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Abstract
The widespread dissemination of manipulated information across interactive digital platforms represents 
a  significant  societal  challenge  demanding  sophisticated  computational  interventions.  This  study 
introduces  an  innovative  two-tier  machine  learning  architecture  that  integrates  hybrid  Recurrent 
Convolutional Neural Networks with probabilistic Bayesian classification methods for enhanced detection 
and categorization of false information. The research establishes a comprehensive taxonomic framework 
distinguishing five distinct categories of misleading content. The classification system utilizes a seven-
dimensional feature vector incorporating emotional valence analysis, rhetorical pattern density, negative 
linguistic structure frequency, contextual sentiment indexing, deception probability coefficients, content 
influence  metrics,  and  emotional  intensity  measurements.  Empirical  evaluation  was  conducted  using 
balanced  datasets  comprising  Ukrainian  conflict-related  content  (20,000  instances)  and  comparative 
English-language electoral information from recent American political events. The proposed two-stage 
methodology demonstrated substantial performance enhancements, achieving classification accuracy of 
95.3% versus 65.4% for single-layer RCNN implementations - a 46% relative improvement. The hybrid 
system exhibited exceptional data efficiency representing a tenfold reduction compared to conventional 
approaches needing 5,000 samples. Computational analysis indicated modest processing overhead of 5.0%,  
while comprehensive multi-metric assessment revealed 52.5% overall system improvement. Distributed 
processing implementation through MapReduce architecture ensures computational scalability for large-
scale  deployment  scenarios.  The  research  contributes  a  practical  framework  for  automated  content 
verification  systems  with  particular  applicability  during  periods  of  information  warfare  and  social 
instability.
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1. Introduction

Modern  digital  technologies  have  reached  unprecedented  levels  of  sophistication  in  content 
manipulation  capabilities,  prompting legislative  bodies  worldwide  to  address  the  challenges  of 
identifying  inauthentic  information  across  social  media  platforms  [1].  The  severity  of  this 
challenge varies considerably across different media formats. While video manipulation techniques 
remain relatively detectable due to technical limitations [2], textual content and image falsification 
have achieved concerning levels of refinement, driving substantial research efforts and practical 
detection solutions [3, 4]. Under normal circumstances, such deceptive content primarily generates 
interpersonal  disputes  within  social  groups,  with  particularly  pronounced  effects  in  digital 
communities  [5].  However,  during  periods  of  geopolitical  instability,  the  stakes  escalate 
dramatically  as  information  processing  becomes  clouded  by  heightened  emotional  responses, 
compromising  analytical  reasoning  capabilities.  The  integration  of  manipulative  content  into 
mainstream media channels can accelerate societal transformations triggered by crisis events while  
magnifying their destructive potential [6].

⋆ProfIT AI’25: 5th International Workshop of IT-professionals on Artificial Intelligence, October 15–17, 2025, Liverpool, UK
1∗ Corresponding author.
† These authors contributed equally.

 artem.khovrat@nure.ua (A. Khovrat); volodymyr.kobziev@nure.ua (V. Kobziev); andrii.strelchenko@nure.ua (A. 
Strelchenko)

 0000-0002-1753-8929 (A. Khovrat); 0000-0002-8303-1595 (V. Kobziev); 0009-0009-8332-4353 (A. Strelchenko); 
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:volodymyr.kobziev@nure.ua
mailto:volodymyr.kobziev@nure.ua
mailto:artem.khovrat@nure.ua


The  consequences  span  financial,  sociocultural,  and  strategic  domains,  fundamentally 
distorting public discourse. The extensive disinformation campaigns accompanying the Russian-
Ukrainian conflict exemplify such scenarios, where false narratives systematically obscured war 
crimes  and  eroded  confidence  in  Ukrainian  defense  institutions  [7].  Implementation  strategies 
necessarily  adapt  to  the  characteristics  of  target  data  types.  This  investigation  concentrates 
exclusively  on  textual  news  content,  reflecting  current  limitations  in  generating  convincingly 
authentic video falsifications that can deceive human perception.

Three primary methodological approaches dominate textual data classification [4]:

1. Probabilistic frameworks encompassing naive Bayesian classifiers,  Markov chain models, 
and Bayesian network architectures.

2. Neural  network  implementations,  including  recurrent  and  convolutional  architectures, 
transformer models, and alternative deep learning paradigms.

3. Polynomial modeling approaches incorporating linear additive convolution with weighted 
coefficients and threshold parameters .

Research conducted by Spanish investigators into inauthentic textual content [8, 9] revealed 
that  machine  learning  algorithms  demand  extensive  datasets  to  achieve  superior  classification 
performance (exceeding 95% accuracy) while exhibiting heightened sensitivity to outlier instances. 
Alternative  detection  methodologies  merit  consideration,  particularly  graph-based  approaches 
extensively investigated by Harvard researchers [11] for identifying fraudulent account profiles. 
These techniques deliver rapid results with minimal data requirements, though their adaptation to 
textual analysis necessitates substantial preprocessing that eliminates speed advantages.

Spam  filtration  research  provides  relevant  insights  for  false  content  detection.  Chinese-
American research teams demonstrated Markov chain effectiveness [12], though domain-specific 
requirements  render  such  approaches  computationally  intensive,  as  corroborated  by  Montreal-
based Canadian researchers [13].

Autoregressive  techniques  offer  alternative  solutions  for  detecting  artificially  generated 
content, provided authentic samples from target individuals are available. However, these models 
prove ineffective against contextual manipulations and are therefore excluded from subsequent 
analysis.

Previous  investigations  focusing  on  binary  classification  between  authentic  and  fabricated 
content have explored probabilistic models alongside diverse neural network architectures [5, 14]. 
Results  identified  hybrid  networks  combining  recurrent  and  convolutional  components  - 
specifically  RCNN  architectures  -  as  optimal  solutions  balancing  accuracy  and  computational 
efficiency. A significant challenge emerged in assessing the societal impact of inauthentic content.  
Certain materials exhibit obvious humorous characteristics readily identifiable by human readers, 
presenting minimal societal risk. Conversely, content designed to undermine confidence in critical 
legislative decisions poses substantial public threats.

Literature  analysis  reveals  several  critical  research  gaps  in  falsified  information  detection. 
Current studies predominantly emphasize binary classification without considering societal threat 
gradations. Satirical content and deliberate disinformation require distinct detection strategies, yet  
comprehensive  taxonomies  accounting  for  impact  scale  and  potential  harm  remain 
underdeveloped. While hybrid neural networks like RCNN demonstrate exceptional performance, 
their capabilities could be substantially enhanced through multilayer architectural designs. Existing 
research has not explored integrating RCNN with complementary classification methodologies to 
optimize  overall  system performance.  Additionally,  most  current  solutions  demand  significant 
computational  resources  and  extensive  training  datasets,  constraining  practical  deployment 
scenarios.

This research aims to develop a dual-layer fake information classification model integrating 
naive Bayesian classification with hybrid recurrent-convolutional neural networks. The following 
objectives guide this investigation:



• Establish markers characteristic of fabricated data to facilitate detection processes.
• Conduct expert assessments to define primary fake information categories.
• Develop classification models for segregating falsified data groups using naive Bayesian 

approaches.
• Execute experimental validation comparing the proposed dual-layer model against single-

layer RCNN implementations.
• Analyze experimental outcomes and formulate conclusions through multi-criteria decision 

analysis.

2. Indicators of disinformation

Constructing effective analytical models requires careful formulation of feature vectors as critical 
determinants  of  classification  performance.  Through  comprehensive  linguistic  analysis  and 
empirical  observation,  a  systematic  categorization  of  discriminative  characteristics  inherent  to 
fabricated information was identified and organized:

• Excessive utilization of interrogative constructions designed to manipulate sociolinguistic 
contexts.

• Systematic  elimination  of  negative  constructions  combined  with  hyperbolic  term 
substitution.

• Inappropriate incorporation of appellative and stimulating linguistic structures, particularly 
evident in contexts attempting to simulate legitimate news discourse.

• Overuse of pronouns frequently correlates with contextual manipulation attempts.
• Presence  of  systematic  grammatical  and stylistic  anomalies,  especially  within  purported 

quotations from authoritative sources.

This  expanded  feature  set  facilitates  development  of  robust,  multidimensional  classification 
models  capable  of  identifying  fabricated  information  across  various  modalities  with  enhanced 
accuracy and recall coefficients. The comprehensive approach addresses the complexity of modern 
disinformation campaigns while  maintaining computational  efficiency through strategic  feature 
selection and optimization.

3. Classes of disinformation

The initial phase in addressing multi-classification challenges involves establishing fundamental 
disinformation  categories  through  rigorous  methodological  frameworks.  To  determine  this 
classificatory scheme, an expert panel comprising 100 data analysts from various European and 
North American countries was assembled.  Subsequently,  an open survey utilizing standardized 
assessment  protocols  was  conducted  to  identify  the  most  vulnerable  types  of  information 
falsification. Aggregated responses from 300 participants (n=300, 95% confidence interval, margin 
of error ±5.66%) were instrumental in formulating the defined groups:

• Overt satirical material (featuring explicit comedic indicators and recognizable structural 
patterns that signal non-serious intent).

• Subtle  satirical  content (requiring  contextual  interpretation and cultural  knowledge for 
proper identification of humorous intent).

• Targeted personal disinformation (focused misinformation campaigns directed at specific 
individuals or narrow demographic groups).

• Regional-scale  false  narratives (misleading  information  designed  to  influence  broader 
communities, multiple regions, or large population segments).

• Global-impact disinformation (systematic false information campaigns with international 
reach and potential for widespread societal disruption).



The categorization structure demonstrates a hierarchical framework with escalating scope and 
potential impact, facilitating both quantitative and qualitative analysis of disinformation patterns. 
This  taxonomic  approach  enables  more  nuanced  investigation  of  information  manipulation 
strategies  while  providing  a  standardized  foundation  for  comparative  analysis  across  different 
threat scenarios and deployment contexts. 

4. Target features

Following the establishment of fabricated information characteristics, the methodology proceeds to 
develop a feature set that serves as input variables for the models. The primary metric "Emotional  
Characteristic"  is  derived through content  analysis  principles  [15],  implementing the following 
algorithmic sequence:

 Segmentation of textual content into sentence units and tokenization of lexical elements 
with exclusion of non-semantic constructions (e.g., "however," "this," "or").

 Application of lemmatization and stemming operations to extract morphological roots from 
the vocabulary set.

 Computation and normalization of frequency-emotional indicators at the sentence level.
 Implementation of sentiment analysis methodology using the NLTK module in Python3 for 

determining lexical frequency distributions and emotional valence metrics.

Additionally,  six  auxiliary  quantitative  indicators  were  incorporated  into  the  analytical 
framework:

• Rhetorical Density Coefficient (RDC): Defined as the ratio of rhetorical constructions to 
total sentence count - RDC = (RCC/TS), where: RCC = Rhetorical Construction Count, TS = 
Total Sentences.

• Negative  Construction  Frequency  (NCF):  Quantifies  the  density  of  negative  linguistic 
structures -  NCF = (NCC/TS),  where: NCC = Negative Construction Count,  TS = Total 
Sentences.

• Contextual Emotional Index (CEI): Derived from sentiment analysis of temporally relevant 
high-traffic content; analyzes emotional valence patterns among the 50 highest-rated news 
articles; provides temporal calibration for classification algorithms.

• Suspicion Coefficient (SC): Calculated through lexical comparison patterns with predefined 
deception  indicators;  utilizes  a  validated  corpus  of  terms  associated  with  fabricated 
information; implements normalized frequency analysis for inter-textual comparison.

• Message Impact Factor (MIF): Hierarchical classification of content significance; weighting 
system  evaluation  based  on  content  domain  and  coverage;  includes  multidimensional 
impact assessment.

• Sentiment Magnitude Vector (SMV): Aggregated measure of emotional content intensity; 
normalized  representation  of  overall  message  valence;  includes  both  polarity  and 
magnitude components.

This integrated approach facilitates comprehensive feature extraction and analysis, ensuring 
robust  classification  of  potentially  fabricated  information  across  various  contextual  domains. 
Parallelized implementation ensures computational efficiency while preserving analytical precision 
across diverse linguistic and cultural contexts.

5. First layer for classification model

In  traditional  Convolutional  Neural  Network  (CNN)  architectures,  filter  operations  facilitate 
incorporation  of  local  spatial  dependencies;  however,  the  distinctive  nature  of  the  proposed 
indicators requires understanding of extended temporal sequences without introducing future state 



dependencies [5]. This presents limitations as important contextual information may exist beyond 
the CNN's receptive field boundaries. To address this architectural constraint, a hybrid approach 
combining  Recurrent  Neural  Network  (RNN)  and  CNN  methodologies  was  implemented 
(illustrated in Figure 1 in simplified form).

Figure 1: Schema for RCC approach [created by the authors].

The proposed RCNN architecture strategically combines the strengths of convolutional and 
recurrent neural networks through a multi-stage processing pipeline. This integration addresses 
the limitations of each approach when applied individually to textual disinformation detection. As 
a critical foundation of this approach, the initial stage utilizes a convolutional layer configuration 
for  feature  extraction.  Textual  input  undergoes  tokenization  and  embedding  transformation, 
resulting in a matrix representation where each row corresponds to a token and each column 
represents  an  embedding dimension.  Several  architectural  enhancements  were  implemented  to 
optimize model performance: 

 Implementation of dilated convolutions to expand the effective receptive field; utilization of 
skip  connections  to  preserve  detailed  feature  information;  integration  of  attention 
mechanisms to capture long-term dependencies.

 Implementation of  gated  memory units  for  information  control;  utilization  of  adaptive 
forget  gates  for  memory  retention  optimization;  integration  of  memory-efficient 
backpropagation methods.

 Implementation of  residual  connections to facilitate gradient  propagation;  utilization of 
layer  normalization  for  stable  training  dynamics;  integration  of  gradient  clipping  to 
prevent numerical instability.

The  training  protocol  for  this  integrated  architecture  includes  curriculum  learning  for 
improved convergence, beginning with simpler examples and gradually introducing complex cases. 
Dynamic batch sizing optimizes memory utilization, starting with larger batches and progressively 
reducing  size  for  enhanced  convergence  precision.  Early  stopping  with  patience  factor  p  =  5 
monitors validation loss to prevent overfitting, while learning rate scheduling implements initial 



rate 0.001 with exponential decay factor 0.95 per epoch. Regularization strategies include dropout 
layers  (rate  =  0.3)  for  improved generalization,  applied  after  both convolutional  and recurrent 
components. L2 regularization (λ = 0.01) prevents overfitting, particularly for dense layers, while 
feature-oriented regularization enables robust feature learning through normalization at multiple 
network  stages.  Recurrent  dropout  (rate  =  0.2)  is  specifically  implemented  for  LSTM  state 
transitions to prevent co-adaptation of recurrent units.

Several methods enhance computational efficiency:

 Model  quantization  reduces  memory  footprint  by  converting  32-bit  floating-point 
operations to 16-bit.

 Sparse tensor operations are utilized particularly for high-dimensional embedding layers.
 Parallel processing for batch computations distributes forward and backward passes across 

resources.
 Gradient accumulation enables efficient training with limited memory resources.

This enhanced architectural configuration demonstrates superior performance characteristics 
while maintaining computational efficiency. The integration of bidirectional recurrent components 
with convolutional layers enables effective capture of both spatial and temporal dependencies in 
the  feature  space,  achieving  validation  accuracy  of  94.3%  on  benchmark  datasets.  The  hybrid 
architecture  successfully  addresses  disinformation detection challenges  through complementary 
processing pathways:  CNN components effectively extract local  linguistic  patterns and stylistic 
markers, while LSTM components capture long-term dependencies and contextual inconsistencies 
that frequently characterize fabricated information.

6. Second layer for classification model

The  Naive  Bayesian  Classification  (NBC)  methodology  operates  on  fundamental  principles  of 
Bayesian probability theory, computing class membership probabilities while maintaining feature 
independence assumptions. This independence assumption demonstrates practical validity in the 
current context, as the defined feature set exhibits minimal inter-feature dependency in subsequent 
value determination.

Bayes'  theorem fundamentally describes the probability of event occurrence based on prior 
knowledge  of  conditions  related  to  that  event.  In  this  context,  it  calculates  the  probability  of  
information belonging to a specific class, considering several key components: the probability of 
observing specific features when information belongs to that class, the general probability of class 
occurrence in the dataset, and the overall probability of observing these specific features among all  
possible classes. This relationship is expressed mathematically as:

(1)

Here  represents the posterior probability of class   given features   to ; 

 is  the  likelihood  of  observing  these  features  in  class  ;   is  the  prior 

probability of class ;  is the evidence, or overall probability of the feature set.
Under the naive independence assumption, the likelihood term can be decomposed as:

(2)

Classes  correspond to the five disinformation categories defined above:



 : Overt satirical material.

 : Subtle satirical content.

 : Targeted personal disinformation.

 : Regional-scale false narratives.

 : Global-impact disinformation.

It is worth noting that by construction these classes are independent. In addition, the total  
probability that a message will belong to one of these classes is equal to 1. This allows us to use  
Bayes' theorem. Features F jcorrespond to the seven indicators established above:

 : Emotional characteristic.

 : Rhetorical density coefficient.

 : Negative construction frequency.

 : Contextual emotional index.

 : Suspicion coefficient.

 : Message impact factor.

 : Sentiment magnitude vector.

Implementation follows a  comprehensive three-phase approach.  During the training phase, 

conditional probability distributions  are estimated for each class and feature using kernel 

density estimation, particularly suitable for continuous features. Class prior probabilities  are 
computed using frequency distributions in the training dataset with Laplace smoothing to address 
class imbalance.

During the inference phase, feature values are extracted from input instances and normalized 
according to procedures specified above. For each class, posterior probability is computed based on 
Bayesian  principles  with  the  naive  independence  assumption.  The  fundamental  relationship  is 
expressed as:

(3)

To  prevent  numerical  overflow  from  multiplying  small  probabilities,  computations  are 
implemented in logarithmic space with feature weighting based on information gain metrics:

(4)

Here   represents the normalized information gain weight for feature  . everal additional 
optimization  mechanisms  enhance  classifier  performance,  including  feature  normalization  and 
bandwidth  parameter  optimization  for  kernel  density  estimation.  These  methods  collectively 
enable  robust  classification  through  systematic  assessment  of  class  membership  probabilities, 
particularly effective for multiple independent feature sets.

7. Distributed computing

MapReduce will be applied autonomously during input data preprocessing and throughout neural  
network  training  processes.  For  textual  data  preprocessing,  forming  a  maximally  complete 
vocabulary represents  a  critical  requirement.  A specialized  non-relational  database with multi-
threaded access support was created, where after basic processing (elimination of service words,  
lemmatization, stemming) the entire available lexicon will be stored. Consequently, increasing the 



volume of  processed material  leads to  improved accuracy in forming corresponding frequency 
characteristics.

For  RCNN  architecture,  the  initial  phase  involves  the  CNN  convolutional  layer.  Weight 
parameters  are  iteratively  adjusted  through  computation  of  their  partial  gradients  after  each 
training set passes through the network. Therefore, parallelization during the training process can 
be implemented by segmenting data into multiple parts. Each segment is transmitted to multiple 
CNNs that train independently. Subsequently, results are aggregated through the reducer to obtain 
final  data  used  for  updating  weight  coefficients  in  the  next  iteration.  After  completing 
convolutional  layer  operations,  aggregated  data  proceeds  to  BiLSTM.  To  accelerate  the 
bidirectional neural network, the work of two neural networks can be distributed between separate  
nodes. In such cases, the reduction function essentially performs the role of aggregating results 
from both networks.

The Naive Bayesian classifier  proves particularly suitable for  parallel  processing due to its 
probabilistic nature and independence of computations for different features. 

During the training stage, data is distributed among nodes for independent computation of 
statistics  for  each feature.  Each node computes  local  frequencies  and probabilities  for  its  data 
portion. The reduction function aggregates these statistics to obtain global probability distributions 

 and prior probabilities .
During the classification phase, posterior probability computations for different classes can be 

performed in  parallel  on separate  nodes.  Each  node receives  the  feature  vector  and computes 
membership probability for its  assigned class subset.  Final  classification is  determined through 
comparison of results from all nodes.

Additionally, probability computations for different features can be parallelized, since features 

are  independent  under  the  naive  assumption.  This  allows  distributing   computations 
among nodes and combining results through multiplication in logarithmic space.

8. Experimental environment

Contemporary  neural  network  research  demands  controlled  experimental  protocols  requiring 
precise implementation structures and standardized execution environments. 

Implementation precision relies heavily on precise temporal measurements achieved through 
Python 3's  datetime library  with  nanosecond resolution.  Computational  optimization leverages 
numpy and polars libraries,  while  linguistic  processing employs nltk functionality.  TensorFlow 
provides the fundamental  neural  network framework necessary for  developing complex model 
architectures and training protocols.

Validation rigor derives from two distinct datasets focusing on contemporary sociopolitical 
events.  Primary  data  analysis  encompasses  the  Russian-Ukrainian  war,  consisting  of  20,000 
balanced  records  derived  from  5,000  initial  trilingual  posts  standardized  through  Ukrainian 
linguistic  transformation.  Additional  analysis  utilizes  a  2020  US  election  dataset  maintaining 
equivalent  English-language  volume  and  facilitating  cross-linguistic  validation.  Both  datasets 
employ error mitigation protocols within an 80/20 training/testing distribution framework.

The experimental  corpora comprise two primary sources:  (1)  the Ukrainian conflict-related 
dataset collected from verified open-access Telegram and Twitter channels (January 2022 – March 
2025), standardized to Ukrainian language through semi-automatic translation and lemmatization; 
and (2)  an English-language dataset  derived from the 2020 U.S.  presidential  election discourse 
(August 2020 – December 2020). Both datasets were compiled exclusively from publicly available, 
non-personal content and licensed under the Creative Commons Attribution 4.0 International (CC 
BY 4.0) framework to ensure replicability and ethical compliance. The resulting corpora include 
only  textual  news statements;  personally  identifiable  information  and metadata  were  removed 
before processing. 



The annotated corpus used for training and evaluation was evenly distributed across the five 
identified categories of disinformation, ensuring class balance and comparability. Each class—overt 
satire,  subtle  satire,  targeted  personal  disinformation,  regional  narratives,  and  global-impact 
disinformation—comprised  approximately  one-fifth  of  the  total  dataset  (around  four  thousand 
samples per class in the Ukrainian corpus). The same proportional structure was preserved in the 
English-language corpus. For model development, data were randomly divided into 80 percent for 
training and 20 percent for testing, with stratification applied to maintain class balance across both 
subsets. 

Methodological  reliability  stems  from  comprehensive  evaluation  protocols  incorporating 
expertise  from  50  data  analysis  specialists  across  various  countries.  Performance  assessment 
utilizes complex weighting systems prioritizing accuracy (16 points) through balanced Precision 
(0.80)  and Recall  (0.20)  metrics.  Processing efficiency and data  volume optimization contribute 
equally (2 points each) to the evaluation matrix. Statistical validity emerges through linear additive 
convolution  with  weighting  coefficients,  ensuring  comprehensive  model  assessment  while 
maintaining focus on classification accuracy. This approach demonstrates particular effectiveness 
in  handling  high-dimensional  feature  spaces  and  complex  linguistic  patterns  across  different 
languages,  specifically  minimizing  false-negative  classifications  in  socially  sensitive  contexts. 
Architectural  flexibility  facilitates  seamless  computational  node  integration,  ensuring  scalable 
performance optimization without  structural  modifications.  Such adaptability proves invaluable 
when  processing  heterogeneous  data  streams  while  maintaining  stable  classification  accuracy 
across diverse linguistic and contextual domains.

Experimental  uncertainty quantification requires systematic identification and mitigation of 
potential error sources within the measurement framework. Analysis of the experimental protocol 
reveals two primary uncertainty categories: temporal measurement errors and accuracy estimation 
deviations. In temporal measurement domains, uncertainty arises from both anthropogenic factors 
and instrumental precision limitations. Human factors introduce variability through operational 
inconsistencies, while instrumental error manifests through systematic and random deviations in 
measurement equipment performance. These temporal uncertainties directly impact computational 
efficiency assessment and system response evaluation. Accuracy estimation uncertainty primarily 
stems from data quality variations and integrity considerations. These uncertainties may manifest  
through  dataset  incompleteness,  annotation  inconsistencies,  or  classification  ambiguities, 
potentially affecting performance metric reliability.

To  address  these  systematic  uncertainties,  a  robust  measurement  protocol  was  established 
implementing  ten-fold  iterations  (n=10)  for  each  performance  indicator.  This  repeated 
measurement approach enables statistical validation of results, minimizing the impact of random 
fluctuations  and  systematic  biases.  Implementation  of  multiple  measurement  cycles  facilitates 
computation  of  standard  deviations  and  confidence  intervals,  providing  more  comprehensive 
understanding of model performance stability.

9. Results of the experiment

Performance  accuracy  evaluation  for  each  architectural  configuration  involved  conducting  ten 
independent iterations to ensure statistical reliability. Figure 2 presents detailed accuracy results 
for each architecture across the first dataset.

Mean accuracy values across all iterations were 65.4% (σ = 0.55) for standalone RCNN and 95.3% 
(σ  =  0.35)  for  RCNN+NBC.  Result  stability  across  both  datasets  indicates  architectural  model  
robustness  to  linguistic  and  contextual  variations  between  different  disinformation  domains. 
Notably,  the  dual-layer  RCNN+NBC  approach  consistently  outperformed  baseline  RCNN 
implementation across all iterations and datasets.



Figure 2: Accuracy results for each architecture on Russian-Ukrainian war dataset [created by the 
authors].

A  detailed  per-class  analysis  confirmed  consistently  high  performance  across  all  five 
disinformation  categories.  Precision  and recall  values  for  each class  remained  in  the  range  of 
roughly  0.93–0.97,  resulting  in  macro-  and  micro-averaged  F1-scores  close  to  0.95.  The  most 
frequent classification overlaps occurred between overt and subtle satire, reflecting their semantic 
proximity and shared stylistic cues; however, such misclassifications accounted for less than five 
percent of all cases. The results therefore demonstrate stable and balanced detection quality, with 
no dominant bias toward any specific category. 

Figure 3 below presents accuracy results for the second dataset. Processing time was evaluated 
through multiple measurement iterations, recording average inference time required for classifying 
single samples.  Hardware configuration remained consistent across all  architectural  variants to 
ensure comparable results. Table 1 presents processing time measurements across five independent 
iterations.
Figure  3: Accuracy  results  for  each  architecture  on  US  election  2020  dataset [created  by  the 

authors].

Processing  time results  demonstrate  moderate  differences  between architectural  approaches. 
Baseline RCNN implementation achieved the lowest average processing time (125 ms). RCNN+NBC 
configuration required 5.0% additional time (131.2 ms) compared to baseline performance.

Table 1
Measuring processing time (milliseconds) over multiple iterations



Algorithm Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Median Std

RCNN 125 124 126 123 127 125 1.6

RCNN + NBC 131 132 130 132 131 131.2 0.8

For  data  efficiency  assessment,  each  architecture  was  evaluated  using  progressively  larger 
training  dataset  sizes  until  achieving  accuracy  exceeding  80%.  This  threshold  was  established 
through expert evaluation as the minimum acceptable performance level for practical deployment. 
Results reveal substantial differences in data efficiency between architectural variants. RCNN+NBC 
configuration  demonstrates  exceptional  data  efficiency,  requiring  only  500  samples  to  achieve 
acceptable performance - a 90% reduction compared to baseline implementation, which required 
5,000 samples.

To  facilitate  comprehensive  comparison,  individual  performance  metrics  were  normalized 
relative to baseline RCNN implementation and aggregated, as shown in Table 2.

Time saving was calculated as the inverse of normalized processing time, with baseline RCNN 
implementation assigned value 1.00. Accuracy values were normalized to [0,1] scale, and volume 
saving was computed as proportional reduction in minimally required samples relative to baseline.  
Relative  importance  of  each  metric  was  determined  through  expert  assessment  with  accuracy 
weighted 0.8 and both time and volume savings weighted 0.1 each. Applying these weights through 
linear additive convolution yields efficiency coefficients of 0.62 for standalone RCNN and 0.945 for 
RCNN+NBC.

Table 2
Processed results of the experiment (in fractions)

Algorithm Time Saving Accuracy Volume Saving

RCNN 1.00 0.65 0.00

RCNN + NBC 0.95 0.95 0.90

Experimental results demonstrate that the RCNN+Naive Bayes approach achieved an average 
52.5% efficiency improvement compared to direct RCNN method application. This enhancement 
encompasses all  evaluated metrics with particularly significant improvements in data efficiency 
and classification accuracy. RCNN+NBC architecture proves optimal configuration, achieving the 
highest overall efficiency coefficient (0.945) through balanced performance across all metrics. This 
architecture  combines  robust  RCNN  feature  extraction  capabilities  with  probabilistic  Bayesian 
classification  framework,  resulting  in  exceptional  data  efficiency  while  maintaining  high 
classification accuracy.

10. Conclusion

The objective of this research was to develop an effective dual-layer model for detecting textual  
information  falsification  based  on  hybrid  recurrent-convolutional  neural  network  approaches 
combined with naive Bayesian classification. The investigation conducted comprehensive analysis 
of textual information falsification characteristics within socially oriented systems characterized by 
significant  user  loads.  Based on expert  evaluation,  a  classification structure  encompassing five 
categories of fake information was established, ranging from satirical content to globally harmful 
news. Additionally, a set of seven discriminative features for identifying fabricated information 
was  developed,  including  emotional  characteristics,  rhetorical  density  coefficients,  negative 



construction  frequency,  contextual  emotional  indices,  suspicion  coefficients,  message  impact 
factors,  and sentiment magnitude vectors.  These features form the foundation for classification 
through naive Bayesian classifier, constituting the first layer of the proposed model.

To enhance computational efficiency, parallelization of training and data processing procedures 
was  implemented  through  MapReduce  technology  on  the  Hadoop  platform.  This  enabled 
distribution of CNN component training among multiple nodes with subsequent result aggregation 
through reducers.  Experimental  verification was conducted on two datasets:  Russian-Ukrainian 
war  news  (20,000  records)  and  2020  US  election  coverage  (equivalent  volume).  Multi-criteria 
evaluation employed weighting coefficients: accuracy (0.8), time savings (0.1), and data efficiency 
(0.1).

Experimental results demonstrate substantial advantages of the proposed dual-layer approach. 
The  RCNN+NBC  model  achieved  95.3%  accuracy  compared  to  65.4%  for  baseline  RCNN, 
representing a 46% relative performance enhancement. Particularly significant is the data efficiency 
improvement  -  the  dual-layer  model  requires  only  500  training samples  to  achieve  acceptable 
accuracy versus 5,000 for baseline architecture, constituting a 90% data reduction.

Processing  time  increased  modestly  (5.0%),  offset  by  substantial  classification  quality 
improvements. The overall efficiency coefficient for the dual-layer model reached 0.945 versus 0.62 
for baseline implementation, demonstrating 52.5% enhancement.

Application of dual-layer classification methodology successfully extends baseline falsification 
detection capabilities to include impact scale assessment and fabrication intentionality analysis.  
Results confirm the feasibility of implementing the proposed approach for reducing disinformation 
impact in socially oriented systems, particularly during crisis periods. Future research directions 
include extending the methodology to multimodal content (video, images), investigating transfer 
learning possibilities between different disinformation domains,  and optimizing architecture for 
real-time operation in high-load systems.

To  promote  transparency  and  reproducibility,  the  authors  intend  to  release  a  de-identified 
subset of the multilingual dataset together with the source code implementing the RCNN + Naive 
Bayes training and evaluation procedures. The materials will be made publicly available after the 
completion and publication of other research papers that also rely on these corpora, ensuring that 
data disclosure does not compromise the integrity of concurrent investigations. Prior to release, all 
entries will undergo additional anonymization to remove user identifiers, timestamps, and message 
metadata while preserving textual authenticity for linguistic analysis.

11. Limitations and practical outlook

Despite high experimental accuracy, several limitations remain:

 Training data are restricted to Ukrainian and English; direct transfer to morphologically 
distant languages (e.g., Arabic, Chinese) may reduce performance without adaptation or 
multilingual embeddings.

 Textual style and context differ across media (Telegram vs Reddit vs X), possibly affecting 
feature distributions and classifier calibration.

 Although only public data were used, any large-scale deployment must ensure continued 
anonymization and bias audits.

 Real-time  monitoring  requires  stream-processing  adaptation  (e.g.,  Kafka  +  TensorFlow 
Serving)  and  automatic  model  updates  via  concept-drift  detection.
Future work will address these challenges through multilingual fine-tuning, cross-platform 
evaluation, and embedding the hybrid classifier into practical content-moderation pipelines 
for governmental and media organizations.
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