentication.



Table 18
Comparison for dataset #5

3 g | 2 g |z 2
|2 |£ |5 |2 |8 |2 < |2 |8 E | E |8 |2 |2 %
S| |2 |2 |5 |2 |2 |& |2 |& |8 |2 |2 |2 |38 |2 |:%
analyse 1 |08 [091]08 | 08 |08 [084] 08 |[08] 086 086084080808 |08/ 08
attack 08 | 1 |[093|o08[08 | 09 |09 [086]08]092]091]092]093]09]092] 09109
auth-tion | 091 | 093 | 1 | 09 | 0,87 | 0,89 | 0,91 | 0,87 | 0,89 | 09 | 0,89 | 0,88 | 0,89 | 0,91 | 0,89 | 0,88 | 0,87
autopilot | 0,86 | 088 | 09 | 1 | 0,88 | 0,87 | 0,91 | 0,84 | 0,9 | 092 | 0,89 | 0,89 | 0,91 | 0,88 | 0,85 | 0,83 | 0,81
check 08 |08 | 087 |08 | 1 | 09 |08 |08 |091]087]085] 087 | 08| 089 | 082] 084 | 0,82
defence 082 | 09 | 089 | 087 | 09 1 |08 [087] 09 [087]087 |08 08 |08 [085] 088|085
destroy 084 | 09 [ 091 09108 [08 | 1 [09] 09 |08 |o086]087 08| 09 [087]083] 083
find 0,8 | 086|087 | 084]08 |087 | 09 1 (08 |084]08 |[086] 085 |08 | 085 0,79 | 0,79
follow 083 |08 |08 | 09 |[091 | 09 | 09 [08 | 1 |08 |087 |08 |08 | 09 |08] 085 08
freeze 086 | 092 | 09 | 092|087 |087 |08 |084]08 | 1 |094]095]| 093] 093 093] 091 09
g0 0,86 | 0,91 | 0,89 | 0,89 | 0,85 | 0,87 | 0,86 | 0,85 | 0,87 | 0,94 | 1 | 094 | 0,92 | 09 | 0,91 | 09 | 0,88
home 0,84 | 0,92 | 0,88 | 0,89 | 0,87 | 0,86 | 0,87 | 0,86 | 0,88 | 0,95 | 094 | 1 | 094 | 091 | 09 | 0,89 | 09
identity 0,83 | 0,93 | 0,89 | 0,91 | 0,88 | 0,89 | 0,88 | 0,85 | 0,89 | 0,93 | 0,92 | 094 | 1 | 09 | 0,89 | 0,89 | 0,87
listen 083 092|091 |08 |08 [08 |09 [08] 09 [09] 09 [091] 09| 1 | 09 [087]087
stop 085 | 0,92 | 0,89 | 0,85 | 0,82 | 0,85 | 0,87 | 0,85 | 0,83 | 0,93 | 0,91 | 0,9 | 0,89 | 0,9 1 |08 091
wait 083 | 09 | 088 | 083] 08408 |08 |079]085]091| 09 |08 |08 | 08708 1 | 092
watch 08 | 09 | 087 | 081|082 |085 |08 |079] 08 | 09 |08 | 09 | 087|087 | 091|092 1
Table 19
The resulting score
Range Percentage (%) Description
[0:0,6] 0,0 Failed scenario
(0,6:0,8) 1,47 Threshold scenario
[0,8:1] 98,53 Succeed scenario
Total number: 272
watch [ |
wait | |
stop |
listen | |
identity | |
home | |
Go |
freeze | |
follow | |
find | |
destroy |
defence | |
check | |
autopilot | |
auth-tion |
attack | \
analyse ““\““\““\“"\““\““\‘“‘\““\‘!“\““\
00 01 02 03 04 05 06 07 08 09 1,0
Similarity value

Figure 3: Similarity values obtained from the comparison of dataset #5 and dataset #2




Table 20
The resulting score

Range Percentage (%) Description
[0:0,6] 0,0 Failed scenario
(0,6 :0,8) 5,88 Threshold scenario
[0,8:1] 94,12 Succeed scenario

Total number: 17

4. Conclusions

The present study has demonstrated in practice that the Resemblyzer library can be effectively
employed on portable devices with limited hardware resources and no access to cloud services. The
experiments confirm that the library delivers highly reliable results in voice authentication using
relatively short audio recordings (no longer than 3 seconds in duration and under 500 KB in size),
which aligns well with the typical timing of short voice commands. These findings highlight the
potential of Resemblyzer for integration into autonomous, resource-constrained systems and
provide a foundation for further research into its applicability in more complex operational
scenarios for independent portable devices.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.
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