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Abstract
Voice-based control represents an efficient way to interact with IoT devices and autonomous systems, but 
its use is often limited by privacy, security, and hardware constraints. The present study explores the  
open-source  Python  library  Resemblyzer  for  on-device  speaker  authentication  using  short  voice  
commands,  focusing  on  offline  operation  in  resource-constrained  environments.  Experiments  with 
datasets  of  different  audio quality,  duration,  and size,  covering both same-speaker  and cross-speaker  
cases, used cosine similarity to detect false positives, false negatives, and threshold results. We found that  
reliable authentication is possible with recordings as short as 2.63 seconds and at least 495 KB in size,  
while shorter clips (1-1.5 seconds) are less dependable, especially against high-quality references. These 
results show that Resemblyzer can run effectively without cloud access, offering practical guidance on 
minimal audio requirements for secure, real-time voice verification in IoT and robotic systems.
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1. Introduction

A  wide  range  of  portable  and  connected  devices,  such  as  mobile  phones,  laptops,  e-readers,  
smartwatches, wireless earbuds, robotic vacuum cleaners, smart air conditioners etc., has become 
ubiquitous in modern life. This list could be extended considerably, however, it is an indisputable 
fact that the Internet of Things (IoT) has already become an integral component of contemporary 
society, and that robots, in the broad sense of the term, now serve as indispensable assistants in our 
daily activities [1-3]. In this context an important arises: how can users effectively interact with 
such assistants? One of the approaches involves the use of control interfaces, which may range 
from keyboards and touch panels to specialized devices capable of  transmitting commands via  
radio frequency or infrared channels as well as through voice-based commands [4,5]. Among these, 
interaction via voice commands represents the most natural and straightforward way for issuing 
instructions,  requesting  actions,  or  retrieving  information.  In  addition,  this  modality  does  not  
require specific skills or additional efforts associated with the utilization of specific input devices, 
and it typically offers the fastest way of communication [6]. However, voice-based interaction is 
accompanied by a range of technical and practical challenges [8,9]. For instance, background noise 
can significantly  decrease voice  recognition accuracy,  while  variations in  dialects,  speech rate, 
pronunciation,  and  accents  further  complicate  reliable  interpretation.  More  critically,  voice-
controlled systems raise substantial privacy and security concerns. Beyond the inherent risk that 
speaking aloud may inadvertently disclose sensitive information (e.g.,  passwords, PIN codes, or 
message content), it becomes critically important in contexts involving more sensitive systems than 
a coffee machine. Whether issuing commands to a mobile device, an industrial robot, or even a 
combat drone, it is essential to ensure that the system can reliably authenticate the speaker and 
respond exclusively to authorized individuals.
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In the present work we evaluated the potential of publicly available Python library Resemblyzer 
for user authentication based on short voice commands [10]. Specifically, the main goal was to 
determine empirically the minimal audio conditions under which short voice commands can be 
used for robust user authentication with Resemblyzer.

2. Methodology

We  focused  on  Resemblyzer  library  as  the  core  speaker  embedding  tool  due  to  its  strong 
performance in voiceprint-related tasks, public availability and active maintaining by community, 
compatibility with Python’s scientific ecosystem (e.g., NumPy, Pandas, scikit-learn) and ability to 
operate in both batch and near real-time contexts [10]. It leverages a pretrained model based on the 
GE2E  (Generalized  End-to-End)  architecture,  which  was  introduced  by  Google  for  speaker 
verification, enabling it to generate compact, 256-dimensional speaker embeddings that generalize 
well even for short utterances. Once the embedding is computed, only the small vector (1 KB) 
needs  to  be  stored  or  compared  –  not  the  full  audio.  The  pretrained  model  is  stored  as  a 
PyTorch .pt file and can be located locally, it is reasonably small (~15–20MB) depending on the 
version. The size of the model is significantly lighter than transformer-based models like Whisper, 
ECAPA-TDNN, or wav2vec.

Comparison of popular solutions and their pretrained models by size can be found in Table 1.

Table 1
Size comparison for selected speaker embedding and speech processing models

Non-English or Math Frequency

Resemblyzer (GE2E) ~15

ECAPA-TDNN (SpeechBrain) 50-100+

Wav2Vec2 (Facebook) 300+

Whisper (OpenAI) small ~70

SpeakerNet ~25-60

As can be seen from this table, Resemblyzer model is the smallest one. This advantage plays an 
important role taking into consideration that it should be used in resource-constrained devices.  
Moreover, authentication based on voiceprint analyses in Resemblyzer library works purely on-
device with no need to send audio to cloud services. In other words, no network communication is  
required.

The implementation of the work involved a set of tests with short audio records designed to 
emulate voice commands for a combat drone. All audio records were saved in .wav format and 
produced with a standard computer microphone by ‘Sound Recorder’ application which is available 
at any Windows OS. We deliberately avoided high quality devices with a purpose to simulate the 
real-life conditions.

Two types of voices, male and female, were included into the experiments. Information about 
audio  records  used  and  identification  of  the  corresponding  input  sets  are  summarized  below 
(Tables 2-5).



Table 2
Dataset #1. Voice: male

File name Text in audio Length of audio (seconds)

Analyze.wav Analyze 1,16

Attack.wav Attack 1,34

Authentication.wav Authentication 1,50

Autopilot.wav Autopilot 1,42

Check.wav Check 1,29

Defence.wav Defence 1,48

Destroy.wav Destroy 1,53

Find.wav Find 1,46

Follow.wav Follow 1,42

Freeze.wav Freeze 1,40

Go.wav Go 1,42

Home.wav Home 1,34

Identity.wav Identity 1,59

Listen.wav Listen 1,20

Stop.wav Stop 1,02

Wait.wav Wait 1,18

Watch.wav Watch 1,23

Table 3
Dataset #2. Voice: male

File name Text in audio Length of audio (seconds)

A1-m.waw The Adventures of Sherlock Holmes" by Arthur 
Conan Doyle is a collection of detective stories 
written during the late 19th century. The book 

introduces the legendary detective Sherlock 
Holmes and his loyal companion, Dr. John Watson

15,78



Table 4
Dataset #3. Voice: female

File name Text in audio Length of audio (seconds)

Analyze.wav Analyze 1,49

Attack.wav Attack 1,24

Authentication.wav Authentication 1,84

Autopilot.wav Autopilot 1,84

Check.wav Check 1,19

Defence.wav Defence 1,52

Destroy.wav Destroy 1,33

Find.wav Find 1,37

Follow.wav Follow 1,38

Freeze.wav Freeze 0,55

Go.wav Go 1,2

Home.wav Home 1,42

Identity.wav Identity 1,48

Listen.wav Listen 1,47

Stop.wav Stop 1,15

Wait.wav Wait 1,19

Watch.wav Watch 1,46

Table 5
Dataset #4. Voice: female

File name Text in audio Length of audio (seconds)

A1-f.waw The Adventures of Sherlock Holmes" by Arthur 
Conan Doyle is a collection of detective stories 
written during the late 19th century. The book 

introduces the legendary detective Sherlock 
Holmes and his loyal companion, Dr. John Watson

12,99



Table 6
Dataset #5. Voice: male

File name Text in audio Length of audio (seconds)

Gltm-Analyze.wav Ginger, listen to me, 
Analyze

3,16

Gltm-Attack.wav Ginger, listen to me, 
Attack

3,07

Gltm-Authentication.wav Ginger, listen to me, 
Authentication

3,64

Gltm-Autopilot.wav Ginger, listen to me, 
Autopilot

3,02

Gltm-Check.wav Ginger, listen to me, 
Check

3,21

Gltm-Defence.wav Ginger, listen to me, 
Defence

3,03

Gltm-Destroy.wav Ginger, listen to me, 
Destroy

3,16

Gltm-Find.wav Ginger, listen to me, 
Find

2,68

Gltm-Follow.wav Ginger, listen to me, 
Follow

3,89

Gltm-Freeze.wav Ginger, listen to me, 
Freeze

2,86

Gltm-Go.wav Ginger, listen to me, Go 2,63

Gltm-Home.wav Ginger, listen to me, 
Home

2,73

Gltm-Identity.wav Ginger, listen to me, 
Identity

2,92

Gltm-Listen.wav Ginger, listen to me, 
Listen

2,95

Gltm-Stop.wav Ginger, listen to me, 
Stop

2,78

Gltm-Wait.wav Ginger, listen to me, 
Wait

2,68

Gltm-Watch.wav Ginger, listen to me, 
Watch

2,86

For each audio recording, a voiceprint was generated using the Resemblyzer library, producing 
a  256-element  array  of  floating  values.  Each  array  was  saved  in  a  separate  .csv  file,  named 
identically to its corresponding original audio file. 

The Python code used to perform this operation is provided below:

import pandas as pd
from resemblyzer import VoiceEncoder, preprocess_wav
import numpy as np
from pathlib import Path
import os

def calculate_n_save_voiceprint(audio_record: str, output_folder: str, csv_separator: str = ";", csv_decimal_symbol: str 
= ","):

    """Calculation of voiceprint for the passed audio file and saving it to a CSV file.

    Args:
        audio_record (str): Path to the audio record (.wav file).



        output_folder (str): Path to the output folder where the CSV file will be saved.

    Raises:
        ValueError: If the audio record path is invalid or not a .wav file.
    """
    audio_record_path = Path(audio_record)
    if not audio_record_path.exists() or audio_record_path.suffix.lower() != ".wav":
        raise ValueError(f"Invalid .wav file path: {audio_record_path}")
    
    output_folder_path = Path(output_folder)
    output_folder_path.mkdir(parents=True, exist_ok=True)

    # Load and process audio
    preprocessed_wav_data = preprocess_wav(audio_record_path)

    # Generate embedding
    encoder = VoiceEncoder()
    embedding = encoder.embed_utterance(preprocessed_wav_data)

    # Create output CSV path: same filename, different folder, .csv extension    
    output_csv_path = output_folder_path / (audio_record_path.stem + ".csv")

    # Save embedding with comma as decimal separator
    df = pd.DataFrame([embedding])
    df.to_csv(output_csv_path,  sep=csv_separator,  decimal=csv_decimal_symbol,  header=False,  index=False, 

float_format="%.8f")

    print(f"Voiceprint for {audio_record_path.name} was saved to: {output_csv_path}")

def calculate_n_save_voiceprints(input_folder: str, output_folder: str, csv_separator: str = ";", csv_decimal_symbol: str  
= "," ):

    """Calculate and save voiceprints as separate csv file for all .wav files in the input folder.

    Args:
        input_folder (str): Path to the folder containing .wav files.
        output_folder (str): Path to the folder where voiceprints will be saved.
        csv_separator (str, optional): Separator for the output CSV files. Defaults to ";".
        csv_decimal_symbol (str, optional): Symbol for decimal point in the output CSV files. Defaults to ",".
    """
    for file_name in os.listdir(input_folder):
        if file_name.lower().endswith(".wav"):
            print(f"Processing: {file_name}")
            file_path = os.path.join(input_folder, file_name)        
            try:
                calculate_n_save_voiceprint(file_path, output_folder, csv_separator, csv_decimal_symbol)
            except ValueError as e:
                print(e)
            except Exception as e:
                print(f"An error occurred while processing {file_name}: {e}")

An example of abridged output voiceprint data in single .csv file may be illustrated as:

0,13736048;0,00000000;0,16476172;0,00000000;0,00000000;0,00000000;0,00000000;0,00000000;0,06845610;0,21822383;0,04
552145;0,00026178;0,08779779;0,09342065;0,00000000;…
0,02555513;0,00000000;0,00000000;0,00000000;0,00000000;0,00000000;0,00000000;0,00602875;0,11488174;0,07095279;0,07308
850;0,00000000;0,12232912;0,14700639;0,00000000;0,07068025;0,12317624;0,00709428;0,00000000;0,00000000;0,00000000;0,03
307733;0,08165727;0,00000000;0,06436168;0,00000000

The  authentication  process  and  evaluation  of  similarity  between  two  voiceprints  can  be 
quantified using cosine similarity, a widely used metric in speaker verification systems:



Similarity= A∗B
‖A‖∗‖B‖

.
(1)

Cosine similarity yileds a value between –1.0 and +1.0, indicating how closely two voiceprint 
vectors align in the embedding space. Specifically, +1.0 value means almost identical voices, 0.0 
indicates no similarity, and –1.0 value represents complete opposition, an outcome unlikely in the 
context of  our work.  Heuristic  or empirical  result  equal or greater than 0.75 means successful  
authentication. In speaker verification systems using cosine similarity, typical same-speaker scores 
fall around 0.8-0.95, different-speaker scores often fall around 0.3-0.6, so 0.75 is commonly used as a 
default threshold in prototyping or academic examples.

Python code which compares two voiceprints and calculates the similarity can be found in the 
listing below:

def  compare_2_voiceprints(voiceprint_csv_file1:  str,  voiceprint_csv_file2:  str,  csv_separator:  str  =  ";", 
csv_decimal_symbol: str = ",") -> float:

    """
    Compare two voiceprints and return the similarity score.
    Args:
        voiceprint_csv_file1 (str): Path to the first voiceprint CSV file.
        voiceprint_csv_file2 (str): Path to the second voiceprint CSV file.
    """
    df1 = pd.read_csv(voiceprint_csv_file1, sep=csv_separator, decimal=csv_decimal_symbol, header=None)
    df2 = pd.read_csv(voiceprint_csv_file2, sep=csv_separator, decimal=csv_decimal_symbol, header=None)

    if df1.shape[1] != df2.shape[1]:
        raise ValueError("Voiceprints must have the same number of dimensions.")

    # Calculate cosine similarity
    embedding1 = df1.iloc[0].values
    embedding2 = df2.iloc[0].values

    similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))

    return similarity

3. Results and Discussion

3.1. Experiment 1: calculating the similarity for the short audio records produced 
by the same person

In our first experiment we compare voiceprints received from dataset #1 between each other. The 
algorithm was the following: 

1. Selection of the first .csv with voiceprint from the target folder (e.g. analyze.csv).
2. Comparison of this voiceprint with those voiceprints stored in all other .csv files in the 

same target folder
3. Record the calculated similarity scores in the results.csv file as a new row. The header of 

this file includes names of files taking part in comparison operation (all csv files found in 
the target folder) referred to here as destination files. The first column contains the names  
of source file, and each subsequent column stores the value of calculated similarity between 
the source and destination files.

4. Repetition of the process for the next .csv file with voiceprint.

The format and structure of result.csv file allows us to import easily these data into Excel and 
utilize more sophisticated tools for the analysis.

An example of output result.csv file received during this experiment can be found below:



;analyze;attack;authentication;autopilot;check;defence;destroy;find;follow;freeze;go;home;identity;listen;stop;wait;wat
ch

analyze;1,0;0,74;0,72;0,65;0,67;0,79;0,69;0,8;0,81;0,78;0,79;0,85;0,79;0,86;0,72;0,83;0,8
attack;0,74;1,0;0,67;0,75;0,71;0,69;0,63;0,75;0,73;0,71;0,71;0,64;0,73;0,75;0,84;0,81;0,8
authentication;0,72;0,67;1,0;0,66;0,58;0,8;0,7;0,77;0,64;0,65;0,61;0,62;0,81;0,77;0,58;0,64;0,62
autopilot;0,65;0,75;0,66;1,0;0,62;0,63;0,67;0,71;0,75;0,67;0,69;0,64;0,71;0,6;0,7;0,7;0,7
check;0,67;0,71;0,58;0,62;1,0;0,57;0,65;0,72;0,78;0,76;0,81;0,67;0,62;0,64;0,74;0,81;0,75
defence;0,79;0,69;0,8;0,63;0,57;1,0;0,72;0,82;0,68;0,68;0,66;0,69;0,79;0,82;0,64;0,67;0,63
destroy;0,69;0,63;0,7;0,67;0,65;0,72;1,0;0,75;0,74;0,75;0,77;0,76;0,8;0,75;0,65;0,73;0,7
find;0,8;0,75;0,77;0,71;0,72;0,82;0,75;1,0;0,76;0,79;0,79;0,74;0,84;0,83;0,7;0,8;0,72
follow;0,81;0,73;0,64;0,75;0,78;0,68;0,74;0,76;1,0;0,82;0,89;0,82;0,71;0,73;0,77;0,87;0,83
freeze;0,78;0,71;0,65;0,67;0,76;0,68;0,75;0,79;0,82;1,0;0,86;0,84;0,81;0,81;0,78;0,86;0,84
go;0,79;0,71;0,61;0,69;0,81;0,66;0,77;0,79;0,89;0,86;1,0;0,87;0,75;0,72;0,82;0,88;0,83
home;0,85;0,64;0,62;0,64;0,67;0,69;0,76;0,74;0,82;0,84;0,87;1,0;0,73;0,8;0,76;0,85;0,83
identity;0,79;0,73;0,81;0,71;0,62;0,79;0,8;0,84;0,71;0,81;0,75;0,73;1,0;0,84;0,7;0,76;0,73
listen;0,86;0,75;0,77;0,6;0,64;0,82;0,75;0,83;0,73;0,81;0,72;0,8;0,84;1,0;0,68;0,79;0,79
stop;0,72;0,84;0,58;0,7;0,74;0,64;0,65;0,7;0,77;0,78;0,82;0,76;0,7;0,68;1,0;0,84;0,85
wait;0,83;0,81;0,64;0,7;0,81;0,67;0,73;0,8;0,87;0,86;0,88;0,85;0,76;0,79;0,84;1,0;0,93
watch;0,8;0,8;0,62;0,7;0,75;0,63;0,7;0,72;0,83;0,84;0,83;0,83;0,73;0,79;0,85;0,93;1,0

Python code which does comparison and produces result.csv can be found below:

def calculate_voiceprints_similarity(input_folder: str, output_csv: str, csv_separator: str = ";", csv_decimal_symbol: str  
= ","):

    """Calculate the similarity matrix for voiceprints.
    Args:
        input_folder (str): Path to the folder containing voiceprint CSV files.
        output_csv (str): Path to the output CSV file for the similarity matrix.
        csv_separator (str, optional): Separator for the output CSV file. Defaults to ";".
        csv_decimal_symbol (str, optional): Decimal symbol for the output CSV file. Defaults to
    Raises:
        ValueError: If the input folder is invalid or contains no CSV files.
    """
    folder = Path(input_folder)
    if not folder.is_dir():
        raise ValueError(f"{input_folder} is not a valid folder.")

    csv_files = sorted(folder.glob("*.csv"))
    if not csv_files:
        print("No CSV files found in the folder.")
        return

    file_names = [f.stem for f in csv_files]
    file_paths = {f.stem: str(f) for f in csv_files}

    # Initialize with NaN to ensure float dtype
    df_result = pd.DataFrame(np.nan, index=file_names, columns=file_names)

    for a in file_names:
        for b in file_names:
            if a == b:
                df_result.loc[a, b] = 1.0
            else:
                similarity = compare_2_voiceprints(
                    file_paths[a],
                    file_paths[b],
                    csv_separator=csv_separator,
                    csv_decimal_symbol=csv_decimal_symbol,
                )
                df_result.loc[a, b] = round(similarity, 2)

    df_result.index.name = ""
    df_result.to_csv(output_csv, sep=csv_separator, decimal=csv_decimal_symbol)

    print(f"Similarity matrix saved to {output_csv}")



The results of comparison for dataset # 1 are summarized in Table 7.

Table 7
Comparison for dataset # 1
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analyse 1 0,74 0,72 0,65 0,67 0,79 0,69 0,8 0,81 0,78 0,79 0,85 0,79 0,86 0,72 0,83 0,8
attack 0,74 1 0,67 0,75 0,71 0,69 0,63 0,75 0,73 0,71 0,71 0,64 0,73 0,75 0,84 0,81 0,8

auth-tion 0,72 0,67 1 0,66 0,58 0,8 0,7 0,77 0,64 0,65 0,61 0,62 0,81 0,77 0,58 0,64 0,62
autopilot 0,65 0,75 0,66 1 0,62 0,63 0,67 0,71 0,75 0,67 0,69 0,64 0,71 0,6 0,7 0,7 0,7

check 0,67 0,71 0,58 0,62 1 0,57 0,65 0,72 0,78 0,76 0,81 0,67 0,62 0,64 0,74 0,81 0,75
defence 0,79 0,69 0,8 0,63 0,57 1 0,72 0,82 0,68 0,68 0,66 0,69 0,79 0,82 0,64 0,67 0,63
destroy 0,69 0,63 0,7 0,67 0,65 0,72 1 0,75 0,74 0,75 0,77 0,76 0,8 0,75 0,65 0,73 0,7

find 0,8 0,75 0,77 0,71 0,72 0,82 0,75 1 0,76 0,79 0,79 0,74 0,84 0,83 0,7 0,8 0,72
follow 0,81 0,73 0,64 0,75 0,78 0,68 0,74 0,76 1 0,82 0,89 0,82 0,71 0,73 0,77 0,87 0,83
freeze 0,78 0,71 0,65 0,67 0,76 0,68 0,75 0,79 0,82 1 0,86 0,84 0,81 0,81 0,78 0,86 0,84

go 0,79 0,71 0,61 0,69 0,81 0,66 0,77 0,79 0,89 0,86 1 0,87 0,75 0,72 0,82 0,88 0,83
home 0,85 0,64 0,62 0,64 0,67 0,69 0,76 0,74 0,82 0,84 0,87 1 0,73 0,8 0,76 0,85 0,83

identity 0,79 0,73 0,81 0,71 0,62 0,79 0,8 0,84 0,71 0,81 0,75 0,73 1 0,84 0,7 0,76 0,73
listen 0,86 0,75 0,77 0,6 0,64 0,82 0,75 0,83 0,73 0,81 0,72 0,8 0,84 1 0,68 0,79 0,79
stop 0,72 0,84 0,58 0,7 0,74 0,64 0,65 0,7 0,77 0,78 0,82 0,76 0,7 0,68 1 0,84 0,85
wait 0,83 0,81 0,64 0,7 0,81 0,67 0,73 0,8 0,87 0,86 0,88 0,85 0,76 0,79 0,84 1 0,93

watch 0,8 0,8 0,62 0,7 0,75 0,63 0,7 0,72 0,83 0,84 0,83 0,83 0,73 0,79 0,85 0,93 1

Given that all audio recordings were produced by the same speaker, we expect that all similarity 
scores would exceed 0,8.  However, the results revealed numerous cases with values below this 
threshold, and in some instances, even below 0,6. In the context of our, scores below 0.6 can be 
considered false negatives,  the range between 0,6 and 0,8 represents an uncertain or threshold 
zone, and values above 0,8 indicate a successful match. To better understand the distribution of  
results, we calculated the proportion of scores falling within each range. The following Python 
function performs this calculation:

def analyze_similarity_matrix(similarities_csv_file: str, failedRange: float, succeedRange: float, csv_separator: str = ";", 
csv_decimal_symbol: str = ","):

    """
    Reads a similarity matrix from CSV and calculates percentage of values
    falling into failed, threshold, and succeed categories.

    Args:
        similarities_csv_file (str): Path to the similarity matrix CSV.
        failedRange (float): Upper bound for failed values (exclusive).
        succeedRange (float): Lower bound for succeed values (inclusive).

    Returns:
        dict: Percentages of failed, threshold, and succeed values.
    """
    df = pd.read_csv(similarities_csv_file, sep=csv_separator, decimal=csv_decimal_symbol, index_col=0)

    # Extract all similarity values except diagonal (self-comparisons)
    values = [
        float(value)
        for i, row in df.iterrows()
        for j, value in row.items()
        if i != j
    ]

    # Classification counters



    failed_count = sum(1 for v in values if v < failedRange)
    succeed_count = sum(1 for v in values if v >= succeedRange)
    threshold_count = len(values) - failed_count - succeed_count

    total_count = len(values)
    if total_count == 0:
        return {"total count": 0, "failed": 0.0, "threshold": 0.0, "succeed": 0.0}

    # Percentages
    return {
        "total count": total_count,
        "failed": round(failed_count / total_count * 100, 2),
        "threshold": round(threshold_count / total_count * 100, 2),
        "succeed": round(succeed_count / total_count * 100, 2)
    }

Resulting score is as follows (Table 8):

Table 8
Resulting scores

Range Percentage (%) Description

[0 : 0,6] 2,94 Failed scenario

(0,6 : 0,8) 66,91 Threshold scenario

[0,8 : 1] 30,15 Succeed scenario

Total number: 272

Let’s do the same experiment for dataset #3 – analogous short audio records recorded by female.  
The results of comparison for dataset # 3 are given in Table 9.

Table 9
Comparison for dataset #3
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analyse 1 0,8 0,78 0,8 0,76 0,79 0,79 0,87 0,72 0,72 0,67 0,71 0,77 0,78 0,76 0,73 0,75
attack 0,8 1 0,86 0,92 0,86 0,88 0,88 0,86 0,8 0,8 0,73 0,76 0,86 0,82 0,84 0,81 0,8

auth-tion 0,78 0,86 1 0,9 0,83 0,88 0,84 0,84 0,76 0,78 0,7 0,73 0,91 0,82 0,81 0,8 0,77
autopilot 0,8 0,92 0,9 1 0,8 0,87 0,84 0,85 0,79 0,8 0,71 0,73 0,86 0,81 0,82 0,81 0,79

check 0,76 0,86 0,83 0,8 1 0,86 0,87 0,8 0,87 0,86 0,8 0,86 0,84 0,86 0,88 0,89 0,87
defence 0,79 0,88 0,88 0,87 0,86 1 0,92 0,89 0,75 0,84 0,76 0,75 0,92 0,85 0,82 0,83 0,81
destroy 0,79 0,88 0,84 0,84 0,87 0,92 1 0,85 0,74 0,75 0,79 0,76 0,87 0,79 0,82 0,8 0,8

find 0,87 0,86 0,84 0,85 0,8 0,89 0,85 1 0,77 0,79 0,76 0,77 0,85 0,82 0,8 0,81 0,82
follow 0,72 0,8 0,76 0,79 0,87 0,75 0,74 0,77 1 0,83 0,85 0,9 0,72 0,83 0,84 0,85 0,84
freeze 0,72 0,8 0,78 0,8 0,86 0,84 0,75 0,79 0,83 1 0,74 0,8 0,82 0,87 0,81 0,89 0,87

go 0,67 0,73 0,7 0,71 0,8 0,76 0,79 0,76 0,85 0,74 1 0,88 0,72 0,76 0,8 0,79 0,83
home 0,71 0,76 0,73 0,73 0,86 0,75 0,76 0,77 0,9 0,8 0,88 1 0,73 0,8 0,88 0,85 0,86

identity 0,77 0,86 0,91 0,86 0,84 0,92 0,87 0,85 0,72 0,82 0,72 0,73 1 0,85 0,79 0,82 0,79
listen 0,78 0,82 0,82 0,81 0,86 0,85 0,79 0,82 0,83 0,87 0,76 0,8 0,85 1 0,84 0,9 0,83
stop 0,76 0,84 0,81 0,82 0,88 0,82 0,82 0,8 0,84 0,81 0,8 0,88 0,79 0,84 1 0,84 0,9
wait 0,73 0,81 0,8 0,81 0,89 0,83 0,8 0,81 0,85 0,89 0,79 0,85 0,82 0,9 0,84 1 0,87

watch 0,75 0,8 0,77 0,79 0,87 0,81 0,8 0,82 0,84 0,87 0,83 0,86 0,79 0,83 0,9 0,87 1

The resulting score for this case is presented in Table 10:



Table 10
Resulting scores

Range Percentage (%) Description

[0 : 0,6] 0,0 Failed scenario

(0,6 : 0,8) 32,35 Threshold scenario

[0,8 : 1] 67,65 Succeed scenario

Total number: 272

The results for dataset #3 were found to be notably better than those for dataset #1 – zero failed  
cases and a threshold range less than half the size of the successful matches. To understand the 
factors  contributing  to  this  improvement,  at  the  next  step  of  the  study  we  compared  audio 
recordings  from the  two  datasets  and  tried  to  identify  the  characteristics  that  lead  to  higher 
similarity scores.  The first step involved the detection of the cases with the largest differences 
between the two resulting similarity matrices. We take the similarity matrix from dataset #3, since 
it demonstrates superior performance, and subtract the corresponding matrix from dataset #1. In 
this context, the resulting delta serves as a quality indicator for the comparison (Table 11).

Table 11
Difference of similarity scores between dataset #3 and dataset #1
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analyse 0 0,06 0,06 0,15 0,09 0 0,1 0,07 -0,09 -0,06 -0,12 -0,14 -0,02 -0,08 0,04 -0,1 -0,05
attack 0,06 0 0,19 0,17 0,15 0,19 0,25 0,11 0,07 0,09 0,02 0,12 0,13 0,07 0 0 0

auth-tion 0,06 0,19 0 0,24 0,25 0,08 0,14 0,07 0,12 0,13 0,09 0,11 0,1 0,05 0,23 0,16 0,15
autopilot 0,15 0,17 0,24 0 0,18 0,24 0,17 0,14 0,04 0,13 0,02 0,09 0,15 0,21 0,12 0,11 0,09

check 0,09 0,15 0,25 0,18 0 0,29 0,22 0,08 0,09 0,1 -0,01 0,19 0,22 0,22 0,14 0,08 0,12
defence 0 0,19 0,08 0,24 0,29 0 0,2 0,07 0,07 0,16 0,1 0,06 0,13 0,03 0,18 0,16 0,18
destroy 0,1 0,25 0,14 0,17 0,22 0,2 0 0,1 0 0 0,02 0 0,07 0,04 0,17 0,07 0,1

find 0,07 0,11 0,07 0,14 0,08 0,07 0,1 0 0,01 0 -0,03 0,03 0,01 -0,01 0,1 0,01 0,1
follow -0,09 0,07 0,12 0,04 0,09 0,07 0 0,01 0 0,01 -0,04 0,08 0,01 0,1 0,07 -0,02 0,01
freeze -0,06 0,09 0,13 0,13 0,1 0,16 0 0 0,01 0 -0,12 -0,04 0,01 0,06 0,03 0,03 0,03

go -0,12 0,02 0,09 0,02 -0,01 0,1 0,02 -0,03 -0,04 -0,12 0 0,01 -0,03 0,04 -0,02 -0,09 0
home -0,14 0,12 0,11 0,09 0,19 0,06 0 0,03 0,08 -0,04 0,01 0 0 0 0,12 0 0,03

identity -0,02 0,13 0,1 0,15 0,22 0,13 0,07 0,01 0,01 0,01 -0,03 0 0 0,01 0,09 0,06 0,06
listen -0,08 0,07 0,05 0,21 0,22 0,03 0,04 -0,01 0,1 0,06 0,04 0 0,01 0 0,16 0,11 0,04
stop 0,04 0 0,23 0,12 0,14 0,18 0,17 0,1 0,07 0,03 -0,02 0,12 0,09 0,16 0 0 0,05
wait -0,1 0 0,16 0,11 0,08 0,16 0,07 0,01 -0,02 0,03 -0,09 0 0,06 0,11 0 0 -0,06

watch -0,05 0 0,15 0,09 0,12 0,18 0,1 0,1 0,01 0,03 0 0,03 0,06 0,04 0,05 -0,06 0

By summing the values in each column, we obtain a cumulative weight for the corresponding 
file,  allowing  us  to  identify  the  cases  with  the  largest  overall  differences.  These  results  are 
presented in Fig. 1.
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Figure 1: Cumulative weights of similarity differences between dataset #3 and dataset #1

The physical characteristics of input files are given in Table 12.

Table 12
Physical characteristics of the input files from dataset #3 and dataset #1

Dataset 
#1.

File size 
(Bytes)

Dataset 
#3.

File size 
(Bytes)

Delta: Dataset #3 – 
Dataset #1

File size (Bytes)

Dataset #1.
Length of au-
dio track (sec-

onds)

Dataset #3.
Length of audio 
track (seconds)

Delta: Dataset #3 – 
Dataset #1

Length of audio 
track

(seconds)
analyse 222802 286162 63360 1,16 1,49 0,33
attack 257362 238162 -19200 1,34 1,24 -0,1

auth-tion 288082 353362 65280 1,50 1,84 0,34
autopilot 272722 353362 80640 1,42 1,84 0,42

check 247762 228562 -19200 1,29 1,19 -0,1
defence 284242 291922 7680 1,48 1,52 0,04
destroy 293842 255442 -38400 1,53 1,33 -0,2

find 280402 263122 -17280 1,46 1,37 -0,09
follow 272722 265042 -7680 1,42 1,38 -0,04
freeze 268882 247762 -21120 1,40 0,55 -0,85

go 272722 230482 -42240 1,42 1,2 -0,22
home 257362 272722 15360 1,34 1,42 0,08

identity 305362 284242 -21120 1,59 1,48 -0,11
listen 230482 282322 51840 1,20 1,47 0,27
stop 195922 220882 24960 1,02 1,15 0,13
wait 226642 228562 1920 1,18 1,19 0,01

watch 236242 280402 44160 1,23 1,46 0,23

Based on the above data, no unconditional correlation can be established between file size or  
audio recording length and the success of authentication. For example, in the case of the “analyse”  
recording, dataset #3 contains a longer audio clip with a larger file size, yet its similarity score is 
lower than that of dataset #1. To better understand these correlations, we proceed by calculating 
the average delta values for file size and audio length across the entire dataset, allowing us to 
assess  the  overall  differences.  It  appeared that  dataset  #3  has  bigger  average  file  size  (~10  Kb 
greater) and almost the same length of audio record, but do not have false positive cases. These  
findings suggest that for short audio records with the length of 1-1,5 seconds, files with acontent 
size exceeding 270Kb are likely to produce voiceprint suitable for reliable person authentication 
with a probability of 80%.



3.2. Experiment 2: calculating the similarity for the short audio records produced 
by different person

In a previous scenario we used voiceprint received from short audio records produced by the same 
person. Now we try to compare the audio records from different speakers in order to determine the 
rate of false positive cases under these conditions.

We used the same datasets #1 and #3, but now we compare each file from one dataset with each 
file from another dataset. The algorithm included the following steps: 

1. Selection  of  the  first  .csv  file  containing  a  voiceprint  from the  dataset  #1  folder  (e.g.,  
dataset1/analyse.csv).

2. Comparison of the voiceprint from dataset1/analyse.csv with all voiceprints stored in the 
dataset #3 folder.

3. Recording  the  calculated  similarity  scores  in  results.csv  as  a  new row.  The  header  of 
results.csv lists the filenames from dataset #3, the first column contains the name of the 
source file from dataset #1, and each subsequent column stores the similarity score between 
the source and each corresponding destination file.

4. Repetition of the process for the next .csv file with voiceprint.
The structure of results.csv is identical to that of the previous experiment. The Python code 

used to perform these comparisons and generate results.csv is given below:

def calculate_voiceprints_similarity_matrix_by_folders(input_folder1: str,
                                                       input_folder2: str,
                                                       output_csv: str,
                                                       csv_separator: str = ";",
                                                       csv_decimal_symbol: str = ",",
                                                       suffix1: str = "_1",
                                                       suffix2: str = "_3"):
    folder1 = Path(input_folder1)
    folder2 = Path(input_folder2)

    if not folder1.is_dir() or not folder2.is_dir():
        raise ValueError("One or both input folders are invalid.")

    # Get common CSV files (intersection of names)
    files1 = {f.name: f for f in folder1.glob("*.csv")}
    files2 = {f.name: f for f in folder2.glob("*.csv")}
    common_files = sorted(set(files1.keys()) & set(files2.keys()))

    if not common_files:
        print("No common CSV files found in both folders.")
        return

    # Prepare labeled names
    row_labels = [f"{name}{suffix1}" for name in common_files]
    col_labels = [f"{name}{suffix2}" for name in common_files]

    similarity_matrix = []

    for file1_name in common_files:
        row_label = f"{file1_name}{suffix1}"
        row = [row_label]  # First cell in the row is the labeled name

        emb1  =  pd.read_csv(files1[file1_name],  sep=csv_separator,  decimal=csv_decimal_symbol, 
header=None).iloc[0].to_numpy()

        for file2_name in common_files:
            emb2  =  pd.read_csv(files2[file2_name],  sep=csv_separator,  decimal=csv_decimal_symbol, 

header=None).iloc[0].to_numpy()



            if emb1.shape[0] != emb2.shape[0]:
                raise ValueError(f"Dimension mismatch between {file1_name} and {file2_name}")

            similarity = np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2))
            row.append(round(similarity, 2))

        similarity_matrix.append(row)

    # Add headers
    columns = ["file"] + col_labels
    df = pd.DataFrame(similarity_matrix, columns=columns)

    # Save
    df.to_csv(output_csv, sep=csv_separator, decimal=csv_decimal_symbol, index=False)

    print(f"Similarity matrix saved to {output_csv}")

The results of comparison are given in Table 13.

Table 13
Comparison for dataset # 3 and dataset # 1
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analyse 0,54 0,52 0,47 0,49 0,6 0,53 0,56 0,53 0,62 0,51 0,61 0,65 0,47 0,53 0,57 0,54 0,55
attack 0,53 0,56 0,46 0,46 0,6 0,49 0,55 0,48 0,56 0,5 0,55 0,55 0,48 0,57 0,54 0,55 0,52
auth-tion 0,54 0,51 0,49 0,46 0,55 0,52 0,52 0,56 0,49 0,47 0,48 0,53 0,5 0,52 0,49 0,51 0,54
autopilot 0,56 0,59 0,54 0,5 0,65 0,53 0,54 0,56 0,6 0,55 0,52 0,6 0,53 0,57 0,58 0,56 0,56
check 0,57 0,55 0,51 0,49 0,63 0,54 0,58 0,53 0,64 0,57 0,6 0,62 0,49 0,58 0,58 0,58 0,6
defence 0,47 0,39 0,4 0,37 0,46 0,45 0,44 0,46 0,44 0,43 0,45 0,48 0,41 0,46 0,42 0,47 0,46
destroy 0,59 0,54 0,5 0,47 0,63 0,56 0,51 0,59 0,58 0,62 0,57 0,68 0,54 0,56 0,61 0,6 0,64
find 0,54 0,51 0,46 0,42 0,61 0,53 0,51 0,54 0,57 0,53 0,56 0,6 0,47 0,53 0,53 0,54 0,54
follow 0,62 0,6 0,57 0,56 0,72 0,65 0,67 0,61 0,67 0,63 0,67 0,69 0,59 0,61 0,63 0,62 0,66
freeze 0,51 0,5 0,47 0,44 0,64 0,51 0,54 0,55 0,65 0,59 0,63 0,67 0,47 0,54 0,57 0,6 0,62
go 0,53 0,53 0,52 0,48 0,7 0,58 0,61 0,56 0,68 0,62 0,69 0,72 0,52 0,58 0,64 0,6 0,64
home 0,5 0,52 0,47 0,47 0,66 0,53 0,57 0,51 0,63 0,57 0,64 0,71 0,49 0,52 0,65 0,57 0,63
identity 0,55 0,52 0,49 0,45 0,61 0,53 0,53 0,58 0,59 0,51 0,61 0,67 0,52 0,53 0,59 0,57 0,58
listen 0,52 0,46 0,41 0,4 0,54 0,49 0,49 0,51 0,51 0,48 0,53 0,57 0,46 0,52 0,5 0,51 0,52
stop 0,48 0,5 0,43 0,42 0,61 0,47 0,55 0,45 0,59 0,52 0,64 0,62 0,45 0,53 0,6 0,55 0,6
wait 0,53 0,57 0,51 0,5 0,71 0,57 0,6 0,54 0,67 0,61 0,65 0,68 0,52 0,59 0,64 0,62 0,64
watch 0,52 0,54 0,46 0,46 0,68 0,53 0,57 0,51 0,65 0,59 0,63 0,67 0,48 0,58 0,63 0,61 0,62

The resulting score for this scenario is presented in Table 14:

Table 14
Resulting scores

Range Percentage (%) Description

[0 : 0,6] 77,94 Failed scenario

(0,6 : 0,8) 22,06 Threshold scenario

[0,8 : 1] 0,0 Succeed scenario

Total number: 272
The results obtained in this test are consistent with these expectations. No successful matches 

or false positive results were expected when comparing audio recordings from different speakers.



3.3. Experiment 3: calculating the similarity for the short audio records with help 
of voiceprint built on audio record of good quality

In two previous scenarios we used voiceprints received from short audio records and potentially it  
could  affect  the  quality  of  voiceprints  due  to  the  lack  of  data  required  for  the  Resemblyzer 
voiceprint generator to analyze. To address this, we now examine a scenario in which one of the 
voiceprints in each comparison pair is derived from a longer recording. Specifically, we use dataset 
#2  (male  voice,  15,78  seconds)  and  dataset  #4  (female  voice,  12,88  seconds).  This  experiment 
involves calculating similarity scores between voiceprints from dataset #1 and the voiceprint from 
dataset #2, and likewise between voiceprints from dataset #3 and the voiceprint from dataset #4.

To perform the above estimates, the following algorithm was implemented:
1. Selection  of  the  first  .csv  file  containing  a  voiceprint  from  the  target  folder  (e.g.,  

analyze.csv).
2. Comparison of the voiceprint from analyze.csv with a good quality voiceprint (e.g., from 

dataset #2).
3. Storing the similarity value in memory.
4. Proceeding to the next .csv file with voiceprint and repetition of the comparison.
5. Recording the calculated similarities in the results.csv file. The header of this file lists the 

names of the files involved in the comparison, and the single row (since there is only one in  
this case) contains the corresponding similarity values.

The Python code used for these comparisons and for generating results.csv is:

def calculate_voiceprints_similarity_single_to_all(voiceprint_csv_file: str,
                                                   input_folder: str,
                                                   output_csv: str,
                                                   csv_separator: str = ";",
                                                   csv_decimal_symbol: str = ","):
    """Compare one voiceprint with all voiceprints in a folder and save similarity results.

    Args:
        voiceprint_csv_file (str): Path to the input voiceprint CSV file (one line, no header).
        input_folder (str): Folder containing CSV files to compare against.
        output_csv (str): Path to output CSV file (single-row result).
        csv_separator (str, optional): CSV column separator. Defaults to ";".
        csv_decimal_symbol (str, optional): Decimal symbol. Defaults to ",".
    """
    folder = Path(input_folder)
    if not folder.is_dir():
        raise ValueError(f"{input_folder} is not a valid folder.")

    # Load source voiceprint
    df_source = pd.read_csv(voiceprint_csv_file, sep=csv_separator, decimal=csv_decimal_symbol, header=None)
    source_embedding = df_source.iloc[0].to_numpy()

    # Gather and prepare comparison files
    csv_files = sorted(folder.glob("*.csv"))
    if not csv_files:
        print("No CSV files found in the folder.")
        return

    results = {}
    for file in csv_files:
        df_target = pd.read_csv(file, sep=csv_separator, decimal=csv_decimal_symbol, header=None)
        target_embedding = df_target.iloc[0].to_numpy()

        if source_embedding.shape[0] != target_embedding.shape[0]:
            raise ValueError(f"Dimension mismatch: {file.name}")

        similarity = np.dot(source_embedding, target_embedding) / (



            np.linalg.norm(source_embedding) * np.linalg.norm(target_embedding)
        )
        results[file.stem] = round(similarity, 2)

    # Create single-row DataFrame
    df_result = pd.DataFrame([results])
    df_result.to_csv(output_csv, sep=csv_separator, decimal=csv_decimal_symbol, index=False)

    print(f"Similarity results saved to {output_csv}")

Results  of  comparison  of  dataset  #1  with  dataset  #2,  and  dataset  #3  with  dataset  #4  are 
illustrated in Fig. 2.
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Figure 2: Comparison of dataset #1 with dataset #2, and dataset #3 with dataset #4

The resulting scores are presented in Tables 15 and 16.

Table 15
Dataset #1 and #2

Range Percentage (%) Description

[0 : 0,6] 17,65 Failed scenario

(0,6 : 0,8) 82,35 Threshold scenario

[0,8 : 1] 0,0 Succeed scenario

Total number: 17

Table 16
Dataset #1 and #2

Range Percentage (%) Description

[0 : 0,6] 35,29 Failed scenario

(0,6 : 0,8) 64,71 Threshold scenario

[0,8 : 1] 0,0 Succeed scenario

Total number: 17



In both cases, no successful matches were observed, with a high proportion of results falling  
into the threshold and false positive categories. These findings indicate that voiceprints generated 
from short  audio recordings of  1-1.5  seconds are not  suitable for reliable authentication when 
compared against a high-quality voiceprint.

3.4. Experiment 4: calculating the similarity for the medium audio records using 
the voiceprints built on audio record of high quality

In the following, we tried to increase the quality of input audio records by increasing the length of 
audio records and file size to approximately twice in comparison with the original datasets #1 and 
#3. Details of dataset #5 are provided in Table 17.

Table 17
Physical characteristics of dataset #5

Dataset 
#1.

File size 
(Bytes)

Dataset 
#3.

File size 
(Bytes)

Dataset 
#5

File size 
(Bytes)

Average 
file size 
increase 
(times)

Dataset 
#1.

Length 
of audio 

track 
(sec-
onds)

Dataset 
#3.

Length 
of audio 

track 
(sec-
onds)

Dataset 
#5

Length 
of audio 

track 
(sec-
onds)

Average 
length of 

audio 
records in-

crease 
(times)

analyse 222802 286162 606802 2,421994 1,16 1,49 3,16 2,422472
attack 257362 238162 589522 2,382966 1,34 1,24 3,07 2,383426

auth-tion 288082 353362 698962 2,202147 1,50 1,84 3,64 2,202464
autopilot 272722 353362 579922 1,883789 1,42 1,84 3,02 1,884032

check 247762 228562 616402 2,592375 1,29 1,19 3,21 2,592926
defence 284242 291922 581842 2,020069 1,48 1,52 3,03 2,020359
destroy 293842 255442 606802 2,22028 1,53 1,33 3,16 2,22065

find 280402 263122 514642 1,895639 1,46 1,37 2,68 1,89591
follow 272722 265042 554962 2,064382 1,42 1,38 3,89 2,779139
freeze 268882 247762 549202 2,129595 1,40 0,55 2,86 3,621429

go 272722 230482 505042 2,02155 1,42 1,2 2,63 2,02189
home 257362 272722 524242 1,97962 1,34 1,42 2,73 1,979924

identity 305362 284242 560722 1,904473 1,59 1,48 2,92 1,904725
listen 230482 282322 566482 2,232162 1,20 1,47 2,95 2,232568
stop 195922 220882 533842 2,570817 1,02 1,15 2,78 2,571441
wait 226642 228562 514642 2,261189 1,18 1,19 2,68 2,261644

watch 236242 280402 549202 2,141683 1,23 1,46 2,86 2,142054

As a first step, we repeat the initial experiment, calculating similarity scores by comparing the 
voiceprints from dataset #5 with one another. The results of these comparisons are presented in 
Table 18.

The resulting score is presented in Table 19.
The  results  were  found  to  be  very  promising.  Accordingly,  no  false  positive  cases  were 

observed, and the proportion of threshold values is minimal. Next, we repeat the experiment by 
comparing dataset #5 with the high-quality voiceprint obtained from dataset #2. The results of this 
comparison are presented in Fig. 3.

The resulting score is presented in Table 20.
The obtained findings indicate strong performance, suggesting that audio recordings with a 

duration of at least 2.63 seconds and a file size of 495 KB or greater can produce reliable voiceprints  
suitable for secure user authentication.



Table 18
Comparison for dataset #5
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analyse 1 0,89 0,91 0,86 0,8 0,82 0,84 0,8 0,83 0,86 0,86 0,84 0,83 0,83 0,85 0,83 0,8
attack 0,89 1 0,93 0,88 0,88 0,9 0,9 0,86 0,88 0,92 0,91 0,92 0,93 0,92 0,92 0,9 0,9
auth-tion 0,91 0,93 1 0,9 0,87 0,89 0,91 0,87 0,89 0,9 0,89 0,88 0,89 0,91 0,89 0,88 0,87
autopilot 0,86 0,88 0,9 1 0,88 0,87 0,91 0,84 0,9 0,92 0,89 0,89 0,91 0,88 0,85 0,83 0,81
check 0,8 0,88 0,87 0,88 1 0,9 0,89 0,89 0,91 0,87 0,85 0,87 0,88 0,89 0,82 0,84 0,82
defence 0,82 0,9 0,89 0,87 0,9 1 0,89 0,87 0,9 0,87 0,87 0,86 0,89 0,89 0,85 0,88 0,85
destroy 0,84 0,9 0,91 0,91 0,89 0,89 1 0,9 0,9 0,89 0,86 0,87 0,88 0,9 0,87 0,83 0,83
find 0,8 0,86 0,87 0,84 0,89 0,87 0,9 1 0,85 0,84 0,85 0,86 0,85 0,88 0,85 0,79 0,79
follow 0,83 0,88 0,89 0,9 0,91 0,9 0,9 0,85 1 0,89 0,87 0,88 0,89 0,9 0,83 0,85 0,8
freeze 0,86 0,92 0,9 0,92 0,87 0,87 0,89 0,84 0,89 1 0,94 0,95 0,93 0,93 0,93 0,91 0,9
go 0,86 0,91 0,89 0,89 0,85 0,87 0,86 0,85 0,87 0,94 1 0,94 0,92 0,9 0,91 0,9 0,88
home 0,84 0,92 0,88 0,89 0,87 0,86 0,87 0,86 0,88 0,95 0,94 1 0,94 0,91 0,9 0,89 0,9
identity 0,83 0,93 0,89 0,91 0,88 0,89 0,88 0,85 0,89 0,93 0,92 0,94 1 0,9 0,89 0,89 0,87
listen 0,83 0,92 0,91 0,88 0,89 0,89 0,9 0,88 0,9 0,93 0,9 0,91 0,9 1 0,9 0,87 0,87
stop 0,85 0,92 0,89 0,85 0,82 0,85 0,87 0,85 0,83 0,93 0,91 0,9 0,89 0,9 1 0,88 0,91
wait 0,83 0,9 0,88 0,83 0,84 0,88 0,83 0,79 0,85 0,91 0,9 0,89 0,89 0,87 0,88 1 0,92
watch 0,8 0,9 0,87 0,81 0,82 0,85 0,83 0,79 0,8 0,9 0,88 0,9 0,87 0,87 0,91 0,92 1

Table 19
The resulting score

Range Percentage (%) Description

[0 : 0,6] 0,0 Failed scenario

(0,6 : 0,8) 1,47 Threshold scenario

[0,8 : 1] 98,53 Succeed scenario

Total number: 272

analyse
attack
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autopilot

check
defence
destroy

find
follow
freeze

Go
home

identity
listen
stop
wait

watch

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Similarity value

Figure 3: Similarity values obtained from the comparison of dataset #5 and dataset #2



Table 20
The resulting score

Range Percentage (%) Description

[0 : 0,6] 0,0 Failed scenario

(0,6 : 0,8) 5,88 Threshold scenario

[0,8 : 1] 94,12 Succeed scenario

Total number: 17

4. Conclusions

The present study has demonstrated in practice that the Resemblyzer library can be effectively 
employed on portable devices with limited hardware resources and no access to cloud services. The 
experiments confirm that the library delivers highly reliable results in voice authentication using 
relatively short audio recordings (no longer than 3 seconds in duration and under 500 KB in size), 
which aligns well with the typical timing of short voice commands. These findings highlight the 
potential  of  Resemblyzer  for  integration  into  autonomous,  resource-constrained  systems  and 
provide  a  foundation  for  further  research  into  its  applicability  in  more  complex  operational 
scenarios for independent portable devices.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.
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